options(conflicts.policy = "depends.ok") # deals with package conflicts
::source_url("https://github.com/jjcurtin/lab_support/blob/main/fun_ml.R?raw=true") # source functions
devtoolstidymodels_conflictRules() # deals with package conflicts
Unit 2: EDA Cleaning
Packages, source functions, conflicts
This code chunk sets up conflict policies to reduce errors associated with function conflicts
This code chunk loads all packages needed for this assignment. Note that we didn’t load the janitor
package here. You use its clean_names()
function later but you can use that without loading the package by pre-pending the namespace when calling it (i.e., janitor::clean_names()
). Make sure only these packages are loaded to avoid conflicts
library(tidyverse)
library(tidymodels)
You may also use the EDA and plotting functions that John shares on his lab_support
repo. You can source the scripts that contain those functions directly from Github with the code below (note that you may need to install the devtools
package if you haven’t done this previously).
::source_url("https://github.com/jjcurtin/lab_support/blob/main/fun_eda.R?raw=true")
devtools::source_url("https://github.com/jjcurtin/lab_support/blob/main/fun_plots.R?raw=true") devtools
Set up some other environment settings
options(tibble.width = Inf, tibble.print_max = Inf)
theme_set(theme_classic())
Read and Setup Dataframe
Read Data
In the chunk below, set the variable path_data
to the location of your data files. Make sure you have your iaml project open in RStudio. When you call here::here()
it will set your root path to be inside of the iaml folder. Assuming you have a subfolder called homework and a folder within that folder called unit_02
, path_data
will work as set. If you have some other organization, you will need to modify path_data
to reflect that folder structure.
<- "homework/unit_02" path_data
This assignment will use the Ames Housing Prices Dataset (also seen in Unit 2 of the course text).
Read in the ames_raw_class.csv
data below.
<- read_csv(here::here(path_data, "ames_raw_class.csv"),
ames_all col_types = cols()) |>
glimpse()
Rows: 1,955
Columns: 81
$ PID <chr> "0526301100", "0526350040", "0526351010", "052710501…
$ `MS SubClass` <chr> "020", "020", "020", "060", "120", "120", "120", "06…
$ `MS Zoning` <chr> "RL", "RH", "RL", "RL", "RL", "RL", "RL", "RL", "RL"…
$ `Lot Frontage` <dbl> 141, 80, 81, 74, 41, 43, 39, 60, 75, 63, 85, NA, 47,…
$ `Lot Area` <dbl> 31770, 11622, 14267, 13830, 4920, 5005, 5389, 7500, …
$ Street <chr> "Pave", "Pave", "Pave", "Pave", "Pave", "Pave", "Pav…
$ Alley <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
$ `Lot Shape` <chr> "IR1", "Reg", "IR1", "IR1", "Reg", "IR1", "IR1", "Re…
$ `Land Contour` <chr> "Lvl", "Lvl", "Lvl", "Lvl", "Lvl", "HLS", "Lvl", "Lv…
$ Utilities <chr> "AllPub", "AllPub", "AllPub", "AllPub", "AllPub", "A…
$ `Lot Config` <chr> "Corner", "Inside", "Corner", "Inside", "Inside", "I…
