library(tidyverse) # for general data wrangling
library(tidymodels) # for modelingUnit 2: EDA Cleaning
How to read keys: a quick note
We will do our best to use different formatting techniques to keep keys readable so that you can get the most out of them.
All replicated questions from the original assignment shell will be written like this.
And all of our additional commentary will be written in plain text.
Packages, source functions, conflicts
This code chunk loads all packages needed for this assignment.
This code chunk will set up conflict policies to reduce errors associated with function conflicts.
options(conflicts.policy = "depends.ok")If we wanted to load more packages, we would load them in after specifying our conflicts policy below. Note that we didn’t load the
janitorpackage below. You use itsclean_names()function later but you can use that without loading the package by pre-pending the namespace when calling it (i.e.,janitor::clean_names()). We load in thekableExtrapackage below, but you might not use it!
library(kableExtra, exclude = "group_rows")You may also use the EDA and plotting functions that John shares on his
lab_supportrepo. You can source the scripts that contain those functions directly from Github with the code below (note that you may need to install thedevtoolspackage if you haven’t done this previously).
If you customized your own functions, this would also be an appropriate place to load those in!
source("https://github.com/jjcurtin/lab_support/blob/main/fun_eda.R?raw=true")
source("https://github.com/jjcurtin/lab_support/blob/main/fun_plots.R?raw=true")Set up some other environment settings.
options(tibble.width = Inf, tibble.print_max = Inf)
theme_set(theme_classic()) Read and Setup Dataframe
Read Data
In the chunk below, set the variable
path_datato the location of your data files. Make sure you have your iaml project open in RStudio. When you callhere::here()it will set your root path to be inside of the iaml folder. Assuming you have a subfolder called homework and a folder within that folder calledunit_02,path_datawill work as set. If you have some other organization, you will need to modifypath_datato reflect that folder structure.
path_data <- "application_assignments/unit_02"This assignment will use the Ames Housing Prices Dataset (also seen in Unit 2 of the course text).
Read in the
ames_raw_class.csvdata below.
ames_all <- read_csv(here::here(path_data, "ames_raw_class.csv"),
show_col_types = FALSE) |>
glimpse()Rows: 1,955
Columns: 81
$ PID <chr> "0526301100", "0526350040", "0526351010", "052710501…
$ `MS SubClass` <chr> "020", "020", "020", "060", "120", "120", "120", "06…
$ `MS Zoning` <chr> "RL", "RH", "RL", "RL", "RL", "RL", "RL", "RL", "RL"…
$ `Lot Frontage` <dbl> 141, 80, 81, 74, 41, 43, 39, 60, 75, 63, 85, NA, 47,…
$ `Lot Area` <dbl> 31770, 11622, 14267, 13830, 4920, 5005, 5389, 7500, …
$ Street <chr> "Pave", "Pave", "Pave", "Pave", "Pave", "Pave", "Pav…
$ Alley <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
$ `Lot Shape` <chr> "IR1", "Reg", "IR1", "IR1", "Reg", "IR1", "IR1", "Re…
$ `Land Contour` <chr> "Lvl", "Lvl", "Lvl", "Lvl", "Lvl", "HLS", "Lvl", "Lv…
$ Utilities <chr> "AllPub", "AllPub", "AllPub", "AllPub", "AllPub", "A…
$ `Lot Config` <chr> "Corner", "Inside", "Corner", "Inside", "Inside", "I…
$ `Land Slope` <chr> "Gtl", "Gtl", "Gtl", "Gtl", "Gtl", "Gtl", "Gtl", "Gt…
$ Neighborhood <chr> "NAmes", "NAmes", "NAmes", "Gilbert", "StoneBr", "St…
$ `Condition 1` <chr> "Norm", "Feedr", "Norm", "Norm", "Norm", "Norm", "No…
$ `Condition 2` <chr> "Norm", "Norm", "Norm", "Norm", "Norm", "Norm", "Nor…
$ `Bldg Type` <chr> "1Fam", "1Fam", "1Fam", "1Fam", "TwnhsE", "TwnhsE", …
$ `House Style` <chr> "1Story", "1Story", "1Story", "2Story", "1Story", "1…
$ `Overall Qual` <dbl> 6, 5, 6, 5, 8, 8, 8, 7, 6, 6, 7, 8, 8, 8, 9, 4, 6, 6…
$ `Overall Cond` <dbl> 5, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 2, 5, 6, 6…
$ `Year Built` <dbl> 1960, 1961, 1958, 1997, 2001, 1992, 1995, 1999, 1993…
$ `Year Remod/Add` <dbl> 1960, 1961, 1958, 1998, 2001, 1992, 1996, 1999, 1994…
$ `Roof Style` <chr> "Hip", "Gable", "Hip", "Gable", "Gable", "Gable", "G…
$ `Roof Matl` <chr> "CompShg", "CompShg", "CompShg", "CompShg", "CompShg…
$ `Exterior 1st` <chr> "BrkFace", "VinylSd", "Wd Sdng", "VinylSd", "CemntBd…
$ `Exterior 2nd` <chr> "Plywood", "VinylSd", "Wd Sdng", "VinylSd", "CmentBd…
$ `Mas Vnr Type` <chr> "Stone", "None", "BrkFace", "None", "None", "None", …
$ `Mas Vnr Area` <dbl> 112, 0, 108, 0, 0, 0, 0, 0, 0, 0, 0, 0, 603, 0, 350,…
$ `Exter Qual` <chr> "TA", "TA", "TA", "TA", "Gd", "Gd", "Gd", "TA", "TA"…
$ `Exter Cond` <chr> "TA", "TA", "TA", "TA", "TA", "TA", "TA", "TA", "TA"…
$ Foundation <chr> "CBlock", "CBlock", "CBlock", "PConc", "PConc", "PCo…
$ `Bsmt Qual` <chr> "TA", "TA", "TA", "Gd", "Gd", "Gd", "Gd", "TA", "Gd"…
$ `Bsmt Cond` <chr> "Gd", "TA", "TA", "TA", "TA", "TA", "TA", "TA", "TA"…
$ `Bsmt Exposure` <chr> "Gd", "No", "No", "No", "Mn", "No", "No", "No", "No"…
$ `BsmtFin Type 1` <chr> "BLQ", "Rec", "ALQ", "GLQ", "GLQ", "ALQ", "GLQ", "Un…
$ `BsmtFin SF 1` <dbl> 639, 468, 923, 791, 616, 263, 1180, 0, 0, 0, 637, 36…
$ `BsmtFin Type 2` <chr> "Unf", "LwQ", "Unf", "Unf", "Unf", "Unf", "Unf", "Un…
$ `BsmtFin SF 2` <dbl> 0, 144, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1120, 0, 0, 0, 0,…
$ `Bsmt Unf SF` <dbl> 441, 270, 406, 137, 722, 1017, 415, 994, 763, 789, 6…
$ `Total Bsmt SF` <dbl> 1080, 882, 1329, 928, 1338, 1280, 1595, 994, 763, 78…
$ Heating <chr> "GasA", "GasA", "GasA", "GasA", "GasA", "GasA", "Gas…
$ `Heating QC` <chr> "Fa", "TA", "TA", "Gd", "Ex", "Ex", "Ex", "Gd", "Gd"…
$ `Central Air` <chr> "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y…
$ Electrical <chr> "SBrkr", "SBrkr", "SBrkr", "SBrkr", "SBrkr", "SBrkr"…
$ `1st Flr SF` <dbl> 1656, 896, 1329, 928, 1338, 1280, 1616, 1028, 763, 7…
$ `2nd Flr SF` <dbl> 0, 0, 0, 701, 0, 0, 0, 776, 892, 676, 0, 0, 1589, 67…
$ `Low Qual Fin SF` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ `Gr Liv Area` <dbl> 1656, 896, 1329, 1629, 1338, 1280, 1616, 1804, 1655,…
$ `Bsmt Full Bath` <dbl> 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0…
$ `Bsmt Half Bath` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ `Full Bath` <dbl> 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 3, 2, 1, 1, 2, 2…
$ `Half Bath` <dbl> 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0…
$ `Bedroom AbvGr` <dbl> 3, 2, 3, 3, 2, 2, 2, 3, 3, 3, 2, 1, 4, 4, 1, 2, 3, 3…
$ `Kitchen AbvGr` <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
$ `Kitchen Qual` <chr> "TA", "TA", "Gd", "TA", "Gd", "Gd", "Gd", "Gd", "TA"…
$ `TotRms AbvGrd` <dbl> 7, 5, 6, 6, 6, 5, 5, 7, 7, 7, 5, 4, 12, 8, 8, 4, 7, …
$ Functional <chr> "Typ", "Typ", "Typ", "Typ", "Typ", "Typ", "Typ", "Ty…
$ Fireplaces <dbl> 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 2, 1…
$ `Fireplace Qu` <chr> "Gd", NA, NA, "TA", NA, NA, "TA", "TA", "TA", "Gd", …
$ `Garage Type` <chr> "Attchd", "Attchd", "Attchd", "Attchd", "Attchd", "A…
$ `Garage Yr Blt` <dbl> 1960, 1961, 1958, 1997, 2001, 1992, 1995, 1999, 1993…
$ `Garage Finish` <chr> "Fin", "Unf", "Unf", "Fin", "Fin", "RFn", "RFn", "Fi…
$ `Garage Cars` <dbl> 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2…
$ `Garage Area` <dbl> 528, 730, 312, 482, 582, 506, 608, 442, 440, 393, 50…
$ `Garage Qual` <chr> "TA", "TA", "TA", "TA", "TA", "TA", "TA", "TA", "TA"…
$ `Garage Cond` <chr> "TA", "TA", "TA", "TA", "TA", "TA", "TA", "TA", "TA"…
$ `Paved Drive` <chr> "P", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y…
$ `Wood Deck SF` <dbl> 210, 140, 393, 212, 0, 0, 237, 140, 157, 0, 192, 0, …
$ `Open Porch SF` <dbl> 62, 0, 36, 34, 0, 82, 152, 60, 84, 75, 0, 54, 36, 12…
$ `Enclosed Porch` <dbl> 0, 0, 0, 0, 170, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ `3Ssn Porch` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ `Screen Porch` <dbl> 0, 120, 0, 0, 0, 144, 0, 0, 0, 0, 0, 140, 210, 0, 0,…
$ `Pool Area` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ `Pool QC` <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
$ Fence <chr> NA, "MnPrv", NA, "MnPrv", NA, NA, NA, NA, NA, NA, NA…
$ `Misc Feature` <chr> NA, NA, "Gar2", NA, NA, NA, NA, NA, NA, NA, NA, NA, …
$ `Misc Val` <dbl> 0, 0, 12500, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ `Mo Sold` <dbl> 5, 6, 6, 3, 4, 1, 3, 6, 4, 5, 2, 6, 6, 6, 6, 6, 2, 1…
$ `Yr Sold` <dbl> 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010…
$ `Sale Type` <chr> "WD", "WD", "WD", "WD", "WD", "WD", "WD", "WD", "WD"…
$ `Sale Condition` <chr> "Normal", "Normal", "Normal", "Normal", "Normal", "N…
$ SalePrice <dbl> 215000, 105000, 172000, 189900, 213500, 191500, 2365…
Select variables
We explore a different set of variables than those demoed in the course text.
select()from the dataset for the variables below and convert all variable names to “snake_case”:SalePrice,Garage Area,Neighborhood,MS SubClass,Total Bsmt SF,Bsmt Qual,Central Air,TotRms AbvGrd,Fireplaces, andFireplace Qu.
For this step, you need to use select() to pull out the relevant columns and then convert all variable names to snake_case using clean_names().
Notice use of back-ticks in the following code chunk for non-standard variable names (i.e., names that aren’t machine readable due to having a space in them).
ames_all <- ames_all |>
select(SalePrice,
`Garage Area`,
`Neighborhood`,
`MS SubClass`,
`Total Bsmt SF`,
`Bsmt Qual`,
`Central Air`,
`TotRms AbvGrd`,
`Fireplaces`,
`Fireplace Qu`) |>
janitor::clean_names("snake") |>
mutate(across(where(is.character), factor)) |>
glimpse()Rows: 1,955
Columns: 10
$ sale_price <dbl> 215000, 105000, 172000, 189900, 213500, 191500, 236500…
$ garage_area <dbl> 528, 730, 312, 482, 582, 506, 608, 442, 440, 393, 506,…
$ neighborhood <fct> NAmes, NAmes, NAmes, Gilbert, StoneBr, StoneBr, StoneB…
$ ms_sub_class <fct> 020, 020, 020, 060, 120, 120, 120, 060, 060, 060, 020,…
$ total_bsmt_sf <dbl> 1080, 882, 1329, 928, 1338, 1280, 1595, 994, 763, 789,…
$ bsmt_qual <fct> TA, TA, TA, Gd, Gd, Gd, Gd, TA, Gd, Gd, Gd, Gd, Gd, Gd…
$ central_air <fct> Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, …
$ tot_rms_abv_grd <dbl> 7, 5, 6, 6, 6, 5, 5, 7, 7, 7, 5, 4, 12, 8, 8, 4, 7, 7,…
$ fireplaces <dbl> 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 2, 1, …
$ fireplace_qu <fct> Gd, NA, NA, TA, NA, NA, TA, TA, TA, Gd, Po, NA, Gd, NA…
Review the data dictionary
Familiarize yourself with the variables we use above by looking each one up in the data dictionary downloaded with your homework files. Reference the codebook frequently as you perform cleaning checks below.
Exploring the data for cleaning
This script should only contain EDA steps necessary for cleaning the full dataset (i.e., not subsets of it that will be allocated for train, validation, or test). Be mindful of which aspects of the data set you explore at this stage to prevent information leakage between later training and validation sets (to be saved out as the final step of cleaning in this document). Provide observations at each stage of the process, even if you do not make any changes.
Remember that you can use glimpse(), skim_some(), print(), head(), and/or kable tables to explore and display your data. Everything that you need to do has been demonstrated on the course website.
Variable classes
Confirm that all variables are read in as the expected class. Remember that we class nominal and ordinal variables as factors and interval and ratio variables as numeric. Below the code chunk, type some observations you have about the observed variable classes compared to descriptions in the data dictionary. Make any appropriate adjustments to variable class below using
mutate(),factor(), oras.numeric().
We already did this above by using glimpse() when we selected our variables, but we replicate it below using skim_some().
ames_all |>
skim_some() | Name | ames_all |
| Number of rows | 1955 |
| Number of columns | 10 |
| _______________________ | |
| Column type frequency: | |
| factor | 5 |
| numeric | 5 |
| ________________________ | |
| Group variables | None |
Variable type: factor
| skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
|---|---|---|---|---|---|
| neighborhood | 0 | 1.00 | FALSE | 28 | NAm: 299, Col: 174, Old: 161, Edw: 135 |
| ms_sub_class | 0 | 1.00 | FALSE | 16 | 020: 730, 060: 388, 050: 208, 120: 122 |
| bsmt_qual | 57 | 0.97 | FALSE | 4 | TA: 861, Gd: 808, Ex: 167, Fa: 62 |
| central_air | 0 | 1.00 | FALSE | 2 | Y: 1821, N: 134 |
| fireplace_qu | 960 | 0.51 | FALSE | 5 | Gd: 481, TA: 407, Fa: 44, Po: 33 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | p0 | p100 |
|---|---|---|---|---|
| sale_price | 0 | 1 | 12789 | 745000 |
| garage_area | 1 | 1 | 0 | 1488 |
| total_bsmt_sf | 1 | 1 | 0 | 6110 |
| tot_rms_abv_grd | 0 | 1 | 3 | 14 |
| fireplaces | 0 | 1 | 0 | 3 |
Variable class notes: All variables are either of type factor or of type numeric. We will think more carefully about the factors, etc. in the eda_modeling script. The classes as they were read in match the codebook. Though ms_sub_class is a character variable containing numeric values, the codebook tells us that these numeric codes are nominal values representing different classes of dwellings, indicating that this variable is best kept as factor.