$ `Land Slope` <chr> "Gtl", "Gtl", "Gtl", "Gtl", "Gtl", "Gtl", "Gtl", "Gt…
$ Neighborhood <chr> "NAmes", "NAmes", "NAmes", "Gilbert", "StoneBr", "St…
$ `Condition 1` <chr> "Norm", "Feedr", "Norm", "Norm", "Norm", "Norm", "No…
$ `Condition 2` <chr> "Norm", "Norm", "Norm", "Norm", "Norm", "Norm", "Nor…
$ `Bldg Type` <chr> "1Fam", "1Fam", "1Fam", "1Fam", "TwnhsE", "TwnhsE", …
$ `House Style` <chr> "1Story", "1Story", "1Story", "2Story", "1Story", "1…
$ `Overall Qual` <dbl> 6, 5, 6, 5, 8, 8, 8, 7, 6, 6, 7, 8, 8, 8, 9, 4, 6, 6…
$ `Overall Cond` <dbl> 5, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 2, 5, 6, 6…
$ `Year Built` <dbl> 1960, 1961, 1958, 1997, 2001, 1992, 1995, 1999, 1993…
$ `Year Remod/Add` <dbl> 1960, 1961, 1958, 1998, 2001, 1992, 1996, 1999, 1994…
$ `Roof Style` <chr> "Hip", "Gable", "Hip", "Gable", "Gable", "Gable", "G…
$ `Roof Matl` <chr> "CompShg", "CompShg", "CompShg", "CompShg", "CompShg…
$ `Exterior 1st` <chr> "BrkFace", "VinylSd", "Wd Sdng", "VinylSd", "CemntBd…
$ `Exterior 2nd` <chr> "Plywood", "VinylSd", "Wd Sdng", "VinylSd", "CmentBd…
$ `Mas Vnr Type` <chr> "Stone", "None", "BrkFace", "None", "None", "None", …
$ `Mas Vnr Area` <dbl> 112, 0, 108, 0, 0, 0, 0, 0, 0, 0, 0, 0, 603, 0, 350,…
$ `Exter Qual` <chr> "TA", "TA", "TA", "TA", "Gd", "Gd", "Gd", "TA", "TA"…
$ `Exter Cond` <chr> "TA", "TA", "TA", "TA", "TA", "TA", "TA", "TA", "TA"…
$ Foundation <chr> "CBlock", "CBlock", "CBlock", "PConc", "PConc", "PCo…
$ `Bsmt Qual` <chr> "TA", "TA", "TA", "Gd", "Gd", "Gd", "Gd", "TA", "Gd"…
$ `Bsmt Cond` <chr> "Gd", "TA", "TA", "TA", "TA", "TA", "TA", "TA", "TA"…
$ `Bsmt Exposure` <chr> "Gd", "No", "No", "No", "Mn", "No", "No", "No", "No"…
$ `BsmtFin Type 1` <chr> "BLQ", "Rec", "ALQ", "GLQ", "GLQ", "ALQ", "GLQ", "Un…
$ `BsmtFin SF 1` <dbl> 639, 468, 923, 791, 616, 263, 1180, 0, 0, 0, 637, 36…
$ `BsmtFin Type 2` <chr> "Unf", "LwQ", "Unf", "Unf", "Unf", "Unf", "Unf", "Un…
$ `BsmtFin SF 2` <dbl> 0, 144, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1120, 0, 0, 0, 0,…
$ `Bsmt Unf SF` <dbl> 441, 270, 406, 137, 722, 1017, 415, 994, 763, 789, 6…
$ `Total Bsmt SF` <dbl> 1080, 882, 1329, 928, 1338, 1280, 1595, 994, 763, 78…
$ Heating <chr> "GasA", "GasA", "GasA", "GasA", "GasA", "GasA", "Gas…
$ `Heating QC` <chr> "Fa", "TA", "TA", "Gd", "Ex", "Ex", "Ex", "Gd", "Gd"…
$ `Central Air` <chr> "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y…
$ Electrical <chr> "SBrkr", "SBrkr", "SBrkr", "SBrkr", "SBrkr", "SBrkr"…
$ `1st Flr SF` <dbl> 1656, 896, 1329, 928, 1338, 1280, 1616, 1028, 763, 7…
$ `2nd Flr SF` <dbl> 0, 0, 0, 701, 0, 0, 0, 776, 892, 676, 0, 0, 1589, 67…
$ `Low Qual Fin SF` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ `Gr Liv Area` <dbl> 1656, 896, 1329, 1629, 1338, 1280, 1616, 1804, 1655,…
$ `Bsmt Full Bath` <dbl> 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0…
$ `Bsmt Half Bath` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ `Full Bath` <dbl> 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 3, 2, 1, 1, 2, 2…