Missing data
Use an appropriate technique to review missing data at this stage. Clearly document missing data (“missingness”) across each variable in the dataset. For variables with high missingness, write code that allows you to visually inspect all observations of missing data (for each such variable). Using information from related variables and the data dictionary to guide you, speculate (in prose) why data may be missing. Clean variables with high missingness using
mutate(),replace_na(), andfct_relevel()if you believe any of the NAs are not really missing but instead problems with how the data were coded (e.g., see the example of this in the book.)
bsmt_qual and fireplace_qu have the greatest number of missing variables, so we’ll go ahead and explore these two further. garage_area and total_bsmt_sf are only missing one observation, so we won’t explore them further here.
ames_all |>
skim_some() |>
select(skim_variable, n_missing, complete_rate) # view missing variables# A tibble: 10 × 3
skim_variable n_missing complete_rate
<chr> <int> <dbl>
1 neighborhood 0 1
2 ms_sub_class 0 1
3 bsmt_qual 57 0.971
4 central_air 0 1
5 fireplace_qu 960 0.509
6 sale_price 0 1
7 garage_area 1 0.999
8 total_bsmt_sf 1 0.999
9 tot_rms_abv_grd 0 1
10 fireplaces 0 1
ames_all |> filter(is.na(bsmt_qual)) |>
print_kbl()| sale_price | garage_area | neighborhood | ms_sub_class | total_bsmt_sf | bsmt_qual | central_air | tot_rms_abv_grd | fireplaces | fireplace_qu |
|---|---|---|---|---|---|---|---|---|---|
| 112000 | 539 | Sawyer | 090 | 0 | NA | Y | 8 | 0 | NA |
| 55000 | 0 | IDOTRR | 190 | 0 | NA | N | 7 | 0 | NA |
| 84900 | 240 | Edwards | 030 | 0 | NA | N | 5 | 0 | NA |
| 100000 | 0 | Edwards | 090 | 0 | NA | N | 8 | 0 | NA |
| 160000 | 612 | SawyerW | 090 | 0 | NA | Y | 8 | 2 | TA |
| 102900 | 616 | NAmes | 020 | 0 | NA | Y | 7 | 0 | NA |
| 92900 | 400 | NAmes | 090 | 0 | NA | N | 6 | 0 | NA |
| 45000 | 308 | OldTown | 030 | 0 | NA | N | 4 | 0 | NA |
| 139600 | 452 | Edwards | 020 | 0 | NA | Y | 8 | 1 | Gd |
| 122000 | 498 | Edwards | 020 | 0 | NA | Y | 6 | 0 | NA |
| 84000 | 290 | Edwards | 020 | 0 | NA | N | 5 | 0 | NA |
| 131000 | 576 | SawyerW | 070 | 0 | NA | Y | 7 | 1 | TA |
| 118964 | 410 | SawyerW | 090 | 0 | NA | Y | 8 | 0 | NA |
| 147983 | 720 | SawyerW | 090 | 0 | NA | Y | 8 | 0 | NA |
| 118858 | 400 | SawyerW | 090 | 0 | NA | Y | 8 | 0 | NA |
| 142953 | 528 | SawyerW | 090 | 0 | NA | Y | 12 | 0 | NA |
| 113722 | 400 | SawyerW | 090 | 0 | NA | Y | 8 | 0 | NA |
| 198500 | 672 | Edwards | 085 | 0 | NA | Y | 7 | 1 | Ex |
| 98000 | 240 | Edwards | 050 | 0 | NA | N | 9 | 0 | NA |
| 82000 | 528 | Edwards | 020 | 0 | NA | N | 4 | 0 | NA |
| 57625 | 280 | IDOTRR | 030 | 0 | NA | N | 4 | 0 | NA |
| 126000 | 539 | Mitchel | 090 | 0 | NA | Y | 8 | 0 | NA |
| 72500 | 287 | BrkSide | 020 | 0 | NA | N | 4 | 0 | NA |
| 89900 | 390 | OldTown | 020 | 0 | NA | N | 3 | 0 | NA |
| 106250 | 0 | OldTown | 190 | 0 | NA | N | 7 | 0 | NA |
| 98300 | 420 | NAmes | 020 | 0 | NA | Y | 7 | 0 | NA |
| 97000 | 308 | OldTown | 020 | 0 | NA | Y | 4 | 0 | NA |
| 79000 | 280 | BrkSide | 020 | NA | NA | Y | 4 | 0 | NA |
| 81300 | 164 | BrkSide | 030 | 0 | NA | N | 6 | 0 | NA |
| 134432 | 680 | ClearCr | 050 | 0 | NA | Y | 7 | 1 | Gd |
| 82000 | 0 | Edwards | 090 | 0 | NA | N | 6 | 0 | NA |
| 82000 | 0 | Edwards | 090 | 0 | NA | N | 6 | 0 | NA |
| 82500 | 0 | Edwards | 090 | 0 | NA | N | 6 | 0 | NA |
| 96000 | 0 | Edwards | 050 | 0 | NA | Y | 8 | 0 | NA |
| 13100 | 487 | IDOTRR | 020 | 0 | NA | N | 4 | 0 | NA |
| 100000 | 484 | Mitchel | 090 | 0 | NA | Y | 8 | 0 | NA |
| 106500 | 294 | NAmes | 020 | 0 | NA | Y | 5 | 0 | NA |
| 101800 | 462 | NAmes | 090 | 0 | NA | Y | 6 | 0 | NA |
| 99000 | 300 | NAmes | 020 | 0 | NA | Y | 7 | 0 | NA |
| 104500 | 331 | OldTown | 020 | 0 | NA | Y | 5 | 0 | NA |
| 89500 | 460 | Sawyer | 020 | 0 | NA | N | 5 | 0 | NA |
| 141000 | 579 | Edwards | 090 | 0 | NA | Y | 11 | 0 | NA |
| 153500 | 400 | Crawfor | 020 | 0 | NA | Y | 7 | 1 | Gd |
| 68104 | 256 | IDOTRR | 050 | 0 | NA | Y | 4 | 0 | NA |
| 130000 | 1041 | Mitchel | 020 | 0 | NA | Y | 9 | 0 | NA |
| 169000 | 672 | Gilbert | 060 | 0 | NA | Y | 7 | 1 | TA |
| 157500 | 484 | NAmes | 020 | 0 | NA | Y | 5 | 1 | Gd |
| 109500 | 625 | NAmes | 020 | 0 | NA | Y | 5 | 0 | NA |
| 109900 | 420 | NAmes | 020 | 0 | NA | Y | 4 | 0 | NA |
| 81400 | 400 | NAmes | 090 | 0 | NA | N | 6 | 0 | NA |
| 87500 | 400 | NAmes | 090 | 0 | NA | N | 6 | 0 | NA |
| 80500 | 0 | BrkSide | 050 | 0 | NA | N | 3 | 0 | NA |
| 131000 | 394 | Sawyer | 020 | 0 | NA | Y | 7 | 1 | Gd |
| 125000 | 260 | Edwards | 030 | 0 | NA | N | 6 | 1 | TA |
| 135000 | 569 | Edwards | 020 | 0 | NA | Y | 7 | 1 | Ex |
| 230000 | 312 | GrnHill | 120 | 0 | NA | Y | 5 | 0 | NA |
| 81500 | 270 | Mitchel | 020 | 0 | NA | Y | 6 | 0 | NA |
ames_all |> filter(is.na(fireplace_qu)) |>
print_kbl()| sale_price | garage_area | neighborhood | ms_sub_class | total_bsmt_sf | bsmt_qual | central_air | tot_rms_abv_grd | fireplaces | fireplace_qu |
|---|---|---|---|---|---|---|---|---|---|
| 105000 | 730 | NAmes | 020 | 882 | TA | Y | 5 | 0 | NA |
| 172000 | 312 | NAmes | 020 | 1329 | TA | Y | 6 | 0 | NA |
| 213500 | 582 | StoneBr | 120 | 1338 | Gd | Y | 6 | 0 | NA |
| 191500 | 506 | StoneBr | 120 | 1280 | Gd | Y | 5 | 0 | NA |
| 212000 | 528 | StoneBr | 120 | 1488 | Gd | Y | 4 | 0 | NA |
| 164000 | 492 | Gilbert | 050 | 559 | Gd | Y | 8 | 0 | NA |
| 141000 | 400 | Gilbert | 020 | 864 | TA | Y | 4 | 0 | NA |
| 216000 | 663 | Somerst | 060 | 814 | Gd | Y | 7 | 0 | NA |
| 126000 | 525 | NAmes | 020 | 882 | TA | Y | 4 | 0 | NA |
| 105500 | 320 | BrDale | 160 | 525 | TA | Y | 6 | 0 | NA |
| 120000 | 308 | NPkVill | 120 | 836 | Gd | Y | 4 | 0 | NA |
| 290941 | 868 | NridgHt | 020 | 1544 | Gd | Y | 7 | 0 | NA |
| 175500 | 474 | NridgHt | 160 | 764 | Gd | Y | 6 | 0 | NA |
| 160000 | 437 | Blmngtn | 120 | 1145 | Gd | Y | 6 | 0 | NA |
| 221000 | 486 | NoRidge | 060 | 1195 | Gd | Y | 7 | 0 | NA |
| 204500 | 676 | Somerst | 020 | 1218 | Gd | Y | 4 | 0 | NA |
| 233000 | 618 | SawyerW | 060 | 956 | Gd | Y | 8 | 0 | NA |
| 181000 | 484 | SawyerW | 060 | 831 | Gd | Y | 8 | 0 | NA |
| 125000 | 264 | SawyerW | 120 | 744 | Gd | Y | 4 | 0 | NA |
| 194500 | 457 | SawyerW | 060 | 996 | Gd | Y | 7 | 0 | NA |
| 152000 | 480 | SawyerW | 020 | 1040 | Gd | Y | 6 | 0 | NA |
| 67500 | 429 | SawyerW | 030 | 816 | TA | N | 5 | 0 | NA |
| 112000 | 539 | Sawyer | 090 | 0 | NA | Y | 8 | 0 | NA |
| 148000 | 576 | Sawyer | 085 | 1109 | TA | Y | 6 | 0 | NA |
| 122000 | 280 | Sawyer | 020 | 882 | TA | Y | 5 | 0 | NA |
| 127000 | 260 | Sawyer | 020 | 1040 | TA | Y | 6 | 0 | NA |
| 190000 | 588 | Somerst | 160 | 840 | Gd | Y | 3 | 0 | NA |
| 151000 | 480 | Somerst | 160 | 600 | Gd | Y | 4 | 0 | NA |
| 149500 | 480 | Somerst | 160 | 600 | Gd | Y | 4 | 0 | NA |
| 177500 | 440 | Somerst | 160 | 756 | Gd | Y | 5 | 0 | NA |
| 218500 | 535 | NWAmes | 020 | 1829 | TA | Y | 8 | 0 | NA |
| 171000 | 441 | NWAmes | 060 | 715 | TA | Y | 7 | 0 | NA |
| 142250 | 490 | NAmes | 020 | 1232 | TA | Y | 6 | 0 | NA |
| 128950 | 0 | NAmes | 020 | 950 | TA | Y | 6 | 0 | NA |
| 159000 | 504 | NAmes | 020 | 1209 | Gd | Y | 6 | 0 | NA |
| 178900 | 517 | NAmes | 020 | 1510 | TA | Y | 6 | 0 | NA |
| 136300 | 480 | NAmes | 080 | 533 | TA | Y | 8 | 0 | NA |
| 137500 | 480 | NAmes | 085 | 936 | TA | Y | 6 | 0 | NA |
| 84900 | 0 | NAmes | 090 | 1728 | TA | Y | 10 | 0 | NA |
| 116500 | 0 | BrkSide | 020 | 858 | TA | Y | 4 | 0 | NA |
| 76500 | 0 | BrkSide | 030 | 728 | TA | Y | 6 | 0 | NA |
| 128000 | 280 | NAmes | 020 | 1056 | TA | Y | 6 | 0 | NA |
| 154300 | 480 | NAmes | 090 | 1105 | TA | Y | 12 | 0 | NA |
| 135000 | 576 | NAmes | 090 | 1604 | TA | Y | 8 | 0 | NA |
| 136000 | 308 | NAmes | 020 | 1143 | TA | Y | 6 | 0 | NA |
| 145000 | 294 | NAmes | 020 | 1314 | TA | Y | 5 | 0 | NA |
| 148000 | 312 | NAmes | 020 | 1194 | TA | Y | 6 | 0 | NA |
| 142000 | 531 | NAmes | 020 | 1188 | TA | Y | 6 | 0 | NA |
| 108538 | 312 | NAmes | 020 | 1206 | TA | Y | 6 | 0 | NA |
| 135000 | 318 | NAmes | 020 | 864 | TA | Y | 4 | 0 | NA |
| 122500 | 305 | NAmes | 020 | 972 | TA | Y | 5 | 0 | NA |
| 105000 | 676 | NAmes | 030 | 576 | TA | Y | 4 | 0 | NA |
| 144900 | 490 | NAmes | 020 | 1086 | TA | Y | 6 | 0 | NA |
| 129000 | 308 | NAmes | 020 | 936 | TA | Y | 4 | 0 | NA |
| 144000 | 576 | OldTown | 090 | 1056 | TA | Y | 4 | 0 | NA |
| 132000 | 280 | NAmes | 050 | 816 | TA | Y | 5 | 0 | NA |
| 154000 | 305 | NAmes | 020 | 1246 | TA | Y | 6 | 0 | NA |
| 134800 | 576 | NAmes | 020 | 900 | TA | Y | 5 | 0 | NA |
| 148000 | 484 | NAmes | 020 | 1175 | TA | Y | 6 | 0 | NA |
| 143000 | 551 | OldTown | 020 | 1347 | TA | Y | 6 | 0 | NA |
| 107400 | 379 | OldTown | 050 | 840 | Fa | N | 8 | 0 | NA |
| 119000 | 240 | OldTown | 045 | 827 | Gd | Y | 6 | 0 | NA |
| 100000 | 315 | OldTown | 050 | 1008 | TA | Y | 6 | 0 | NA |
| 105900 | 484 | OldTown | 030 | 624 | TA | Y | 5 | 0 | NA |
| 139000 | 416 | OldTown | 050 | 686 | Fa | Y | 7 | 0 | NA |
| 240000 | 624 | OldTown | 070 | 346 | Fa | Y | 7 | 0 | NA |
| 76500 | 0 | OldTown | 190 | 840 | TA | N | 12 | 0 | NA |
| 149700 | 923 | OldTown | 020 | 912 | TA | Y | 6 | 0 | NA |
| 140750 | 624 | OldTown | 070 | 738 | Fa | Y | 6 | 0 | NA |
| 128500 | 363 | BrkSide | 050 | 988 | TA | Y | 7 | 0 | NA |
| 134000 | 240 | BrkSide | 050 | 608 | TA | Y | 5 | 0 | NA |
| 139900 | 312 | BrkSide | 050 | 780 | TA | Y | 6 | 0 | NA |
| 123900 | 624 | BrkSide | 050 | 528 | TA | Y | 5 | 0 | NA |
| 159900 | 0 | OldTown | 070 | 780 | TA | Y | 7 | 0 | NA |
| 122000 | 180 | OldTown | 070 | 662 | TA | Y | 6 | 0 | NA |
| 110000 | 516 | IDOTRR | 090 | 816 | Gd | N | 5 | 0 | NA |
| 55000 | 0 | IDOTRR | 190 | 0 | NA | N | 7 | 0 | NA |
| 107500 | 180 | ClearCr | 050 | 689 | Gd | N | 6 | 0 | NA |
| 95000 | 231 | SWISU | 050 | 600 | Fa | N | 5 | 0 | NA |
| 93369 | 0 | SWISU | 070 | 707 | TA | N | 7 | 0 | NA |
| 94000 | 0 | Sawyer | 050 | 780 | TA | N | 6 | 0 | NA |
| 136000 | 0 | Sawyer | 090 | 1832 | TA | N | 8 | 0 | NA |
| 158000 | 299 | Sawyer | 060 | 663 | TA | Y | 7 | 0 | NA |
| 85000 | 440 | Sawyer | 030 | 660 | Fa | N | 4 | 0 | NA |
| 128000 | 436 | Sawyer | 020 | 1067 | Gd | Y | 4 | 0 | NA |
| 83000 | 366 | Edwards | 030 | 458 | TA | N | 5 | 0 | NA |
| 129000 | 596 | Edwards | 020 | 1144 | TA | Y | 6 | 0 | NA |
| 114000 | 504 | Edwards | 020 | 1250 | TA | Y | 5 | 0 | NA |
| 147000 | 564 | SawyerW | 085 | 936 | Gd | Y | 5 | 0 | NA |
| 245350 | 776 | CollgCr | 020 | 1694 | Gd | Y | 7 | 0 | NA |
| 206000 | 632 | CollgCr | 020 | 1187 | Gd | Y | 6 | 0 | NA |
| 198900 | 740 | CollgCr | 020 | 1226 | Gd | Y | 6 | 0 | NA |
| 187000 | 615 | CollgCr | 020 | 1222 | Gd | Y | 6 | 0 | NA |
| 200500 | 523 | CollgCr | 060 | 804 | Gd | Y | 7 | 0 | NA |
| 150000 | 308 | CollgCr | 020 | 1026 | Gd | Y | 5 | 0 | NA |
| 161750 | 299 | CollgCr | 060 | 689 | Gd | Y | 6 | 0 | NA |
| 127000 | 484 | CollgCr | 020 | 876 | TA | Y | 5 | 0 | NA |
| 224900 | 598 | CollgCr | 020 | 1649 | Gd | Y | 6 | 0 | NA |
| 213000 | 606 | CollgCr | 020 | 1473 | Gd | Y | 7 | 0 | NA |
| 84900 | 240 | Edwards | 030 | 0 | NA | N | 5 | 0 | NA |
| 155891 | 319 | Edwards | 020 | 381 | Fa | Y | 6 | 0 | NA |
| 100000 | 0 | Edwards | 090 | 0 | NA | N | 8 | 0 | NA |
| 144000 | 336 | Edwards | 020 | 1196 | Gd | Y | 6 | 0 | NA |
| 90000 | 0 | Edwards | 020 | 960 | TA | Y | 5 | 0 | NA |
| 140000 | 440 | Edwards | 020 | 1121 | Gd | Y | 5 | 0 | NA |
| 80000 | 280 | Edwards | 190 | 672 | Gd | N | 5 | 0 | NA |
| 58500 | 200 | Edwards | 030 | 864 | TA | N | 5 | 0 | NA |
| 215000 | 484 | Crawfor | 090 | 1032 | TA | Y | 11 | 0 | NA |
| 203135 | 473 | Crawfor | 080 | 423 | Gd | Y | 6 | 0 | NA |
| 82000 | 200 | IDOTRR | 030 | 480 | TA | Y | 4 | 0 | NA |
| 68400 | 528 | IDOTRR | 050 | 698 | TA | Y | 6 | 0 | NA |
| 102776 | 384 | IDOTRR | 050 | 859 | TA | Y | 7 | 0 | NA |
| 55993 | 504 | IDOTRR | 020 | 540 | TA | N | 4 | 0 | NA |
| 50138 | 330 | IDOTRR | 030 | 756 | TA | Y | 5 | 0 | NA |
| 201000 | 573 | Mitchel | 020 | 1560 | Ex | Y | 7 | 0 | NA |
| 170000 | 776 | Mitchel | 090 | 1958 | TA | Y | 9 | 0 | NA |
| 179781 | 520 | Timber | 020 | 1214 | Gd | Y | 6 | 0 | NA |
| 174000 | 400 | Timber | 060 | 384 | Gd | Y | 7 | 0 | NA |
| 139000 | 0 | Mitchel | 090 | 912 | TA | Y | 8 | 0 | NA |
| 83500 | 286 | MeadowV | 160 | 546 | TA | Y | 6 | 0 | NA |
| 85000 | 336 | MeadowV | 160 | 536 | Gd | Y | 4 | 0 | NA |
| 76000 | 0 | MeadowV | 160 | 546 | TA | Y | 5 | 0 | NA |
| 75500 | 0 | MeadowV | 180 | 630 | Gd | Y | 3 | 0 | NA |
| 88250 | 0 | MeadowV | 160 | 546 | TA | Y | 5 | 0 | NA |
| 85500 | 286 | MeadowV | 160 | 546 | TA | Y | 5 | 0 | NA |
| 157900 | 312 | Mitchel | 020 | 1188 | TA | Y | 6 | 0 | NA |
| 159000 | 616 | Mitchel | 090 | 1216 | TA | Y | 10 | 0 | NA |
| 136000 | 576 | Mitchel | 060 | 624 | Gd | Y | 6 | 0 | NA |
| 161000 | 275 | Mitchel | 050 | 864 | TA | Y | 8 | 0 | NA |
| 124500 | 502 | NAmes | 020 | 882 | Fa | Y | 5 | 0 | NA |
| 240000 | 495 | StoneBr | 120 | 1418 | Gd | Y | 5 | 0 | NA |
| 239500 | 528 | StoneBr | 120 | 1587 | Gd | Y | 6 | 0 | NA |
| 180500 | 500 | Gilbert | 020 | 1424 | Gd | Y | 5 | 0 | NA |
| 136000 | 0 | NAmes | 090 | 896 | Gd | Y | 8 | 0 | NA |
| 128000 | 477 | NAmes | 020 | 1180 | TA | Y | 6 | 0 | NA |
| 143000 | 336 | NAmes | 020 | 1043 | Gd | Y | 6 | 0 | NA |
| 120500 | 660 | NAmes | 020 | 864 | TA | Y | 5 | 0 | NA |
| 124500 | 463 | NAmes | 020 | 864 | TA | Y | 5 | 0 | NA |
| 97000 | 576 | NAmes | 020 | 864 | TA | Y | 4 | 0 | NA |
| 111000 | 264 | BrDale | 160 | 483 | TA | Y | 5 | 0 | NA |
| 112000 | 280 | BrDale | 160 | 630 | TA | Y | 6 | 0 | NA |
| 97000 | 288 | BrDale | 160 | 483 | TA | Y | 5 | 0 | NA |
| 119500 | 264 | BrDale | 160 | 630 | TA | Y | 6 | 0 | NA |
| 100000 | 288 | NAmes | 020 | 892 | TA | Y | 5 | 0 | NA |
| 233170 | 644 | NridgHt | 020 | 1502 | Gd | Y | 7 | 0 | NA |
| 167000 | 400 | Gilbert | 080 | 384 | Gd | Y | 7 | 0 | NA |
| 275000 | 972 | Somerst | 020 | 1696 | Gd | Y | 7 | 0 | NA |
| 210000 | 676 | Somerst | 060 | 768 | Gd | Y | 6 | 0 | NA |
| 225000 | 529 | Somerst | 020 | 1436 | Ex | Y | 6 | 0 | NA |
| 229800 | 625 | Somerst | 020 | 1402 | Gd | Y | 7 | 0 | NA |
| 241000 | 438 | Somerst | 060 | 1092 | Gd | Y | 7 | 0 | NA |
| 185000 | 400 | Somerst | 020 | 1221 | Gd | Y | 6 | 0 | NA |
| 234500 | 588 | Somerst | 020 | 1553 | Gd | Y | 6 | 0 | NA |
| 203000 | 845 | SawyerW | 020 | 1512 | Gd | Y | 6 | 0 | NA |
| 184900 | 555 | SawyerW | 020 | 1176 | Gd | Y | 5 | 0 | NA |
| 159000 | 576 | SawyerW | 020 | 1114 | Gd | Y | 6 | 0 | NA |
| 142000 | 0 | SawyerW | 020 | 1114 | Gd | Y | 6 | 0 | NA |
| 224243 | 788 | SawyerW | 020 | 1450 | Gd | Y | 6 | 0 | NA |
| 171500 | 528 | SawyerW | 060 | 816 | Gd | Y | 6 | 0 | NA |
| 145000 | 542 | SawyerW | 120 | 1332 | Gd | Y | 5 | 0 | NA |
| 184000 | 495 | SawyerW | 060 | 754 | Gd | Y | 6 | 0 | NA |
| 162000 | 465 | SawyerW | 060 | 676 | Gd | Y | 6 | 0 | NA |
| 135000 | 484 | Sawyer | 020 | 980 | TA | Y | 6 | 0 | NA |
| 141000 | 732 | Sawyer | 020 | 864 | TA | Y | 5 | 0 | NA |
| 122000 | 440 | Sawyer | 020 | 864 | TA | Y | 5 | 0 | NA |
| 124100 | 288 | Sawyer | 020 | 1024 | TA | Y | 5 | 0 | NA |
| 123000 | 252 | Sawyer | 020 | 912 | TA | Y | 6 | 0 | NA |
| 164500 | 528 | Somerst | 160 | 612 | Gd | Y | 4 | 0 | NA |
| 172500 | 440 | Somerst | 160 | 729 | Gd | Y | 6 | 0 | NA |
| 180000 | 440 | Somerst | 160 | 756 | Gd | Y | 4 | 0 | NA |
| 241600 | 540 | Veenker | 020 | 1740 | Gd | Y | 7 | 0 | NA |
| 154000 | 441 | NWAmes | 060 | 727 | TA | Y | 8 | 0 | NA |
| 113000 | 336 | NWAmes | 020 | 1216 | TA | Y | 5 | 0 | NA |
| 227000 | 528 | NWAmes | 060 | 810 | Gd | Y | 6 | 0 | NA |
| 130000 | 312 | NAmes | 020 | 864 | TA | Y | 5 | 0 | NA |
| 143000 | 440 | NAmes | 020 | 1568 | TA | Y | 7 | 0 | NA |
| 118000 | 308 | NAmes | 020 | 864 | TA | Y | 5 | 0 | NA |
| 167000 | 472 | NAmes | 020 | 1516 | TA | Y | 6 | 0 | NA |
| 124500 | 270 | NAmes | 020 | 1041 | TA | Y | 6 | 0 | NA |
| 82500 | 0 | BrkSide | 030 | 420 | TA | Y | 5 | 0 | NA |
| 175000 | 550 | NAmes | 020 | 1680 | TA | Y | 5 | 0 | NA |
| 128900 | 338 | NAmes | 020 | 1050 | TA | Y | 5 | 0 | NA |
| 140000 | 271 | NAmes | 050 | 856 | TA | Y | 6 | 0 | NA |
| 124000 | 792 | NAmes | 090 | 1584 | TA | Y | 8 | 0 | NA |
| 150000 | 286 | NAmes | 020 | 1169 | TA | Y | 6 | 0 | NA |
| 155000 | 297 | NAmes | 020 | 1215 | TA | Y | 6 | 0 | NA |
| 120000 | 304 | NAmes | 020 | 1202 | TA | Y | 6 | 0 | NA |
| 153000 | 350 | NAmes | 020 | 1382 | TA | Y | 6 | 0 | NA |
| 131000 | 297 | NAmes | 020 | 1062 | TA | Y | 6 | 0 | NA |
| 123000 | 270 | NAmes | 020 | 608 | TA | Y | 5 | 0 | NA |
| 145500 | 230 | NAmes | 020 | 1031 | TA | Y | 5 | 0 | NA |
| 102900 | 616 | NAmes | 020 | 0 | NA | Y | 7 | 0 | NA |
| 95000 | 420 | OldTown | 190 | 978 | Fa | Y | 7 | 0 | NA |
| 129900 | 246 | NAmes | 020 | 1200 | TA | Y | 6 | 0 | NA |
| 99900 | 366 | OldTown | 020 | 792 | TA | Y | 4 | 0 | NA |
| 135000 | 180 | OldTown | 050 | 660 | Fa | Y | 8 | 0 | NA |
| 109500 | 240 | OldTown | 030 | 768 | TA | Y | 5 | 0 | NA |
| 105000 | 338 | OldTown | 050 | 840 | TA | Y | 6 | 0 | NA |
| 78500 | 320 | OldTown | 030 | 630 | TA | Y | 4 | 0 | NA |
| 190000 | 907 | NAmes | 090 | 1248 | TA | Y | 12 | 0 | NA |
| 154000 | 364 | NAmes | 020 | 1380 | TA | Y | 6 | 0 | NA |
| 200000 | 968 | NAmes | 090 | 1248 | TA | Y | 12 | 0 | NA |
| 143500 | 480 | NAmes | 020 | 951 | TA | Y | 6 | 0 | NA |
| 135000 | 308 | NAmes | 020 | 1105 | TA | Y | 5 | 0 | NA |
| 153000 | 756 | NAmes | 020 | 992 | TA | Y | 5 | 0 | NA |
| 92900 | 400 | NAmes | 090 | 0 | NA | N | 6 | 0 | NA |
| 128500 | 900 | NAmes | 050 | 795 | TA | N | 5 | 0 | NA |
| 138000 | 240 | NAmes | 050 | 1208 | TA | Y | 7 | 0 | NA |
| 128000 | 294 | NAmes | 020 | 1041 | TA | Y | 6 | 0 | NA |
| 139000 | 294 | NAmes | 020 | 1029 | TA | Y | 6 | 0 | NA |
| 138000 | 288 | NAmes | 080 | 528 | Gd | Y | 6 | 0 | NA |
| 132500 | 672 | NAmes | 020 | 1148 | TA | Y | 6 | 0 | NA |
| 133500 | 384 | NAmes | 050 | 832 | TA | Y | 6 | 0 | NA |
| 135000 | 576 | NAmes | 050 | 864 | TA | Y | 6 | 0 | NA |
| 144750 | 483 | NAmes | 060 | 780 | TA | Y | 8 | 0 | NA |
| 109500 | 308 | NAmes | 020 | 894 | TA | N | 5 | 0 | NA |
| 110000 | 440 | OldTown | 050 | 440 | TA | Y | 5 | 0 | NA |
| 128900 | 162 | OldTown | 050 | 901 | TA | Y | 6 | 0 | NA |
| 130000 | 472 | OldTown | 050 | 240 | TA | Y | 6 | 0 | NA |
| 129000 | 0 | OldTown | 070 | 504 | TA | Y | 7 | 0 | NA |
| 94550 | 0 | OldTown | 190 | 600 | Fa | N | 8 | 0 | NA |
| 124500 | 400 | OldTown | 090 | 960 | TA | Y | 10 | 0 | NA |
| 103000 | 0 | OldTown | 050 | 801 | Fa | N | 6 | 0 | NA |
| 129500 | 308 | OldTown | 050 | 768 | TA | Y | 6 | 0 | NA |
| 93000 | 256 | OldTown | 190 | 811 | TA | Y | 7 | 0 | NA |
| 80000 | 288 | OldTown | 030 | 861 | Fa | Y | 5 | 0 | NA |
| 45000 | 308 | OldTown | 030 | 0 | NA | N | 4 | 0 | NA |
| 37900 | 0 | OldTown | 050 | 600 | TA | N | 6 | 0 | NA |
| 99500 | 287 | OldTown | 030 | 624 | Fa | Y | 5 | 0 | NA |
| 113000 | 0 | OldTown | 190 | 736 | TA | Y | 8 | 0 | NA |
| 110000 | 240 | OldTown | 050 | 720 | TA | Y | 5 | 0 | NA |
| 160000 | 357 | OldTown | 070 | 917 | Fa | Y | 8 | 0 | NA |
| 124900 | 456 | OldTown | 050 | 1088 | TA | Y | 7 | 0 | NA |
| 146500 | 640 | OldTown | 070 | 741 | TA | Y | 8 | 0 | NA |
| 34900 | 0 | IDOTRR | 030 | 720 | TA | N | 4 | 0 | NA |
| 128000 | 240 | BrkSide | 050 | 672 | TA | Y | 6 | 0 | NA |
| 119000 | 180 | BrkSide | 045 | 884 | TA | Y | 4 | 0 | NA |
| 100000 | 440 | BrkSide | 030 | 1145 | TA | Y | 5 | 0 | NA |
| 141500 | 576 | BrkSide | 050 | 927 | TA | Y | 5 | 0 | NA |
| 133000 | 240 | BrkSide | 050 | 884 | TA | Y | 6 | 0 | NA |
| 105000 | 180 | BrkSide | 030 | 715 | TA | Y | 5 | 0 | NA |
| 115000 | 264 | BrkSide | 030 | 960 | TA | Y | 5 | 0 | NA |
| 214500 | 441 | BrkSide | 075 | 844 | TA | N | 10 | 0 | NA |
| 155000 | 576 | OldTown | 070 | 1048 | TA | Y | 8 | 0 | NA |
| 179900 | 216 | OldTown | 070 | 672 | TA | Y | 8 | 0 | NA |
| 62500 | 0 | OldTown | 090 | 1040 | TA | N | 11 | 0 | NA |
| 103000 | 539 | IDOTRR | 030 | 780 | TA | Y | 5 | 0 | NA |
| 97500 | 0 | OldTown | 190 | 1020 | TA | N | 9 | 0 | NA |
| 70000 | 0 | IDOTRR | 085 | 858 | Gd | Y | 5 | 0 | NA |
| 179000 | 0 | Edwards | 090 | 1200 | Gd | Y | 5 | 0 | NA |
| 179000 | 0 | Edwards | 090 | 1200 | Gd | Y | 5 | 0 | NA |
| 61000 | 0 | Edwards | 030 | 683 | Fa | N | 4 | 0 | NA |
| 63000 | 226 | Edwards | 050 | 585 | TA | N | 6 | 0 | NA |
| 139000 | 480 | Sawyer | 020 | 1121 | TA | Y | 5 | 0 | NA |