$ `Half Bath` <dbl> 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0…
$ `Bedroom AbvGr` <dbl> 3, 2, 3, 3, 2, 2, 2, 3, 3, 3, 2, 1, 4, 4, 1, 2, 3, 3…
$ `Kitchen AbvGr` <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
$ `Kitchen Qual` <chr> "TA", "TA", "Gd", "TA", "Gd", "Gd", "Gd", "Gd", "TA"…
$ `TotRms AbvGrd` <dbl> 7, 5, 6, 6, 6, 5, 5, 7, 7, 7, 5, 4, 12, 8, 8, 4, 7, …
$ Functional <chr> "Typ", "Typ", "Typ", "Typ", "Typ", "Typ", "Typ", "Ty…
$ Fireplaces <dbl> 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 2, 1…
$ `Fireplace Qu` <chr> "Gd", NA, NA, "TA", NA, NA, "TA", "TA", "TA", "Gd", …
$ `Garage Type` <chr> "Attchd", "Attchd", "Attchd", "Attchd", "Attchd", "A…
$ `Garage Yr Blt` <dbl> 1960, 1961, 1958, 1997, 2001, 1992, 1995, 1999, 1993…
$ `Garage Finish` <chr> "Fin", "Unf", "Unf", "Fin", "Fin", "RFn", "RFn", "Fi…
$ `Garage Cars` <dbl> 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2…
$ `Garage Area` <dbl> 528, 730, 312, 482, 582, 506, 608, 442, 440, 393, 50…
$ `Garage Qual` <chr> "TA", "TA", "TA", "TA", "TA", "TA", "TA", "TA", "TA"…
$ `Garage Cond` <chr> "TA", "TA", "TA", "TA", "TA", "TA", "TA", "TA", "TA"…
$ `Paved Drive` <chr> "P", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y…
$ `Wood Deck SF` <dbl> 210, 140, 393, 212, 0, 0, 237, 140, 157, 0, 192, 0, …
$ `Open Porch SF` <dbl> 62, 0, 36, 34, 0, 82, 152, 60, 84, 75, 0, 54, 36, 12…
$ `Enclosed Porch` <dbl> 0, 0, 0, 0, 170, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ `3Ssn Porch` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ `Screen Porch` <dbl> 0, 120, 0, 0, 0, 144, 0, 0, 0, 0, 0, 140, 210, 0, 0,…
$ `Pool Area` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ `Pool QC` <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
$ Fence <chr> NA, "MnPrv", NA, "MnPrv", NA, NA, NA, NA, NA, NA, NA…
$ `Misc Feature` <chr> NA, NA, "Gar2", NA, NA, NA, NA, NA, NA, NA, NA, NA, …
$ `Misc Val` <dbl> 0, 0, 12500, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ `Mo Sold` <dbl> 5, 6, 6, 3, 4, 1, 3, 6, 4, 5, 2, 6, 6, 6, 6, 6, 2, 1…
$ `Yr Sold` <dbl> 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010…
$ `Sale Type` <chr> "WD", "WD", "WD", "WD", "WD", "WD", "WD", "WD", "WD"…
$ `Sale Condition` <chr> "Normal", "Normal", "Normal", "Normal", "Normal", "N…
$ SalePrice <dbl> 215000, 105000, 172000, 189900, 213500, 191500, 2365…
Select variables
We explore a different set of variables than those demoed in the course text. select()
from the dataset for the variables below and convert all variable names to “snake_case”:
select()
predictors for this assignment and convert all variable names to snake_case:
SalePrice
, Garage Area
, Neighborhood
, MS SubClass
, Total Bsmt SF
, Bsmt Qual
, Central Air
, TotRms AbvGrd
, Fireplaces
, and Fireplace Qu
.
Notice use of back-tick in the following code chunk for non-standard variable names (i.e., names that aren’t machine readable due to having a space in them).