| 135000 | 284 | Edwards | 020 | 1134 | TA | Y | 6 | 0 | NA |
| 82500 | 539 | Edwards | 030 | 861 | TA | Y | 4 | 0 | NA |
| 122000 | 498 | Edwards | 020 | 0 | NA | Y | 6 | 0 | NA |
| 84000 | 290 | Edwards | 020 | 0 | NA | N | 5 | 0 | NA |
| 139500 | 266 | Edwards | 120 | 1049 | Gd | Y | 5 | 0 | NA |
| 105000 | 280 | Edwards | 050 | 560 | TA | Y | 6 | 0 | NA |
| 118964 | 410 | SawyerW | 090 | 0 | NA | Y | 8 | 0 | NA |
| 147983 | 720 | SawyerW | 090 | 0 | NA | Y | 8 | 0 | NA |
| 118858 | 400 | SawyerW | 090 | 0 | NA | Y | 8 | 0 | NA |
| 142953 | 528 | SawyerW | 090 | 0 | NA | Y | 12 | 0 | NA |
| 113722 | 400 | SawyerW | 090 | 0 | NA | Y | 8 | 0 | NA |
| 239000 | 702 | CollgCr | 020 | 1800 | Ex | Y | 7 | 0 | NA |
| 221800 | 810 | CollgCr | 020 | 1254 | Gd | Y | 5 | 0 | NA |
| 194500 | 632 | CollgCr | 020 | 1232 | Gd | Y | 6 | 0 | NA |
| 152000 | 576 | CollgCr | 020 | 1040 | Gd | Y | 6 | 0 | NA |
| 138000 | 480 | CollgCr | 020 | 990 | Gd | Y | 5 | 0 | NA |
| 197900 | 546 | CollgCr | 060 | 866 | Gd | Y | 6 | 0 | NA |
| 204000 | 577 | CollgCr | 020 | 1490 | Gd | Y | 6 | 0 | NA |
| 192000 | 666 | CollgCr | 020 | 1431 | Gd | Y | 6 | 0 | NA |
| 195000 | 493 | CollgCr | 060 | 831 | Gd | Y | 7 | 0 | NA |
| 227000 | 544 | CollgCr | 020 | 1573 | Gd | Y | 6 | 0 | NA |
| 230000 | 622 | CollgCr | 060 | 944 | Gd | Y | 6 | 0 | NA |
| 187100 | 605 | CollgCr | 020 | 1413 | Gd | Y | 6 | 0 | NA |
| 203000 | 577 | CollgCr | 020 | 1431 | Gd | Y | 6 | 0 | NA |
| 134900 | 444 | CollgCr | 020 | 914 | TA | Y | 5 | 0 | NA |
| 150500 | 484 | CollgCr | 020 | 1040 | Gd | Y | 5 | 0 | NA |
| 136500 | 336 | CollgCr | 020 | 864 | TA | Y | 6 | 0 | NA |
| 133900 | 396 | CollgCr | 085 | 768 | Gd | Y | 5 | 0 | NA |
| 133000 | 396 | CollgCr | 085 | 768 | Gd | Y | 5 | 0 | NA |
| 250000 | 1231 | CollgCr | 020 | 1569 | Gd | Y | 6 | 0 | NA |
| 198500 | 550 | CollgCr | 060 | 840 | Gd | Y | 6 | 0 | NA |
| 211000 | 608 | CollgCr | 060 | 944 | Gd | Y | 6 | 0 | NA |
| 219500 | 645 | CollgCr | 060 | 1057 | Gd | Y | 8 | 0 | NA |
| 178000 | 573 | CollgCr | 020 | 1212 | Gd | Y | 6 | 0 | NA |
| 140000 | 420 | CollgCr | 120 | 848 | Gd | Y | 4 | 0 | NA |
| 190000 | 572 | CollgCr | 060 | 864 | Gd | Y | 7 | 0 | NA |
| 190000 | 570 | CollgCr | 020 | 1500 | Gd | Y | 6 | 0 | NA |
| 167000 | 480 | Edwards | 020 | 1486 | TA | Y | 7 | 0 | NA |
| 145500 | 525 | Edwards | 180 | 547 | Gd | Y | 5 | 0 | NA |
| 118000 | 0 | Edwards | 020 | 698 | TA | Y | 4 | 0 | NA |
| 85000 | 320 | Edwards | 020 | 876 | TA | Y | 5 | 0 | NA |
| 120000 | 195 | Edwards | 020 | 1078 | Fa | Y | 6 | 0 | NA |
| 98000 | 240 | Edwards | 050 | 0 | NA | N | 9 | 0 | NA |
| 99900 | 0 | Edwards | 030 | 864 | Fa | Y | 4 | 0 | NA |
| 82000 | 528 | Edwards | 020 | 0 | NA | N | 4 | 0 | NA |
| 119900 | 0 | Edwards | 090 | 1678 | TA | Y | 10 | 0 | NA |
| 110000 | 528 | Edwards | 050 | 684 | TA | Y | 7 | 0 | NA |
| 117000 | 660 | Edwards | 050 | 984 | TA | Y | 6 | 0 | NA |
| 159434 | 281 | SWISU | 050 | 793 | TA | Y | 6 | 0 | NA |
| 60000 | 246 | SWISU | 030 | 290 | TA | N | 3 | 0 | NA |
| 155000 | 576 | SWISU | 070 | 560 | Gd | Y | 6 | 0 | NA |
| 163500 | 432 | Crawfor | 030 | 876 | Gd | Y | 5 | 0 | NA |
| 147000 | 468 | IDOTRR | 070 | 672 | TA | Y | 6 | 0 | NA |
| 123000 | 576 | IDOTRR | 070 | 760 | TA | N | 11 | 0 | NA |
| 78000 | 189 | IDOTRR | 070 | 596 | TA | N | 6 | 0 | NA |
| 75000 | 200 | IDOTRR | 030 | 572 | TA | N | 4 | 0 | NA |
| 57625 | 280 | IDOTRR | 030 | 0 | NA | N | 4 | 0 | NA |
| 126000 | 539 | Mitchel | 090 | 0 | NA | Y | 8 | 0 | NA |
| 152000 | 672 | Mitchel | 020 | 1582 | Gd | Y | 5 | 0 | NA |
| 224500 | 650 | Timber | 060 | 846 | Ex | Y | 6 | 0 | NA |
| 170000 | 486 | Timber | 060 | 912 | Gd | Y | 9 | 0 | NA |
| 139500 | 384 | Mitchel | 020 | 1008 | TA | Y | 6 | 0 | NA |
| 130000 | 288 | Mitchel | 020 | 864 | TA | Y | 5 | 0 | NA |
| 80000 | 286 | MeadowV | 180 | 630 | Gd | Y | 3 | 0 | NA |
| 88000 | 286 | MeadowV | 160 | 546 | TA | Y | 6 | 0 | NA |
| 131900 | 336 | Mitchel | 085 | 796 | Gd | Y | 4 | 0 | NA |
| 112000 | 0 | Mitchel | 020 | 833 | TA | Y | 5 | 0 | NA |
| 143000 | 480 | Mitchel | 050 | 796 | Gd | Y | 5 | 0 | NA |
| 130000 | 440 | Mitchel | 060 | 624 | Gd | Y | 6 | 0 | NA |
| 177900 | 404 | Gilbert | 020 | 1348 | Gd | Y | 7 | 0 | NA |
| 180000 | 506 | StoneBr | 120 | 1280 | Gd | Y | 5 | 0 | NA |
| 181900 | 598 | NWAmes | 020 | 1260 | Gd | Y | 6 | 0 | NA |
| 175000 | 540 | NWAmes | 020 | 1126 | Gd | Y | 6 | 0 | NA |
| 133000 | 480 | NAmes | 090 | 896 | Gd | Y | 8 | 0 | NA |
| 151000 | 460 | NAmes | 020 | 1054 | Gd | Y | 6 | 0 | NA |
| 111900 | 288 | NAmes | 020 | 936 | Gd | Y | 4 | 0 | NA |
| 123000 | 576 | NAmes | 020 | 864 | Gd | Y | 5 | 0 | NA |
| 103400 | 264 | BrDale | 160 | 483 | TA | Y | 5 | 0 | NA |
| 100000 | 264 | BrDale | 160 | 483 | TA | Y | 5 | 0 | NA |
| 100500 | 352 | BrDale | 160 | 483 | TA | Y | 5 | 0 | NA |
| 106000 | 280 | BrDale | 160 | 483 | TA | Y | 5 | 0 | NA |
| 89500 | 264 | BrDale | 160 | 483 | TA | Y | 5 | 0 | NA |
| 111750 | 264 | BrDale | 160 | 630 | TA | Y | 6 | 0 | NA |
| 140000 | 440 | NPkVill | 120 | 1069 | Gd | Y | 4 | 0 | NA |
| 143000 | 460 | NPkVill | 160 | 855 | Gd | Y | 7 | 0 | NA |
| 110000 | 264 | NAmes | 020 | 864 | TA | Y | 5 | 0 | NA |
| 317500 | 905 | NridgHt | 020 | 1582 | Ex | Y | 7 | 0 | NA |
| 155000 | 474 | NridgHt | 160 | 764 | Gd | Y | 6 | 0 | NA |
| 154000 | 474 | NridgHt | 160 | 764 | Gd | Y | 6 | 0 | NA |
| 190000 | 400 | Gilbert | 080 | 856 | Gd | Y | 5 | 0 | NA |
| 176000 | 400 | Gilbert | 060 | 728 | Gd | Y | 8 | 0 | NA |
| 227680 | 554 | Somerst | 020 | 1417 | Gd | Y | 6 | 0 | NA |
| 212700 | 588 | Somerst | 020 | 1363 | Gd | Y | 6 | 0 | NA |
| 250580 | 529 | Somerst | 020 | 1372 | Ex | Y | 6 | 0 | NA |
| 182000 | 480 | Somerst | 020 | 1428 | Gd | Y | 6 | 0 | NA |
| 226700 | 603 | Somerst | 060 | 866 | Gd | Y | 7 | 0 | NA |
| 205950 | 562 | Somerst | 060 | 813 | Gd | Y | 7 | 0 | NA |
| 207500 | 673 | Somerst | 060 | 864 | Gd | Y | 7 | 0 | NA |
| 141000 | 0 | SawyerW | 020 | 1080 | Gd | Y | 6 | 0 | NA |
| 159000 | 576 | SawyerW | 020 | 1114 | TA | Y | 6 | 0 | NA |
| 155000 | 576 | SawyerW | 020 | 1114 | Gd | Y | 6 | 0 | NA |
| 173000 | 520 | SawyerW | 060 | 798 | Gd | Y | 6 | 0 | NA |
| 170000 | 483 | SawyerW | 020 | 1162 | Gd | Y | 6 | 0 | NA |
| 182000 | 525 | SawyerW | 060 | 754 | Gd | Y | 6 | 0 | NA |
| 163000 | 474 | SawyerW | 060 | 886 | Gd | Y | 7 | 0 | NA |
| 190500 | 627 | SawyerW | 060 | 827 | Gd | Y | 7 | 0 | NA |
| 179200 | 496 | SawyerW | 020 | 1278 | Gd | Y | 6 | 0 | NA |
| 153900 | 530 | SawyerW | 120 | 1199 | Gd | Y | 5 | 0 | NA |
| 144000 | 352 | Sawyer | 020 | 912 | TA | Y | 4 | 0 | NA |
| 119916 | 276 | Sawyer | 020 | 864 | Gd | Y | 5 | 0 | NA |
| 196000 | 530 | Somerst | 120 | 1391 | Gd | Y | 5 | 0 | NA |
| 171900 | 625 | Somerst | 160 | 625 | Gd | Y | 5 | 0 | NA |
| 178000 | 495 | Somerst | 120 | 1235 | Gd | Y | 5 | 0 | NA |
| 146000 | 540 | Somerst | 160 | 689 | Gd | Y | 5 | 0 | NA |
| 172900 | 440 | Somerst | 160 | 744 | Gd | Y | 6 | 0 | NA |
| 170000 | 462 | Somerst | 160 | 672 | Gd | Y | 5 | 0 | NA |
| 200000 | 480 | Somerst | 160 | 960 | Gd | Y | 7 | 0 | NA |
| 162500 | 516 | Veenker | 020 | 1232 | Gd | Y | 6 | 0 | NA |
| 183000 | 516 | NWAmes | 080 | 1427 | TA | Y | 7 | 0 | NA |
| 145000 | 528 | NWAmes | 020 | 1258 | TA | Y | 5 | 0 | NA |
| 140500 | 484 | NWAmes | 090 | 1625 | TA | Y | 8 | 0 | NA |
| 141000 | 470 | NAmes | 060 | 732 | TA | Y | 7 | 0 | NA |
| 147000 | 576 | NAmes | 020 | 912 | TA | Y | 5 | 0 | NA |
| 135000 | 576 | NAmes | 020 | 912 | TA | Y | 5 | 0 | NA |
| 142600 | 576 | NAmes | 090 | 1728 | TA | Y | 10 | 0 | NA |
| 135000 | 506 | NWAmes | 090 | 1656 | TA | Y | 8 | 0 | NA |
| 170000 | 464 | NWAmes | 060 | 825 | Gd | Y | 7 | 0 | NA |
| 173000 | 484 | NWAmes | 060 | 800 | TA | Y | 7 | 0 | NA |
| 178400 | 588 | NAmes | 085 | 944 | TA | Y | 6 | 0 | NA |
| 109008 | 352 | NAmes | 020 | 907 | TA | Y | 5 | 0 | NA |
| 155000 | 525 | NAmes | 020 | 1120 | TA | Y | 6 | 0 | NA |
| 174900 | 490 | NAmes | 080 | 1127 | TA | Y | 6 | 0 | NA |
| 145000 | 504 | NAmes | 020 | 1092 | Gd | Y | 6 | 0 | NA |
| 168500 | 520 | NAmes | 080 | 1248 | TA | Y | 6 | 0 | NA |
| 140000 | 451 | NAmes | 020 | 1114 | TA | Y | 5 | 0 | NA |
| 142000 | 528 | NAmes | 020 | 1252 | TA | Y | 7 | 0 | NA |
| 153000 | 264 | NAmes | 020 | 1118 | TA | Y | 6 | 0 | NA |
| 72500 | 287 | BrkSide | 020 | 0 | NA | N | 4 | 0 | NA |
| 87000 | 231 | BrkSide | 070 | 348 | TA | Y | 5 | 0 | NA |
| 141500 | 450 | NAmes | 020 | 1296 | TA | Y | 6 | 0 | NA |
| 119000 | 288 | NAmes | 050 | 1032 | TA | Y | 6 | 0 | NA |
| 112900 | 312 | NAmes | 020 | 1036 | TA | Y | 5 | 0 | NA |
| 124000 | 336 | NAmes | 020 | 1144 | TA | Y | 6 | 0 | NA |
| 140000 | 506 | NAmes | 020 | 931 | TA | Y | 6 | 0 | NA |
| 136000 | 288 | NAmes | 020 | 1080 | TA | Y | 5 | 0 | NA |
| 133000 | 384 | NAmes | 020 | 1104 | TA | Y | 5 | 0 | NA |
| 116000 | 240 | NAmes | 020 | 720 | TA | Y | 4 | 0 | NA |
| 137500 | 636 | NAmes | 020 | 1152 | TA | Y | 6 | 0 | NA |
| 130000 | 400 | NAmes | 020 | 984 | TA | N | 5 | 0 | NA |
| 89900 | 390 | OldTown | 020 | 0 | NA | N | 3 | 0 | NA |
| 114000 | 288 | OldTown | 050 | 747 | TA | Y | 5 | 0 | NA |
| 86900 | 308 | OldTown | 030 | 672 | TA | Y | 4 | 0 | NA |
| 106250 | 0 | OldTown | 190 | 0 | NA | N | 7 | 0 | NA |
| 98300 | 420 | NAmes | 020 | 0 | NA | Y | 7 | 0 | NA |
| 159000 | 311 | NAmes | 020 | 1256 | TA | Y | 6 | 0 | NA |
| 125900 | 299 | NAmes | 020 | 1027 | TA | Y | 6 | 0 | NA |
| 138000 | 576 | NAmes | 050 | 768 | TA | Y | 5 | 0 | NA |
| 112500 | 280 | NAmes | 045 | 936 | TA | Y | 4 | 0 | NA |
| 105500 | 528 | NAmes | 045 | 832 | TA | Y | 4 | 0 | NA |
| 130000 | 0 | NAmes | 090 | 1800 | TA | N | 10 | 0 | NA |
| 150000 | 480 | NAmes | 050 | 768 | TA | Y | 6 | 0 | NA |
| 109500 | 350 | NAmes | 020 | 825 | TA | Y | 4 | 0 | NA |
| 167900 | 442 | NAmes | 060 | 780 | TA | Y | 7 | 0 | NA |
| 136870 | 264 | NAmes | 020 | 1117 | TA | Y | 6 | 0 | NA |
| 143000 | 308 | OldTown | 020 | 192 | TA | N | 7 | 0 | NA |
| 73000 | 504 | OldTown | 030 | 680 | Fa | N | 4 | 0 | NA |
| 122600 | 400 | OldTown | 050 | 780 | TA | Y | 6 | 0 | NA |
| 111000 | 330 | OldTown | 070 | 680 | TA | N | 6 | 0 | NA |
| 64000 | 256 | OldTown | 030 | 672 | Fa | Y | 4 | 0 | NA |
| 139500 | 308 | OldTown | 075 | 728 | TA | Y | 7 | 0 | NA |
| 200000 | 484 | OldTown | 050 | 1362 | Gd | Y | 6 | 0 | NA |
| 119164 | 440 | OldTown | 050 | 801 | TA | Y | 8 | 0 | NA |
| 95000 | 0 | OldTown | 050 | 684 | Fa | Y | 5 | 0 | NA |
| 115000 | 250 | OldTown | 020 | 789 | TA | Y | 5 | 0 | NA |
| 147000 | 528 | OldTown | 020 | 924 | TA | Y | 6 | 0 | NA |
| 112500 | 288 | OldTown | 020 | 928 | TA | Y | 5 | 0 | NA |
| 107900 | 281 | OldTown | 020 | 901 | TA | Y | 4 | 0 | NA |
| 65000 | 0 | OldTown | 020 | 448 | Fa | Y | 6 | 0 | NA |
| 98000 | 513 | OldTown | 070 | 624 | TA | N | 7 | 0 | NA |
| 114000 | 308 | OldTown | 050 | 346 | TA | Y | 5 | 0 | NA |
| 129400 | 0 | OldTown | 070 | 572 | Fa | Y | 7 | 0 | NA |
| 55000 | 400 | OldTown | 070 | 723 | Fa | N | 5 | 0 | NA |
| 131500 | 352 | OldTown | 050 | 1050 | TA | N | 7 | 0 | NA |
| 97000 | 308 | OldTown | 020 | 0 | NA | Y | 4 | 0 | NA |
| 115500 | 308 | OldTown | 020 | 869 | TA | Y | 5 | 0 | NA |
| 108000 | 252 | BrkSide | 050 | 672 | TA | Y | 8 | 0 | NA |
| 124000 | 240 | BrkSide | 050 | 672 | TA | Y | 6 | 0 | NA |
| 106900 | 200 | BrkSide | 070 | 554 | TA | Y | 6 | 0 | NA |
| 79000 | 280 | BrkSide | 020 | NA | NA | Y | 4 | 0 | NA |
| 81300 | 164 | BrkSide | 030 | 0 | NA | N | 6 | 0 | NA |
| 68500 | 240 | BrkSide | 030 | 520 | TA | N | 4 | 0 | NA |
| 145000 | 240 | BrkSide | 050 | 883 | TA | Y | 8 | 0 | NA |
| 130000 | 275 | BrkSide | 030 | 816 | TA | Y | 5 | 0 | NA |
| 160000 | 360 | OldTown | 060 | 1242 | TA | Y | 8 | 0 | NA |
| 127500 | 228 | OldTown | 050 | 796 | Gd | Y | 7 | 0 | NA |
| 120000 | 400 | IDOTRR | 050 | 880 | TA | Y | 6 | 0 | NA |
| 127500 | 320 | IDOTRR | 030 | 1040 | TA | Y | 5 | 0 | NA |
| 89500 | 0 | IDOTRR | 050 | 319 | TA | Y | 6 | 0 | NA |
| 79900 | 0 | OldTown | 050 | 901 | TA | Y | 7 | 0 | NA |
| 85000 | 576 | IDOTRR | 030 | 451 | Fa | Y | 5 | 0 | NA |
| 82375 | 0 | IDOTRR | 190 | 536 | TA | N | 8 | 0 | NA |
| 124000 | 240 | Sawyer | 020 | 1046 | TA | N | 6 | 0 | NA |
| 127500 | 0 | Edwards | 190 | 644 | TA | Y | 6 | 0 | NA |
| 148000 | 440 | Sawyer | 085 | 981 | Gd | Y | 6 | 0 | NA |
| 129500 | 384 | Sawyer | 020 | 1040 | TA | Y | 5 | 0 | NA |
| 130000 | 450 | Sawyer | 020 | 894 | TA | Y | 5 | 0 | NA |
| 152000 | 506 | Sawyer | 085 | 1060 | Gd | Y | 5 | 0 | NA |
| 108959 | 400 | Sawyer | 090 | 1198 | Gd | Y | 6 | 0 | NA |
| 95541 | 400 | Sawyer | 190 | 1300 | TA | Y | 6 | 0 | NA |
| 80000 | 0 | Sawyer | 020 | 1006 | TA | Y | 5 | 0 | NA |
| 149350 | 271 | Sawyer | 020 | 1228 | TA | Y | 6 | 0 | NA |
| 144900 | 300 | Sawyer | 020 | 960 | TA | Y | 6 | 0 | NA |
| 140000 | 300 | Sawyer | 080 | 533 | TA | Y | 6 | 0 | NA |
| 99600 | 0 | Edwards | 090 | 864 | Gd | N | 4 | 0 | NA |
| 134500 | 280 | Edwards | 060 | 621 | TA | Y | 7 | 0 | NA |
| 107500 | 0 | Edwards | 190 | 1117 | Gd | Y | 5 | 0 | NA |
| 125000 | 240 | Edwards | 190 | 1164 | TA | N | 5 | 0 | NA |
| 79000 | 0 | Edwards | 050 | 572 | TA | N | 5 | 0 | NA |
| 200000 | 603 | ClearCr | 060 | 616 | Gd | Y | 8 | 0 | NA |
| 155000 | 528 | CollgCr | 020 | 990 | Gd | Y | 5 | 0 | NA |
| 145000 | 672 | CollgCr | 020 | 990 | Gd | Y | 5 | 0 | NA |
| 215700 | 600 | CollgCr | 060 | 864 | Gd | Y | 6 | 0 | NA |
| 207500 | 532 | CollgCr | 060 | 782 | Gd | Y | 6 | 0 | NA |
| 188000 | 527 | CollgCr | 060 | 880 | Gd | Y | 8 | 0 | NA |
| 191000 | 577 | CollgCr | 020 | 1468 | Gd | Y | 6 | 0 | NA |
| 235000 | 626 | CollgCr | 060 | 928 | Gd | Y | 6 | 0 | NA |
| 130250 | 308 | CollgCr | 020 | 938 | Gd | Y | 5 | 0 | NA |
| 147000 | 576 | CollgCr | 080 | 940 | Gd | Y | 5 | 0 | NA |
| 110000 | 280 | CollgCr | 020 | 924 | Gd | Y | 5 | 0 | NA |
| 127000 | 352 | CollgCr | 020 | 864 | TA | Y | 5 | 0 | NA |
| 124900 | 352 | CollgCr | 020 | 780 | TA | Y | 4 | 0 | NA |
| 224900 | 543 | CollgCr | 060 | 884 | Gd | Y | 8 | 0 | NA |
| 136500 | 420 | CollgCr | 120 | 848 | Gd | Y | 3 | 0 | NA |
| 145000 | 420 | CollgCr | 120 | 848 | Gd | Y | 3 | 0 | NA |
| 185000 | 721 | CollgCr | 090 | 1838 | Gd | Y | 8 | 0 | NA |
| 208500 | 548 | CollgCr | 060 | 856 | Gd | Y | 8 | 0 | NA |
| 186500 | 470 | CollgCr | 020 | 1445 | Gd | Y | 6 | 0 | NA |
| 210000 | 484 | CollgCr | 020 | 1436 | Gd | Y | 8 | 0 | NA |
| 179900 | 484 | CollgCr | 020 | 1234 | Ex | Y | 7 | 0 | NA |
| 218836 | 814 | CollgCr | 020 | 1564 | Gd | Y | 6 | 0 | NA |
| 85000 | 0 | Edwards | 030 | 796 | Fa | Y | 4 | 0 | NA |
| 145900 | 0 | Edwards | 090 | 1272 | TA | Y | 9 | 0 | NA |
| 147500 | 276 | Edwards | 020 | 1256 | TA | Y | 6 | 0 | NA |
| 148000 | 525 | Edwards | 180 | 547 | Gd | Y | 5 | 0 | NA |
| 82000 | 0 | Edwards | 090 | 0 | NA | N | 6 | 0 | NA |
| 82000 | 0 | Edwards | 090 | 0 | NA | N | 6 | 0 | NA |
| 118000 | 0 | Edwards | 090 | 1440 | TA | N | 8 | 0 | NA |
| 82500 | 0 | Edwards | 090 | 0 | NA | N | 6 | 0 | NA |
| 91900 | 0 | Edwards | 190 | 784 | TA | N | 4 | 0 | NA |
| 120000 | 0 | Edwards | 050 | 585 | TA | Y | 5 | 0 | NA |
| 96000 | 0 | Edwards | 050 | 0 | NA | Y | 8 | 0 | NA |
| 130500 | 240 | Edwards | 050 | 768 | TA | Y | 6 | 0 | NA |
| 135000 | 548 | Edwards | 050 | 941 | TA | Y | 7 | 0 | NA |
| 135500 | 300 | Edwards | 050 | 816 | TA | Y | 8 | 0 | NA |
| 100000 | 312 | Edwards | 080 | 416 | Ex | Y | 6 | 0 | NA |
| 108000 | 205 | Edwards | 030 | 949 | TA | Y | 6 | 0 | NA |
| 98000 | 0 | Edwards | 030 | 864 | TA | N | 5 | 0 | NA |
| 67000 | 0 | Edwards | 030 | 864 | TA | N | 5 | 0 | NA |
| 135900 | 0 | SWISU | 190 | 780 | TA | N | 9 | 0 | NA |
| 140000 | 400 | SWISU | 070 | 672 | TA | N | 7 | 0 | NA |
| 189000 | 621 | SWISU | 070 | 612 | TA | Y | 8 | 0 | NA |
| 177000 | 308 | Crawfor | 070 | 840 | Gd | Y | 8 | 0 | NA |
| 115000 | 240 | SWISU | 050 | 1064 | TA | Y | 6 | 0 | NA |
| 110000 | 225 | Crawfor | 050 | 884 | TA | Y | 6 | 0 | NA |
| 120000 | 240 | IDOTRR | 050 | 720 | Fa | Y | 5 | 0 | NA |
| 119000 | 0 | IDOTRR | 050 | 780 | Gd | Y | 7 | 0 | NA |
| 99500 | 360 | IDOTRR | 030 | 520 | TA | Y | 5 | 0 | NA |
| 13100 | 487 | IDOTRR | 020 | 0 | NA | N | 4 | 0 | NA |
| 40000 | 250 | IDOTRR | 070 | 649 | TA | N | 6 | 0 | NA |
| 81000 | 1248 | IDOTRR | 030 | 894 | TA | Y | 6 | 0 | NA |
| 65000 | 216 | IDOTRR | 070 | 592 | Fa | Y | 5 | 0 | NA |
| 300000 | 786 | Mitchel | 020 | 1840 | Ex | Y | 7 | 0 | NA |
| 100000 | 484 | Mitchel | 090 | 0 | NA | Y | 8 | 0 | NA |
| 294000 | 788 | Timber | 020 | 1518 | Ex | Y | 8 | 0 | NA |
| 167500 | 400 | Timber | 080 | 384 | Gd | Y | 7 | 0 | NA |
| 218689 | 666 | Timber | 060 | 796 | Gd | Y | 6 | 0 | NA |
| 195000 | 435 | Timber | 020 | 1666 | Ex | Y | 6 | 0 | NA |
| 206300 | 784 | Mitchel | 090 | 1344 | Gd | Y | 8 | 0 | NA |
| 160500 | 392 | Mitchel | 120 | 1189 | Ex | Y | 4 | 0 | NA |
| 124000 | 499 | MeadowV | 120 | 1040 | Gd | Y | 6 | 0 | NA |
| 105000 | 297 | MeadowV | 180 | 526 | Gd | Y | 5 | 0 | NA |
| 81000 | 0 | MeadowV | 180 | 630 | Gd | Y | 3 | 0 | NA |
| 128500 | 264 | Mitchel | 020 | 816 | TA | Y | 4 | 0 | NA |
| 119500 | 264 | Mitchel | 020 | 876 | TA | Y | 5 | 0 | NA |
| 138000 | 816 | Mitchel | 020 | 816 | TA | Y | 4 | 0 | NA |
| 134500 | 264 | Mitchel | 020 | 845 | TA | Y | 6 | 0 | NA |
| 160000 | 423 | Mitchel | 050 | 983 | Gd | Y | 7 | 0 | NA |
| 137500 | 484 | Mitchel | 020 | 864 | TA | Y | 6 | 0 | NA |
| 103000 | 288 | IDOTRR | 070 | 686 | TA | Y | 7 | 0 | NA |
| 177000 | 388 | Gilbert | 060 | 794 | Gd | Y | 6 | 0 | NA |
| 251000 | 499 | StoneBr | 120 | 1494 | Gd | Y | 6 | 0 | NA |
| 178750 | 420 | Gilbert | 060 | 691 | Gd | Y | 6 | 0 | NA |
| 160000 | 420 | Gilbert | 020 | 1168 | Gd | Y | 6 | 0 | NA |
| 170000 | 461 | StoneBr | 120 | 1074 | Gd | Y | 5 | 0 | NA |
| 182000 | 480 | StoneBr | 120 | 1166 | Gd | Y | 5 | 0 | NA |
| 155000 | 828 | Gilbert | 190 | 1100 | Gd | Y | 7 | 0 | NA |
| 174000 | 480 | NWAmes | 020 | 1284 | Gd | Y | 5 | 0 | NA |
| 151500 | 495 | NWAmes | 020 | 1153 | Gd | Y | 6 | 0 | NA |
| 152000 | 462 | NWAmes | 060 | 780 | TA | Y | 7 | 0 | NA |
| 139000 | 288 | NAmes | 080 | 372 | TA | Y | 5 | 0 | NA |
| 184000 | 484 | NAmes | 060 | 725 | TA | Y | 7 | 0 | NA |
| 155000 | 576 | NAmes | 020 | 925 | TA | Y | 7 | 0 | NA |
| 119500 | 280 | NAmes | 020 | 950 | TA | Y | 5 | 0 | NA |
| 110000 | 684 | NAmes | 020 | 858 | TA | Y | 4 | 0 | NA |
| 128000 | 270 | NAmes | 020 | 914 | TA | Y | 4 | 0 | NA |
| 133000 | 367 | NAmes | 120 | 723 | Gd | Y | 4 | 0 | NA |
| 113500 | 264 | BrDale | 160 | 525 | TA | Y | 6 | 0 | NA |
| 113000 | 264 | BrDale | 160 | 672 | TA | Y | 7 | 0 | NA |
| 122500 | 440 | BrDale | 160 | 765 | TA | Y | 6 | 0 | NA |
| 142500 | 319 | NPkVill | 120 | 1061 | Gd | Y | 4 | 0 | NA |
| 129250 | 360 | NAmes | 020 | 988 | TA | Y | 5 | 0 | NA |
| 232698 | 554 | NridgHt | 020 | 1721 | Gd | Y | 7 | 0 | NA |
| 250000 | 876 | NridgHt | 060 | 1298 | Gd | Y | 7 | 0 | NA |
| 181755 | 572 | Gilbert | 060 | 768 | Gd | Y | 7 | 0 | NA |
| 168165 | 454 | Gilbert | 060 | 608 | Gd | Y | 6 | 0 | NA |
| 203000 | 388 | Gilbert | 020 | 1326 | Gd | Y | 6 | 0 | NA |
| 176485 | 436 | Gilbert | 020 | 1302 | Gd | Y | 6 | 0 | NA |
| 181134 | 396 | Gilbert | 020 | 1340 | Gd | Y | 6 | 0 | NA |
| 166000 | 440 | Gilbert | 060 | 752 | Gd | Y | 6 | 0 | NA |
| 177594 | 400 | Gilbert | 060 | 728 | Gd | Y | 7 | 0 | NA |
| 173500 | 462 | Gilbert | 020 | 1246 | Gd | Y | 6 | 0 | NA |
| 188500 | 437 | Gilbert | 080 | 835 | Gd | Y | 5 | 0 | NA |
| 162000 | 400 | Gilbert | 060 | 660 | Gd | Y | 6 | 0 | NA |
| 213133 | 605 | Somerst | 020 | 1369 | Gd | Y | 5 | 0 | NA |
| 260000 | 484 | Somerst | 020 | 1538 | Gd | Y | 7 | 0 | NA |
| 225000 | 474 | Somerst | 020 | 1496 | Gd | Y | 7 | 0 | NA |
| 250000 | 574 | Somerst | 060 | 982 | Gd | Y | 7 | 0 | NA |
| 208900 | 598 | Somerst | 020 | 1338 | Gd | Y | 6 | 0 | NA |
| 255000 | 590 | Somerst | 060 | 896 | Gd | Y | 8 | 0 | NA |
| 212109 | 561 | Somerst | 060 | 725 | Gd | Y | 8 | 0 | NA |
| 249700 | 826 | Somerst | 020 | 1656 | Gd | Y | 7 | 0 | NA |
| 146000 | 0 | SawyerW | 020 | 1100 | Gd | Y | 6 | 0 | NA |
| 201000 | 471 | SawyerW | 060 | 928 | Gd | Y | 7 | 0 | NA |
| 144000 | 504 | SawyerW | 085 | 840 | Gd | Y | 5 | 0 | NA |
| 120750 | 308 | Sawyer | 020 | 894 | Gd | Y | 5 | 0 | NA |
| 132500 | 264 | Sawyer | 020 | 999 | TA | Y | 6 | 0 | NA |
| 129000 | 544 | Sawyer | 020 | 1040 | TA | Y | 5 | 0 | NA |
| 145000 | 686 | Sawyer | 020 | 1040 | TA | Y | 5 | 0 | NA |