<- ames_all |>
ames_all select(SalePrice,
`Garage Area`,
`Neighborhood`,
`MS SubClass`,
`Total Bsmt SF`,
`Bsmt Qual`,
`Central Air`,
`TotRms AbvGrd`,
`Fireplaces`,
`Fireplace Qu`) |>
::clean_names("snake") |>
janitormutate(across(where(is.character), factor)) |>
glimpse()
Rows: 1,955
Columns: 10
$ sale_price <dbl> 215000, 105000, 172000, 189900, 213500, 191500, 236500…
$ garage_area <dbl> 528, 730, 312, 482, 582, 506, 608, 442, 440, 393, 506,…
$ neighborhood <fct> NAmes, NAmes, NAmes, Gilbert, StoneBr, StoneBr, StoneB…
$ ms_sub_class <fct> 020, 020, 020, 060, 120, 120, 120, 060, 060, 060, 020,…
$ total_bsmt_sf <dbl> 1080, 882, 1329, 928, 1338, 1280, 1595, 994, 763, 789,…
$ bsmt_qual <fct> TA, TA, TA, Gd, Gd, Gd, Gd, TA, Gd, Gd, Gd, Gd, Gd, Gd…
$ central_air <fct> Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, …
$ tot_rms_abv_grd <dbl> 7, 5, 6, 6, 6, 5, 5, 7, 7, 7, 5, 4, 12, 8, 8, 4, 7, 7,…
$ fireplaces <dbl> 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 2, 1, …
$ fireplace_qu <fct> Gd, NA, NA, TA, NA, NA, TA, TA, TA, Gd, Po, NA, Gd, NA…
Review the data dictionary
Familiarize yourself with the variables we use above by looking each one up in the data dictionary downloaded with your homework files. Reference the codebook frequently as you perform cleaning checks below.
Exploring the data for cleaning
This script should only contain EDA steps necessary for cleaning the full dataset (i.e., not subsets of it that will be allocated for train, validation, or test). Be mindful of which aspects of the data set you explore at this stage to prevent information leakage between later training and validation sets (to be saved out as the final step of cleaning in this document). Provide observations at each stage of the process, even if you do not make any changes.
Remember that you can use glimpse()
, skim_some()
, print()
, head()
, and/or kable tables to explore and display your data. Everything that you need to do has been demonstrated in the web book.
Variable classes
Confirm that all variables are read in as the expected class. Remember that we class nominal and ordinal variables as factors and interval and ratio variables as numeric. Below the code chunk, type some observations you have about the observed variable classes compared to descriptions in the data dictionary. Make any appropriate adjustments to variable class below using mutate()
, factor()
, or as.numeric()
. We did this above when selecting variables
|>
ames_all skim_some()
Name | ames_all |
Number of rows | 1955 |
Number of columns | 10 |
_______________________ | |
Column type frequency: | |
factor | 5 |
numeric | 5 |
________________________ | |
Group variables | None |
Variable type: factor
skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|
neighborhood | 0 | 1.00 | FALSE | 28 | NAm: 299, Col: 174, Old: 161, Edw: 135 |
ms_sub_class | 0 | 1.00 | FALSE | 16 | 020: 730, 060: 388, 050: 208, 120: 122 |
bsmt_qual | 57 | 0.97 | FALSE | 4 | TA: 861, Gd: 808, Ex: 167, Fa: 62 |
central_air | 0 | 1.00 | FALSE | 2 | Y: 1821, N: 134 |
fireplace_qu | 960 | 0.51 | FALSE | 5 | Gd: 481, TA: 407, Fa: 44, Po: 33 |
Variable type: numeric
skim_variable | n_missing | complete_rate | p0 | p100 |
---|---|---|---|---|
sale_price | 0 | 1 | 12789 | 745000 |
garage_area | 1 | 1 | 0 | 1488 |
total_bsmt_sf | 1 | 1 | 0 | 6110 |
tot_rms_abv_grd | 0 | 1 | 3 | 14 |
fireplaces | 0 | 1 | 0 | 3 |
Variable class notes: All variables are either of type factor or of type numeric. We will think more carefully about the factors, etc. in the eda_modeling script. The classes as they were read in match the codebook. Though ms_sub_class
is a character variable containing numeric values, the codebook tells us that these numeric codes are nominal values representing different classes of dwellings, indicating that this variable is best kept as factor.
Missing data
Clearly document missing data (“missingness”) across each variable in the dataset. For variables with high missingness, write code that allows you to visually inspect all observations of missing data. Clean variables with high missingness using mutate()
, replace_na()
, and fct_relevel()
if you believe any of the NAs are not really missing but instead problems with how the data were coded.
|>
ames_all skim_some() |>
select(skim_variable, n_missing, complete_rate) # view missing variables
# A tibble: 10 × 3
skim_variable n_missing complete_rate
<chr> <int> <dbl>
1 neighborhood 0 1
2 ms_sub_class 0 1
3 bsmt_qual 57 0.971
4 central_air 0 1
5 fireplace_qu 960 0.509
6 sale_price 0 1
7 garage_area 1 0.999
8 total_bsmt_sf 1 0.999
9 tot_rms_abv_grd 0 1
10 fireplaces 0 1
|> filter(is.na(bsmt_qual)) |>
ames_all print_kbl()
sale_price | garage_area | neighborhood | ms_sub_class | total_bsmt_sf | bsmt_qual | central_air | tot_rms_abv_grd | fireplaces | fireplace_qu |
---|---|---|---|---|---|---|---|---|---|
112000 | 539 | Sawyer | 090 | 0 | NA | Y | 8 | 0 | NA |
55000 | 0 | IDOTRR | 190 | 0 | NA | N | 7 | 0 | NA |
84900 | 240 | Edwards | 030 | 0 | NA | N | 5 | 0 | NA |
100000 | 0 | Edwards | 090 | 0 | NA | N | 8 | 0 | NA |
160000 | 612 | SawyerW | 090 | 0 | NA | Y | 8 | 2 | TA |
102900 | 616 | NAmes | 020 | 0 | NA | Y | 7 | 0 | NA |
92900 | 400 | NAmes | 090 | 0 | NA | N | 6 | 0 | NA |
45000 | 308 | OldTown | 030 | 0 | NA | N | 4 | 0 | NA |
139600 | 452 | Edwards | 020 | 0 | NA | Y | 8 | 1 | Gd |
122000 | 498 | Edwards | 020 | 0 | NA | Y | 6 | 0 | NA |
84000 | 290 | Edwards | 020 | 0 | NA | N | 5 | 0 | NA |
131000 | 576 | SawyerW | 070 | 0 | NA | Y | 7 | 1 | TA |
118964 | 410 | SawyerW | 090 | 0 | NA | Y | 8 | 0 | NA |
147983 | 720 | SawyerW | 090 | 0 | NA | Y | 8 | 0 | NA |
118858 | 400 | SawyerW | 090 | 0 | NA | Y | 8 | 0 | NA |
142953 | 528 | SawyerW | 090 | 0 | NA | Y | 12 | 0 | NA |
113722 | 400 | SawyerW | 090 | 0 | NA | Y | 8 | 0 | NA |
198500 | 672 | Edwards | 085 | 0 | NA | Y | 7 | 1 | Ex |
98000 | 240 | Edwards | 050 | 0 | NA | N | 9 | 0 | NA |
82000 | 528 | Edwards | 020 | 0 | NA | N | 4 | 0 | NA |
57625 | 280 | IDOTRR | 030 | 0 | NA | N | 4 | 0 | NA |
126000 | 539 | Mitchel | 090 | 0 | NA | Y | 8 | 0 | NA |
72500 | 287 | BrkSide | 020 | 0 | NA | N | 4 | 0 | NA |
89900 | 390 | OldTown | 020 | 0 | NA | N | 3 | 0 | NA |
106250 | 0 | OldTown | 190 | 0 | NA | N | 7 | 0 | NA |