| 128500 | 572 | Sawyer | 020 | 988 | TA | Y | 5 | 0 | NA |
| 129000 | 431 | Sawyer | 020 | 1037 | Fa | Y | 5 | 0 | NA |
| 166000 | 484 | Somerst | 120 | 1141 | Gd | Y | 5 | 0 | NA |
| 207500 | 528 | Somerst | 120 | 1550 | Gd | Y | 5 | 0 | NA |
| 177000 | 440 | Somerst | 160 | 756 | Gd | Y | 4 | 0 | NA |
| 204000 | 625 | Somerst | 020 | 1339 | Gd | Y | 5 | 0 | NA |
| 143450 | 412 | NWAmes | 020 | 912 | TA | Y | 7 | 0 | NA |
| 164000 | 528 | NWAmes | 020 | 1295 | Gd | Y | 6 | 0 | NA |
| 127000 | 311 | NWAmes | 020 | 1052 | TA | Y | 6 | 0 | NA |
| 127000 | 308 | NAmes | 020 | 949 | TA | Y | 5 | 0 | NA |
| 126500 | 461 | NAmes | 020 | 1065 | TA | Y | 6 | 0 | NA |
| 145000 | 264 | NAmes | 080 | 588 | TA | Y | 6 | 0 | NA |
| 120000 | 297 | NAmes | 020 | 912 | TA | Y | 5 | 0 | NA |
| 106500 | 294 | NAmes | 020 | 0 | NA | Y | 5 | 0 | NA |
| 117600 | 312 | NAmes | 020 | 894 | TA | Y | 5 | 0 | NA |
| 161000 | 440 | NAmes | 080 | 1042 | TA | Y | 5 | 0 | NA |
| 150750 | 624 | NAmes | 020 | 1063 | TA | Y | 7 | 0 | NA |
| 101800 | 462 | NAmes | 090 | 0 | NA | Y | 6 | 0 | NA |
| 138500 | 512 | NAmes | 045 | 822 | TA | Y | 4 | 0 | NA |
| 64000 | 0 | BrkSide | 050 | 370 | TA | N | 4 | 0 | NA |
| 144000 | 288 | NAmes | 020 | 1078 | TA | Y | 6 | 0 | NA |
| 126000 | 792 | NAmes | 090 | 1560 | TA | Y | 8 | 0 | NA |
| 114500 | 275 | NAmes | 020 | 912 | TA | Y | 5 | 0 | NA |
| 144000 | 315 | NAmes | 050 | 874 | TA | Y | 7 | 0 | NA |
| 139400 | 260 | NAmes | 020 | 1056 | TA | Y | 6 | 0 | NA |
| 116000 | 308 | NAmes | 020 | 922 | TA | Y | 5 | 0 | NA |
| 135000 | 286 | NAmes | 020 | 1048 | TA | Y | 6 | 0 | NA |
| 142000 | 336 | NAmes | 020 | 864 | TA | Y | 6 | 0 | NA |
| 128600 | 484 | NAmes | 090 | 1560 | TA | Y | 8 | 0 | NA |
| 125000 | 410 | NAmes | 020 | 948 | TA | Y | 5 | 0 | NA |
| 134500 | 240 | NAmes | 020 | 1008 | TA | Y | 6 | 0 | NA |
| 127000 | 252 | NAmes | 020 | 925 | TA | Y | 5 | 0 | NA |
| 132000 | 252 | NAmes | 020 | 928 | Gd | Y | 4 | 0 | NA |
| 301600 | 1200 | NAmes | 070 | 666 | TA | Y | 9 | 0 | NA |
| 109000 | 240 | OldTown | 050 | 735 | TA | Y | 5 | 0 | NA |
| 103200 | 0 | OldTown | 045 | 882 | TA | Y | 4 | 0 | NA |
| 128500 | 580 | OldTown | 050 | 1151 | TA | Y | 6 | 0 | NA |
| 148000 | 0 | OldTown | 070 | 736 | Gd | Y | 6 | 0 | NA |
| 120000 | 240 | NAmes | 020 | 920 | TA | Y | 5 | 0 | NA |
| 128500 | 288 | NAmes | 020 | 952 | TA | Y | 5 | 0 | NA |
| 135000 | 254 | NAmes | 020 | 1010 | TA | Y | 6 | 0 | NA |
| 99000 | 300 | NAmes | 020 | 0 | NA | Y | 7 | 0 | NA |
| 125500 | 294 | NAmes | 020 | 864 | TA | Y | 5 | 0 | NA |
| 132000 | 360 | OldTown | 070 | 264 | Fa | Y | 7 | 0 | NA |
| 127500 | 576 | OldTown | 050 | 845 | TA | Y | 6 | 0 | NA |
| 140000 | 672 | OldTown | 090 | 936 | Gd | Y | 4 | 0 | NA |
| 120000 | 308 | OldTown | 050 | 649 | TA | Y | 6 | 0 | NA |
| 89471 | 672 | OldTown | 030 | 907 | Fa | Y | 7 | 0 | NA |
| 85000 | 252 | OldTown | 050 | 570 | Fa | N | 6 | 0 | NA |
| 108500 | 308 | OldTown | 030 | 960 | TA | Y | 5 | 0 | NA |
| 110500 | 0 | OldTown | 030 | 686 | TA | Y | 4 | 0 | NA |
| 100000 | 480 | OldTown | 030 | 968 | TA | Y | 5 | 0 | NA |
| 184900 | 816 | OldTown | 070 | 725 | TA | N | 7 | 0 | NA |
| 114000 | 480 | OldTown | 070 | 616 | TA | Y | 6 | 0 | NA |
| 90000 | 560 | OldTown | 190 | 662 | TA | N | 10 | 0 | NA |
| 144100 | 468 | OldTown | 050 | 926 | Gd | Y | 6 | 0 | NA |
| 117500 | 205 | OldTown | 070 | 1008 | TA | Y | 8 | 0 | NA |
| 152000 | 216 | OldTown | 040 | 1149 | TA | Y | 5 | 0 | NA |
| 153500 | 812 | OldTown | 030 | 1559 | TA | Y | 5 | 0 | NA |
| 104500 | 331 | OldTown | 020 | 0 | NA | Y | 5 | 0 | NA |
| 128250 | 308 | BrkSide | 050 | 910 | Fa | Y | 6 | 0 | NA |
| 135000 | 224 | BrkSide | 050 | 728 | TA | Y | 6 | 0 | NA |
| 132000 | 280 | BrkSide | 050 | 672 | TA | Y | 7 | 0 | NA |
| 132500 | 379 | BrkSide | 050 | 756 | TA | Y | 6 | 0 | NA |
| 137500 | 180 | BrkSide | 070 | 939 | TA | Y | 8 | 0 | NA |
| 165000 | 576 | BrkSide | 050 | 768 | TA | Y | 7 | 0 | NA |
| 90000 | 576 | BrkSide | 050 | 750 | Fa | Y | 7 | 0 | NA |
| 153575 | 384 | BrkSide | 070 | 698 | TA | Y | 7 | 0 | NA |
| 117000 | 216 | OldTown | 050 | 969 | TA | N | 6 | 0 | NA |
| 127000 | 0 | IDOTRR | 070 | 684 | TA | Y | 7 | 0 | NA |
| 101000 | 288 | IDOTRR | 075 | 530 | TA | N | 6 | 0 | NA |
| 50000 | 264 | IDOTRR | 050 | 771 | TA | Y | 6 | 0 | NA |
| 126000 | 240 | Edwards | 050 | 756 | TA | N | 7 | 0 | NA |
| 130000 | 308 | Sawyer | 190 | 925 | Gd | Y | 6 | 0 | NA |
| 115400 | 440 | Sawyer | 020 | 1005 | TA | Y | 5 | 0 | NA |
| 118500 | 261 | Sawyer | 020 | 1029 | TA | Y | 5 | 0 | NA |
| 123000 | 264 | Sawyer | 020 | 1040 | TA | Y | 6 | 0 | NA |
| 125000 | 384 | Sawyer | 020 | 894 | TA | Y | 5 | 0 | NA |
| 108000 | 300 | Sawyer | 020 | 948 | TA | Y | 6 | 0 | NA |
| 119900 | 576 | Sawyer | 190 | 768 | Gd | Y | 6 | 0 | NA |
| 115000 | 264 | Sawyer | 020 | 876 | TA | Y | 5 | 0 | NA |
| 134500 | 528 | Sawyer | 020 | 943 | TA | Y | 5 | 0 | NA |
| 127000 | 386 | Sawyer | 020 | 955 | TA | Y | 6 | 0 | NA |
| 89500 | 460 | Sawyer | 020 | 0 | NA | N | 5 | 0 | NA |
| 109900 | 336 | Edwards | 020 | 484 | TA | N | 4 | 0 | NA |
| 154000 | 332 | Edwards | 050 | 988 | TA | Y | 6 | 0 | NA |
| 118000 | 399 | SWISU | 020 | 864 | TA | Y | 6 | 0 | NA |
| 150000 | 0 | Edwards | 090 | 1440 | Gd | Y | 8 | 0 | NA |
| 86000 | 0 | Edwards | 030 | 528 | TA | Y | 5 | 0 | NA |
| 130000 | 264 | Edwards | 120 | 1038 | TA | Y | 5 | 0 | NA |
| 125000 | 256 | Edwards | 020 | 1342 | Fa | Y | 7 | 0 | NA |
| 96000 | 280 | Edwards | 050 | 951 | TA | N | 7 | 0 | NA |
| 360000 | 894 | CollgCr | 020 | 2140 | Gd | Y | 8 | 0 | NA |
| 203000 | 508 | CollgCr | 020 | 1274 | Gd | Y | 6 | 0 | NA |
| 195400 | 628 | CollgCr | 020 | 1208 | Gd | Y | 6 | 0 | NA |
| 217000 | 796 | CollgCr | 020 | 1546 | Gd | Y | 7 | 0 | NA |
| 191000 | 578 | CollgCr | 060 | 879 | Gd | Y | 7 | 0 | NA |
| 187500 | 444 | ClearCr | 060 | 832 | TA | Y | 9 | 0 | NA |
| 139500 | 747 | CollgCr | 020 | 1022 | Gd | Y | 6 | 0 | NA |
| 146000 | 384 | CollgCr | 020 | 990 | Gd | Y | 5 | 0 | NA |
| 123600 | 0 | CollgCr | 020 | 990 | Gd | Y | 5 | 0 | NA |
| 226000 | 558 | CollgCr | 020 | 1453 | Gd | Y | 7 | 0 | NA |
| 180000 | 500 | CollgCr | 060 | 840 | Gd | Y | 8 | 0 | NA |
| 134900 | 748 | CollgCr | 020 | 1040 | Gd | Y | 5 | 0 | NA |
| 120000 | 440 | CollgCr | 020 | 864 | TA | Y | 5 | 0 | NA |
| 122000 | 440 | CollgCr | 020 | 969 | TA | Y | 5 | 0 | NA |
| 127000 | 576 | CollgCr | 020 | 864 | TA | Y | 5 | 0 | NA |
| 200000 | 542 | CollgCr | 060 | 860 | Gd | Y | 7 | 0 | NA |
| 131500 | 420 | CollgCr | 120 | 848 | Gd | Y | 3 | 0 | NA |
| 185000 | 531 | CollgCr | 020 | 1337 | Gd | Y | 6 | 0 | NA |
| 179400 | 552 | CollgCr | 060 | 738 | Gd | Y | 7 | 0 | NA |
| 213500 | 639 | CollgCr | 060 | 939 | Gd | Y | 8 | 0 | NA |
| 179600 | 626 | CollgCr | 020 | 1422 | Gd | Y | 7 | 0 | NA |
| 173500 | 578 | CollgCr | 020 | 1169 | Gd | Y | 5 | 0 | NA |
| 167000 | 400 | CollgCr | 060 | 768 | Gd | Y | 6 | 0 | NA |
| 110000 | 520 | Edwards | 020 | 1088 | TA | Y | 4 | 0 | NA |
| 110000 | 622 | Edwards | 020 | 1179 | TA | Y | 5 | 0 | NA |
| 141000 | 579 | Edwards | 090 | 0 | NA | Y | 11 | 0 | NA |
| 157000 | 450 | Edwards | 020 | 1090 | Ex | Y | 5 | 0 | NA |
| 171500 | 489 | Edwards | 060 | 734 | Gd | Y | 6 | 0 | NA |
| 140000 | 525 | Edwards | 180 | 547 | Gd | Y | 5 | 0 | NA |
| 131750 | 392 | Edwards | 020 | 960 | TA | Y | 4 | 0 | NA |
| 111000 | 248 | Edwards | 020 | 864 | TA | Y | 5 | 0 | NA |
| 98500 | 0 | Edwards | 090 | 1195 | TA | N | 8 | 0 | NA |
| 79000 | 0 | Edwards | 030 | 544 | TA | Y | 6 | 0 | NA |
| 112000 | 384 | Edwards | 050 | 560 | Fa | N | 6 | 0 | NA |
| 79275 | 528 | Edwards | 020 | 864 | TA | Y | 5 | 0 | NA |
| 200000 | 0 | SWISU | 190 | 1440 | TA | Y | 14 | 0 | NA |
| 150000 | 0 | SWISU | 090 | 1296 | TA | N | 12 | 0 | NA |
| 96500 | 200 | Crawfor | 045 | 768 | TA | N | 5 | 0 | NA |
| 136500 | 352 | Crawfor | 030 | 1290 | TA | Y | 6 | 0 | NA |
| 145000 | 492 | Crawfor | 090 | 979 | Gd | N | 8 | 0 | NA |
| 140000 | 528 | Crawfor | 190 | 728 | TA | Y | 5 | 0 | NA |
| 170000 | 628 | Crawfor | 020 | 1680 | Gd | Y | 7 | 0 | NA |
| 200000 | 509 | Blueste | 120 | 1004 | Gd | Y | 4 | 0 | NA |
| 115000 | 0 | IDOTRR | 050 | 793 | TA | N | 7 | 0 | NA |
| 141000 | 720 | IDOTRR | 050 | 720 | TA | Y | 6 | 0 | NA |
| 87000 | 360 | IDOTRR | 045 | 720 | TA | N | 5 | 0 | NA |
| 150909 | NA | IDOTRR | 070 | 859 | Gd | Y | 6 | 0 | NA |
| 67000 | 338 | IDOTRR | 030 | 961 | Fa | Y | 6 | 0 | NA |
| 152000 | 282 | IDOTRR | 050 | 910 | TA | Y | 6 | 0 | NA |
| 68104 | 256 | IDOTRR | 050 | 0 | NA | Y | 4 | 0 | NA |
| 119600 | 0 | IDOTRR | 190 | 957 | TA | N | 9 | 0 | NA |
| 140000 | 720 | IDOTRR | 020 | 1073 | TA | Y | 6 | 0 | NA |
| 134000 | 484 | Mitchel | 020 | 1084 | TA | Y | 5 | 0 | NA |
| 148000 | 360 | Mitchel | 080 | 852 | TA | Y | 4 | 0 | NA |
| 231713 | 433 | Timber | 020 | 1689 | Gd | Y | 7 | 0 | NA |
| 174000 | 528 | Timber | 020 | 1265 | Gd | Y | 6 | 0 | NA |
| 180500 | 471 | Timber | 020 | 1267 | Ex | Y | 5 | 0 | NA |
| 147000 | 0 | Mitchel | 020 | 1120 | Gd | Y | 6 | 0 | NA |
| 130000 | 1041 | Mitchel | 020 | 0 | NA | Y | 9 | 0 | NA |
| 132250 | 648 | Mitchel | 020 | 1064 | TA | Y | 5 | 0 | NA |
| 143000 | 576 | Mitchel | 090 | 1632 | TA | Y | 8 | 0 | NA |
| 85500 | 253 | MeadowV | 160 | 546 | TA | Y | 5 | 0 | NA |
| 93900 | 0 | MeadowV | 160 | 546 | TA | Y | 5 | 0 | NA |
| 75000 | 286 | MeadowV | 160 | 546 | TA | Y | 6 | 0 | NA |
| 84500 | 0 | MeadowV | 180 | 630 | Gd | Y | 3 | 0 | NA |
| 80000 | 444 | Mitchel | 020 | 1396 | TA | N | 6 | 0 | NA |
| 129500 | 360 | Mitchel | 020 | 845 | TA | Y | 4 | 0 | NA |
| 135000 | 502 | Mitchel | 020 | 1090 | Gd | Y | 6 | 0 | NA |
| 124500 | 264 | Mitchel | 020 | 816 | TA | Y | 5 | 0 | NA |
| 139000 | 264 | Mitchel | 020 | 816 | Gd | Y | 4 | 0 | NA |
| 149900 | 452 | NAmes | 020 | 1178 | TA | Y | 5 | 0 | NA |
| 270000 | 618 | StoneBr | 160 | 2062 | Gd | Y | 9 | 0 | NA |
| 145000 | 572 | Gilbert | 190 | 1056 | TA | N | 5 | 0 | NA |
| 202500 | 440 | NWAmes | 020 | 1208 | Gd | Y | 8 | 0 | NA |
| 229000 | 786 | NWAmes | 050 | 1204 | Gd | Y | 9 | 0 | NA |
| 153500 | 495 | NWAmes | 020 | 1056 | Gd | Y | 6 | 0 | NA |
| 155000 | 462 | NWAmes | 020 | 1103 | TA | Y | 6 | 0 | NA |
| 138800 | 299 | NAmes | 020 | 1096 | TA | Y | 6 | 0 | NA |
| 116050 | 280 | NAmes | 020 | 864 | TA | Y | 5 | 0 | NA |
| 97500 | 576 | NAmes | 020 | 864 | TA | Y | 5 | 0 | NA |
| 190000 | 543 | NAmes | 120 | 1487 | Gd | Y | 4 | 0 | NA |
| 105500 | 440 | BrDale | 160 | 525 | TA | Y | 6 | 0 | NA |
| 116000 | 264 | BrDale | 160 | 494 | TA | Y | 6 | 0 | NA |
| 118000 | 264 | BrDale | 160 | 672 | TA | Y | 7 | 0 | NA |
| 89000 | 264 | BrDale | 160 | 483 | TA | Y | 5 | 0 | NA |
| 137500 | 319 | NPkVill | 120 | 1055 | TA | Y | 4 | 0 | NA |
| 342643 | 840 | NridgHt | 060 | 1249 | Ex | Y | 9 | 0 | NA |
| 174190 | 427 | Gilbert | 020 | 1326 | Gd | Y | 6 | 0 | NA |
| 185101 | 440 | Gilbert | 060 | 738 | Gd | Y | 8 | 0 | NA |
| 156820 | 440 | Blmngtn | 120 | 1142 | Gd | Y | 6 | 0 | NA |
| 287602 | 617 | Gilbert | 060 | 1035 | Gd | Y | 8 | 0 | NA |
| 199000 | 510 | Somerst | 020 | 1504 | Gd | Y | 7 | 0 | NA |
| 186500 | 615 | Somerst | 060 | 756 | Gd | Y | 6 | 0 | NA |
| 200825 | 615 | Somerst | 060 | 858 | Gd | Y | 7 | 0 | NA |
| 197000 | 614 | Somerst | 060 | 770 | Gd | Y | 6 | 0 | NA |
| 139500 | 0 | SawyerW | 020 | 1142 | TA | Y | 5 | 0 | NA |
| 186800 | 612 | SawyerW | 020 | 1400 | Gd | Y | 6 | 0 | NA |
| 132000 | 0 | SawyerW | 020 | 1131 | Gd | Y | 6 | 0 | NA |
| 142500 | 484 | SawyerW | 020 | 1141 | Gd | Y | 6 | 0 | NA |
| 158000 | 576 | SawyerW | 020 | 1158 | Gd | Y | 5 | 0 | NA |
| 184000 | 462 | SawyerW | 060 | 891 | Gd | Y | 8 | 0 | NA |
| 184900 | 449 | SawyerW | 060 | 784 | Gd | Y | 7 | 0 | NA |
| 175900 | 484 | SawyerW | 060 | 761 | Gd | Y | 7 | 0 | NA |
| 248500 | 462 | SawyerW | 060 | 836 | Gd | Y | 7 | 0 | NA |
| 151000 | 484 | SawyerW | 120 | 1217 | Gd | Y | 5 | 0 | NA |
| 150000 | 472 | SawyerW | 060 | 636 | Gd | Y | 6 | 0 | NA |
| 107000 | 384 | SawyerW | 020 | 1056 | TA | Y | 5 | 0 | NA |
| 119900 | 300 | SawyerW | 020 | 828 | TA | Y | 6 | 0 | NA |
| 129500 | 624 | Sawyer | 020 | 988 | TA | Y | 6 | 0 | NA |
| 125000 | 504 | Sawyer | 090 | 1728 | TA | Y | 10 | 0 | NA |
| 116000 | 294 | Sawyer | 020 | 882 | TA | Y | 5 | 0 | NA |
| 133500 | 484 | Sawyer | 020 | 925 | TA | Y | 5 | 0 | NA |
| 137000 | 288 | Sawyer | 020 | 935 | TA | Y | 5 | 0 | NA |
| 151000 | 480 | Somerst | 160 | 600 | Gd | Y | 4 | 0 | NA |
| 147400 | 480 | Somerst | 160 | 600 | Gd | Y | 4 | 0 | NA |
| 149900 | 480 | Somerst | 160 | 600 | Gd | Y | 4 | 0 | NA |
| 144152 | 480 | Somerst | 160 | 600 | Gd | Y | 4 | 0 | NA |
| 166000 | 440 | Somerst | 160 | 756 | Gd | Y | 4 | 0 | NA |
| 165000 | 490 | Somerst | 160 | 673 | Gd | Y | 6 | 0 | NA |
| 164500 | 477 | NWAmes | 020 | 1334 | TA | Y | 7 | 0 | NA |
| 140000 | 528 | NWAmes | 020 | 1164 | TA | Y | 6 | 0 | NA |
| 155000 | 530 | NAmes | 060 | 900 | Gd | Y | 7 | 0 | NA |
| 138500 | 288 | NAmes | 020 | 1052 | TA | Y | 5 | 0 | NA |
| 124400 | 264 | NAmes | 020 | 1051 | TA | Y | 6 | 0 | NA |
| 158000 | 568 | NAmes | 080 | 1141 | TA | Y | 6 | 0 | NA |
| 146000 | 884 | NAmes | 020 | 864 | TA | Y | 6 | 0 | NA |
| 136500 | 368 | NAmes | 020 | 1050 | TA | Y | 6 | 0 | NA |
| 145000 | 588 | NAmes | 090 | 1626 | TA | Y | 8 | 0 | NA |
| 140000 | 264 | NAmes | 190 | 588 | TA | Y | 6 | 0 | NA |
| 150000 | 750 | NAmes | 020 | 1008 | TA | Y | 6 | 0 | NA |
| 151500 | 286 | NAmes | 020 | 1248 | TA | Y | 6 | 0 | NA |
| 85500 | 0 | BrkSide | 030 | 440 | Gd | Y | 4 | 0 | NA |
| 79900 | 528 | BrkSide | 030 | 600 | Fa | Y | 5 | 0 | NA |
| 127000 | 576 | BrkSide | 050 | 504 | Fa | Y | 5 | 0 | NA |
| 135000 | 280 | NAmes | 020 | 1056 | TA | Y | 7 | 0 | NA |
| 121000 | 240 | NAmes | 020 | 936 | TA | Y | 5 | 0 | NA |
| 98600 | 480 | NAmes | 020 | 1235 | TA | Y | 6 | 0 | NA |
| 118000 | 286 | NAmes | 020 | 936 | TA | Y | 5 | 0 | NA |
| 132500 | 540 | NAmes | 090 | 1106 | TA | Y | 6 | 0 | NA |
| 156000 | 286 | NAmes | 020 | 1050 | TA | Y | 6 | 0 | NA |
| 139500 | 280 | NAmes | 020 | 1008 | TA | Y | 4 | 0 | NA |
| 127000 | 684 | NAmes | 080 | 301 | Gd | Y | 6 | 0 | NA |
| 142000 | 270 | NAmes | 020 | 884 | TA | Y | 4 | 0 | NA |
| 127000 | 649 | NAmes | 050 | 784 | TA | Y | 6 | 0 | NA |
| 112000 | 398 | OldTown | 050 | 617 | Fa | Y | 6 | 0 | NA |
| 99800 | 371 | OldTown | 030 | 713 | TA | Y | 5 | 0 | NA |
| 117000 | 326 | OldTown | 020 | 833 | TA | Y | 4 | 0 | NA |
| 108480 | 326 | OldTown | 030 | 1073 | TA | Y | 4 | 0 | NA |
| 68000 | 660 | NAmes | 030 | 715 | TA | N | 4 | 0 | NA |
| 86900 | 280 | OldTown | 050 | 448 | Fa | Y | 5 | 0 | NA |
| 105000 | 936 | OldTown | 050 | 672 | TA | Y | 6 | 0 | NA |
| 147000 | 264 | NAmes | 020 | 1135 | TA | Y | 6 | 0 | NA |
| 115000 | 288 | NAmes | 020 | 912 | TA | Y | 5 | 0 | NA |
| 120000 | 288 | NAmes | 020 | 864 | TA | Y | 4 | 0 | NA |
| 129900 | 308 | NAmes | 020 | 816 | TA | Y | 5 | 0 | NA |
| 147500 | 597 | NAmes | 050 | 910 | TA | Y | 6 | 0 | NA |
| 135000 | 0 | NAmes | 050 | 720 | TA | N | 6 | 0 | NA |
| 109500 | 625 | NAmes | 020 | 0 | NA | Y | 5 | 0 | NA |
| 109900 | 420 | NAmes | 020 | 0 | NA | Y | 4 | 0 | NA |
| 81400 | 400 | NAmes | 090 | 0 | NA | N | 6 | 0 | NA |
| 87500 | 400 | NAmes | 090 | 0 | NA | N | 6 | 0 | NA |
| 119000 | 0 | NAmes | 090 | 1556 | TA | Y | 8 | 0 | NA |
| 141000 | 300 | NAmes | 020 | 1150 | TA | Y | 6 | 0 | NA |
| 146000 | 288 | NAmes | 020 | 1150 | TA | Y | 6 | 0 | NA |
| 134500 | 300 | NAmes | 085 | 925 | TA | Y | 6 | 0 | NA |
| 105000 | 336 | NAmes | 020 | 864 | TA | Y | 5 | 0 | NA |
| 124000 | 0 | NAmes | 190 | 1025 | TA | Y | 6 | 0 | NA |
| 107000 | 210 | OldTown | 070 | 686 | TA | N | 8 | 0 | NA |
| 135000 | 240 | OldTown | 050 | 1212 | TA | Y | 6 | 0 | NA |
| 156500 | 400 | OldTown | 050 | 780 | TA | Y | 7 | 0 | NA |
| 139900 | 576 | OldTown | 070 | 712 | TA | Y | 7 | 0 | NA |
| 111500 | 576 | OldTown | 190 | 938 | TA | N | 9 | 0 | NA |
| 108000 | 280 | OldTown | 030 | 1032 | TA | N | 5 | 0 | NA |
| 105000 | 528 | OldTown | 020 | 576 | TA | Y | 5 | 0 | NA |
| 116000 | 440 | OldTown | 050 | 648 | Fa | Y | 6 | 0 | NA |
| 96900 | 216 | OldTown | 070 | 738 | TA | Y | 7 | 0 | NA |
| 135500 | 576 | OldTown | 190 | 960 | TA | Y | 5 | 0 | NA |
| 139000 | 450 | OldTown | 050 | 816 | TA | Y | 7 | 0 | NA |
| 61500 | 200 | OldTown | 030 | 492 | Fa | Y | 3 | 0 | NA |
| 64000 | 250 | OldTown | 030 | 798 | TA | Y | 5 | 0 | NA |
| 137000 | 440 | OldTown | 190 | 1020 | Fa | N | 9 | 0 | NA |
| 87000 | 779 | OldTown | 070 | 1095 | TA | N | 8 | 0 | NA |
| 155000 | 432 | OldTown | 075 | 1226 | TA | Y | 9 | 0 | NA |
| 79000 | 352 | OldTown | 050 | 540 | TA | N | 6 | 0 | NA |
| 114504 | 216 | OldTown | 070 | 684 | TA | N | 7 | 0 | NA |
| 157000 | 576 | OldTown | 070 | 596 | Fa | Y | 8 | 0 | NA |
| 125000 | 312 | OldTown | 030 | 1200 | TA | Y | 7 | 0 | NA |
| 125000 | 624 | OldTown | 020 | 960 | TA | Y | 5 | 0 | NA |
| 64500 | 0 | IDOTRR | 050 | 1020 | TA | N | 5 | 0 | NA |
| 88000 | 450 | BrkSide | 030 | 768 | TA | N | 6 | 0 | NA |
| 80500 | 0 | BrkSide | 050 | 0 | NA | N | 3 | 0 | NA |
| 110000 | 180 | BrkSide | 050 | 741 | TA | Y | 7 | 0 | NA |
| 117000 | 255 | OldTown | 050 | 485 | TA | Y | 5 | 0 | NA |
| 116500 | 390 | IDOTRR | 070 | 396 | Fa | Y | 7 | 0 | NA |
| 72000 | 0 | IDOTRR | 030 | 610 | TA | N | 4 | 0 | NA |
| 150000 | 576 | Sawyer | 090 | 1921 | TA | Y | 8 | 0 | NA |
| 130000 | 288 | ClearCr | 080 | 1062 | TA | Y | 6 | 0 | NA |
| 80000 | 180 | SWISU | 030 | 830 | TA | Y | 4 | 0 | NA |
| 157000 | 246 | SWISU | 020 | 1073 | Gd | Y | 4 | 0 | NA |
| 154500 | 264 | Sawyer | 020 | 1059 | TA | Y | 6 | 0 | NA |
| 156500 | 580 | Sawyer | 090 | 1967 | Gd | Y | 10 | 0 | NA |
| 157000 | 586 | Sawyer | 090 | 1949 | TA | Y | 10 | 0 | NA |
| 145000 | 364 | Sawyer | 080 | 648 | TA | Y | 3 | 0 | NA |
| 130000 | 576 | Sawyer | 085 | 782 | Gd | Y | 4 | 0 | NA |
| 148400 | 450 | ClearCr | 150 | 430 | Gd | Y | 7 | 0 | NA |
| 136900 | 325 | Edwards | 050 | 994 | TA | Y | 7 | 0 | NA |
| 149900 | 305 | Edwards | 050 | 1000 | TA | Y | 7 | 0 | NA |
| 123500 | 308 | Edwards | 020 | 980 | Ex | Y | 6 | 0 | NA |
| 224500 | 920 | SawyerW | 090 | 1344 | Gd | Y | 8 | 0 | NA |
| 183600 | 632 | CollgCr | 020 | 1208 | Gd | Y | 6 | 0 | NA |
| 221500 | 865 | CollgCr | 020 | 1614 | Gd | Y | 7 | 0 | NA |
| 204900 | 675 | CollgCr | 020 | 1498 | Gd | Y | 5 | 0 | NA |
| 239799 | 868 | CollgCr | 060 | 1391 | Gd | Y | 7 | 0 | NA |
| 181000 | 610 | CollgCr | 060 | 784 | Gd | Y | 6 | 0 | NA |
| 148000 | 576 | CollgCr | 085 | 870 | Gd | Y | 5 | 0 | NA |
| 193000 | 591 | CollgCr | 020 | 1425 | Gd | Y | 5 | 0 | NA |
| 217000 | 576 | CollgCr | 020 | 1479 | Gd | Y | 6 | 0 | NA |
| 214000 | 472 | CollgCr | 020 | 1588 | Gd | Y | 6 | 0 | NA |
| 196000 | 515 | CollgCr | 060 | 842 | Gd | Y | 7 | 0 | NA |
| 200000 | 492 | CollgCr | 060 | 916 | Gd | Y | 8 | 0 | NA |
| 157500 | 317 | CollgCr | 060 | 675 | Gd | Y | 6 | 0 | NA |
| 174000 | 672 | CollgCr | 080 | 995 | TA | Y | 6 | 0 | NA |
| 119900 | 297 | CollgCr | 020 | 864 | TA | Y | 5 | 0 | NA |
| 137000 | 484 | Landmrk | 160 | 630 | Gd | Y | 5 | 0 | NA |
| 222000 | 591 | CollgCr | 060 | 826 | Gd | Y | 6 | 0 | NA |
| 197000 | 529 | CollgCr | 060 | 872 | Gd | Y | 8 | 0 | NA |
| 230000 | 900 | CollgCr | 020 | 1654 | Gd | Y | 6 | 0 | NA |
| 207000 | 545 | CollgCr | 020 | 1390 | Gd | Y | 7 | 0 | NA |
| 200000 | 544 | CollgCr | 020 | 1682 | Gd | Y | 7 | 0 | NA |
| 203160 | 578 | CollgCr | 060 | 851 | Gd | Y | 7 | 0 | NA |
| 195800 | 572 | CollgCr | 060 | 784 | Gd | Y | 6 | 0 | NA |
| 212900 | 782 | CollgCr | 020 | 1552 | Gd | Y | 7 | 0 | NA |
| 196500 | 565 | CollgCr | 060 | 860 | Gd | Y | 7 | 0 | NA |
| 198000 | 502 | CollgCr | 020 | 1336 | Gd | Y | 6 | 0 | NA |
| 98000 | 528 | Edwards | 070 | 676 | Gd | Y | 6 | 0 | NA |
| 102000 | 396 | Edwards | 020 | 836 | Fa | Y | 6 | 0 | NA |
| 119900 | 360 | Edwards | 020 | 1176 | Gd | Y | 5 | 0 | NA |
| 117250 | 0 | Edwards | 020 | 914 | Gd | Y | 4 | 0 | NA |
| 142500 | 525 | Edwards | 180 | 547 | Gd | Y | 5 | 0 | NA |
| 134000 | 380 | Edwards | 160 | 970 | Gd | Y | 7 | 0 | NA |
| 137500 | 380 | Edwards | 160 | 970 | Gd | Y | 7 | 0 | NA |
| 97900 | 265 | Edwards | 050 | 624 | Fa | Y | 5 | 0 | NA |
| 92000 | 528 | Edwards | 050 | 832 | Fa | Y | 7 | 0 | NA |
| 107000 | 288 | Edwards | 050 | 1093 | TA | N | 9 | 0 | NA |
| 81000 | 0 | Edwards | 050 | 658 | TA | Y | 8 | 0 | NA |
| 115000 | 572 | Edwards | 020 | 864 | TA | Y | 5 | 0 | NA |
| 116000 | 280 | Edwards | 050 | 686 | TA | Y | 7 | 0 | NA |
| 128000 | 440 | SWISU | 190 | 780 | TA | N | 6 | 0 | NA |
| 102000 | 0 | SWISU | 050 | 1008 | TA | Y | 7 | 0 | NA |
| 112000 | 240 | SWISU | 050 | 824 | Fa | N | 6 | 0 | NA |
| 102000 | 215 | IDOTRR | 030 | 976 | TA | N | 5 | 0 | NA |
| 145400 | 506 | IDOTRR | 050 | 861 | TA | Y | 6 | 0 | NA |
| 72000 | 0 | IDOTRR | 030 | 432 | Fa | N | 4 | 0 | NA |
| 108000 | 570 | IDOTRR | 050 | 637 | TA | Y | 7 | 0 | NA |
| 35311 | 308 | IDOTRR | 020 | 480 | TA | N | 4 | 0 | NA |
| 115000 | 0 | IDOTRR | 190 | 660 | TA | N | 8 | 0 | NA |
| 78000 | 0 | IDOTRR | 050 | 216 | Fa | N | 6 | 0 | NA |
| 209000 | 490 | Mitchel | 020 | 1491 | Ex | Y | 7 | 0 | NA |
| 135000 | 504 | Mitchel | 090 | 975 | Gd | Y | 4 | 0 | NA |
| 148000 | 528 | Mitchel | 080 | 1128 | TA | Y | 6 | 0 | NA |
| 171000 | 766 | Mitchel | 090 | 1907 | TA | Y | 9 | 0 | NA |
| 230000 | 312 | GrnHill | 120 | 0 | NA | Y | 5 | 0 | NA |
| 250000 | 693 | Timber | 060 | 1216 | Gd | Y | 8 | 0 | NA |
| 81500 | 270 | Mitchel | 020 | 0 | NA | Y | 6 | 0 | NA |
| 215000 | 784 | Mitchel | 090 | 1288 | Gd | Y | 8 | 0 | NA |
| 153500 | 405 | Mitchel | 120 | 1237 | Ex | Y | 5 | 0 | NA |
| 126500 | 288 | Mitchel | 020 | 864 | TA | Y | 5 | 0 | NA |
| 146500 | 928 | Mitchel | 090 | 1652 | TA | Y | 8 | 0 | NA |
| 79400 | 253 | MeadowV | 160 | 546 | TA | Y | 5 | 0 | NA |
| 92000 | 0 | MeadowV | 180 | 630 | Gd | Y | 3 | 0 | NA |
| 87550 | 286 | MeadowV | 160 | 546 | TA | Y | 5 | 0 | NA |
| 90500 | 0 | MeadowV | 160 | 546 | TA | Y | 5 | 0 | NA |
| 71000 | 286 | MeadowV | 160 | 546 | TA | Y | 6 | 0 | NA |
| 150900 | 574 | Mitchel | 090 | 1728 | TA | Y | 8 | 0 | NA |
| 188000 | 560 | Mitchel | 090 | 1728 | TA | Y | 8 | 0 | NA |
| 131000 | 484 | Mitchel | 020 | 864 | Gd | Y | 5 | 0 | NA |
# Convert NAs to "none" where stated in codebook
ames_all <- ames_all |>
mutate(bsmt_qual = fct_expand(bsmt_qual, "no_bsmt"), # add a new level to the factor
bsmt_qual = replace_na(bsmt_qual, "no_bsmt"), # recode NA to that new level
fireplace_qu = fct_expand(fireplace_qu, "no_fireplace"),
fireplace_qu = replace_na(fireplace_qu, "no_fireplace"))
# review order of levels b/c they are ordinal, no fireplace/basement is worst
ames_all$bsmt_qual |> levels()[1] "Ex" "Fa" "Gd" "TA" "no_bsmt"
ames_all$fireplace_qu |> levels()[1] "Ex" "Fa" "Gd" "Po" "TA"
[6] "no_fireplace"
bq_levels <- c("no_bsmt", "Po", "Fa", "TA", "Gd", "Ex")
ames_all <- ames_all |>
mutate(bsmt_qual = fct_relevel(bsmt_qual, bq_levels)) Warning: There was 1 warning in `mutate()`.
ℹ In argument: `bsmt_qual = fct_relevel(bsmt_qual, bq_levels)`.
Caused by warning:
! 1 unknown level in `f`: Po
# the warning about the missing level "Po" is OK. No basements were rated poor
ames_all$bsmt_qual |> levels()[1] "no_bsmt" "Fa" "TA" "Gd" "Ex"
fq_levels <- c("no_fireplace", "Po", "Fa", "TA", "Gd", "Ex")
ames_all <- ames_all |>
dplyr::mutate(fireplace_qu = fct_relevel(fireplace_qu, fq_levels))
ames_all$fireplace_qu |> levels()[1] "no_fireplace" "Po" "Fa" "TA" "Gd"
[6] "Ex"
Missing data notes: Basement and fireplace quality both have high numbers of missing values. The codebook explicitly states that ‘NA’ for these variables represents observations that do not have garages or fireplaces (we can also see that these observations have either garage areas of 0 or 0 fireplaces respectively). These observations may be better represented as “no basement” ” and “no fireplace” than missing (though this may not be best for the ordinal nature of these variables). We can explore that further during modeling EDA
Numeric variables
Explore
minandmaxvalues for numeric variables, recording notes on any observations that look suspicious or potentially invalid. Use the data dictionary and associated variables to help you decide whether suspicious observations may represent (in)valid responses.
# skim data, looking at numeric min and max values
ames_all |>
skim_some() |>
filter(skim_type == "numeric") |> # Select only numeric variables since min/max only apply to them
select(skim_variable, numeric.p0, numeric.p100)# A tibble: 5 × 3
skim_variable numeric.p0 numeric.p100
<chr> <dbl> <dbl>
1 sale_price 12789 745000
2 garage_area 0 1488
3 total_bsmt_sf 0 6110
4 tot_rms_abv_grd 3 14
5 fireplaces 0 3
# 14 rooms above ground isn't impossible, but seems high -- let's take a look!
ames_all |>
filter(tot_rms_abv_grd == 14) |>
print_kbl() | sale_price | garage_area | neighborhood | ms_sub_class | total_bsmt_sf | bsmt_qual | central_air | tot_rms_abv_grd | fireplaces | fireplace_qu |
|---|---|---|---|---|---|---|---|---|---|
| 2e+05 | 0 | SWISU | 190 | 1440 | TA | Y | 14 | 0 | no_fireplace |
Numeric variable notes: Numeric values appear to be in the expected range. There were no numeric values coded as factor that made sense to convert to examine min/max values (i.e., ms_sub_class is not ordinal, doesn’t make sense to look at numeric values). I thought 14 rooms above ground seemed like a lot and looked at that one further – the observation with 14 rooms above ground had an ms_sub_class of “190” indicating it is a 2 family conversion home, which makes this number more believable. No changes need to be made at this step because it’s not an obvious error. We can explore it as a possible outlier further in modeling EDA
Categorical variables
Use
print()andlevels()print the levels of each categorical variable. You might consider usingwalk()to do all the categorical variables at once! You can usetidy_responses()(a function from John) to convert all responses to snake_case. Check to make sure all levels converted properly. If needed, correct any response levels with conversion errors usingmutate()andfct_recode(). Document your observations for categorical levels.
# View all categorical response labels
ames_all |>
select(where(is.factor)) |>
walk(\(column) print(levels(column))) [1] "Blmngtn" "Blueste" "BrDale" "BrkSide" "ClearCr" "CollgCr" "Crawfor"
[8] "Edwards" "Gilbert" "Greens" "GrnHill" "IDOTRR" "Landmrk" "MeadowV"
[15] "Mitchel" "NAmes" "NoRidge" "NPkVill" "NridgHt" "NWAmes" "OldTown"
[22] "Sawyer" "SawyerW" "Somerst" "StoneBr" "SWISU" "Timber" "Veenker"
[1] "020" "030" "040" "045" "050" "060" "070" "075" "080" "085" "090" "120"
[13] "150" "160" "180" "190"
[1] "no_bsmt" "Fa" "TA" "Gd" "Ex"
[1] "N" "Y"
[1] "no_fireplace" "Po" "Fa" "TA" "Gd"
[6] "Ex"
# Tidy all character responses except ms_sub_class (since these are numbers and do not need to be tidied)
ames_all <- ames_all |>
mutate(across(where(is.factor) & !all_of("ms_sub_class"), tidy_responses))
# Check response labels
ames_all |>
select(where(is.factor)) |>
walk(\(column) print(levels(column))) [1] "blmngtn" "blueste" "brdale" "brkside" "clearcr" "collgcr" "crawfor"
[8] "edwards" "gilbert" "greens" "grnhill" "idotrr" "landmrk" "meadowv"
[15] "mitchel" "names" "noridge" "npkvill" "nridght" "nwames" "oldtown"
[22] "sawyer" "sawyerw" "somerst" "stonebr" "swisu" "timber" "veenker"
[1] "020" "030" "040" "045" "050" "060" "070" "075" "080" "085" "090" "120"
[13] "150" "160" "180" "190"
[1] "no_bsmt" "fa" "ta" "gd" "ex"
[1] "n" "y"
[1] "no_fireplace" "po" "fa" "ta" "gd"
[6] "ex"
Categorical variable notes: Since tidy_responses adds x before numeric variables, we opted to tidy all character responses except ms_sub_class so we would not need to correct these labels later (there is nothing to tidy when responses are completely numeric). We notice that ms_sub_class is best considered nominal, quality variables are best considered ordinal , and that neighborhood has many levels that I might consider collapsing, but these types of conversions will occur during eda_modeling.
Train test split
Now that we have completed our data cleaning, we will split our data into train and test sets and save out the cleaned files. Since John held out a separate test set from the data we were given, your split will actually create our training and validation sets. We will use his holdout set as the test data.
Generate a train/test split
Assign 25% of the data to be our validation set. Stratify this split on the
sale_pricevariable.
set.seed(12345)
splits <- ames_all |>
initial_split(prop = 3/4, strata = "sale_price", breaks = 4)Save cleaned files
Save out cleaned train and validation sets as csv files and name them
ames_clean_class_trn.csvandames_clean_class_val.csv.
splits |>
analysis() |>
glimpse() |>
write_csv(here::here(path_data, "ames_clean_class_trn.csv"))Rows: 1,465
Columns: 10
$ sale_price <dbl> 105000, 126000, 115000, 127500, 120000, 99500, 125000,…
$ garage_area <dbl> 730, 525, 0, 440, 308, 264, 264, 429, 539, 260, 0, 0, …
$ neighborhood <fct> names, names, names, npkvill, npkvill, sawyerw, sawyer…
$ ms_sub_class <fct> 020, 020, 020, 120, 120, 120, 120, 030, 090, 020, 020,…
$ total_bsmt_sf <dbl> 882, 882, 864, 1069, 836, 918, 744, 816, 0, 1040, 950,…
$ bsmt_qual <fct> ta, ta, ta, gd, gd, gd, gd, ta, no_bsmt, ta, ta, ta, t…
$ central_air <fct> y, y, y, y, y, y, y, n, y, y, y, y, y, y, y, y, y, y, …
$ tot_rms_abv_grd <dbl> 5, 4, 5, 4, 4, 5, 4, 5, 8, 6, 6, 10, 4, 6, 6, 6, 5, 4,…
$ fireplaces <dbl> 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ fireplace_qu <fct> no_fireplace, no_fireplace, po, fa, no_fireplace, ta, …
splits |>
assessment() |>
glimpse() |>
write_csv(here::here(path_data, "ames_clean_class_val.csv"))Rows: 490
Columns: 10
$ sale_price <dbl> 189900, 105500, 306000, 222500, 355000, 221500, 204500…
$ garage_area <dbl> 482, 320, 772, 434, 962, 880, 676, 678, 280, 762, 588,…
$ neighborhood <fct> gilbert, brdale, nridght, gilbert, noridge, somerst, s…
$ ms_sub_class <fct> 060, 160, 020, 060, 060, 020, 020, 060, 020, 060, 160,…
$ total_bsmt_sf <dbl> 928, 525, 1704, 884, 1629, 1595, 1218, 991, 882, 1231,…
$ bsmt_qual <fct> gd, ta, ex, gd, ex, gd, gd, gd, ta, gd, gd, gd, gd, ta…
$ central_air <fct> y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, …
$ tot_rms_abv_grd <dbl> 6, 6, 7, 8, 7, 6, 4, 8, 5, 9, 3, 4, 7, 7, 6, 7, 7, 8, …
$ fireplaces <dbl> 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 2, 1, 0, …
$ fireplace_qu <fct> ta, no_fireplace, gd, gd, ta, gd, no_fireplace, gd, no…