98300 | 420 | NAmes | 020 | 0 | NA | Y | 7 | 0 | NA |
97000 | 308 | OldTown | 020 | 0 | NA | Y | 4 | 0 | NA |
79000 | 280 | BrkSide | 020 | NA | NA | Y | 4 | 0 | NA |
81300 | 164 | BrkSide | 030 | 0 | NA | N | 6 | 0 | NA |
134432 | 680 | ClearCr | 050 | 0 | NA | Y | 7 | 1 | Gd |
82000 | 0 | Edwards | 090 | 0 | NA | N | 6 | 0 | NA |
82000 | 0 | Edwards | 090 | 0 | NA | N | 6 | 0 | NA |
82500 | 0 | Edwards | 090 | 0 | NA | N | 6 | 0 | NA |
96000 | 0 | Edwards | 050 | 0 | NA | Y | 8 | 0 | NA |
13100 | 487 | IDOTRR | 020 | 0 | NA | N | 4 | 0 | NA |
100000 | 484 | Mitchel | 090 | 0 | NA | Y | 8 | 0 | NA |
106500 | 294 | NAmes | 020 | 0 | NA | Y | 5 | 0 | NA |
101800 | 462 | NAmes | 090 | 0 | NA | Y | 6 | 0 | NA |
99000 | 300 | NAmes | 020 | 0 | NA | Y | 7 | 0 | NA |
104500 | 331 | OldTown | 020 | 0 | NA | Y | 5 | 0 | NA |
89500 | 460 | Sawyer | 020 | 0 | NA | N | 5 | 0 | NA |
141000 | 579 | Edwards | 090 | 0 | NA | Y | 11 | 0 | NA |
153500 | 400 | Crawfor | 020 | 0 | NA | Y | 7 | 1 | Gd |
68104 | 256 | IDOTRR | 050 | 0 | NA | Y | 4 | 0 | NA |
130000 | 1041 | Mitchel | 020 | 0 | NA | Y | 9 | 0 | NA |
169000 | 672 | Gilbert | 060 | 0 | NA | Y | 7 | 1 | TA |
157500 | 484 | NAmes | 020 | 0 | NA | Y | 5 | 1 | Gd |
109500 | 625 | NAmes | 020 | 0 | NA | Y | 5 | 0 | NA |
109900 | 420 | NAmes | 020 | 0 | NA | Y | 4 | 0 | NA |
81400 | 400 | NAmes | 090 | 0 | NA | N | 6 | 0 | NA |
87500 | 400 | NAmes | 090 | 0 | NA | N | 6 | 0 | NA |
80500 | 0 | BrkSide | 050 | 0 | NA | N | 3 | 0 | NA |
131000 | 394 | Sawyer | 020 | 0 | NA | Y | 7 | 1 | Gd |
125000 | 260 | Edwards | 030 | 0 | NA | N | 6 | 1 | TA |
135000 | 569 | Edwards | 020 | 0 | NA | Y | 7 | 1 | Ex |
230000 | 312 | GrnHill | 120 | 0 | NA | Y | 5 | 0 | NA |
81500 | 270 | Mitchel | 020 | 0 | NA | Y | 6 | 0 | NA |
|> filter(is.na(fireplace_qu)) |>
ames_all print_kbl()
sale_price | garage_area | neighborhood | ms_sub_class | total_bsmt_sf | bsmt_qual | central_air | tot_rms_abv_grd | fireplaces | fireplace_qu |
---|---|---|---|---|---|---|---|---|---|
105000 | 730 | NAmes | 020 | 882 | TA | Y | 5 | 0 | NA |
172000 | 312 | NAmes | 020 | 1329 | TA | Y | 6 | 0 | NA |
213500 | 582 | StoneBr | 120 | 1338 | Gd | Y | 6 | 0 | NA |
191500 | 506 | StoneBr | 120 | 1280 | Gd | Y | 5 | 0 | NA |
212000 | 528 | StoneBr | 120 | 1488 | Gd | Y | 4 | 0 | NA |
164000 | 492 | Gilbert | 050 | 559 | Gd | Y | 8 | 0 | NA |
141000 | 400 | Gilbert | 020 | 864 | TA | Y | 4 | 0 | NA |
216000 | 663 | Somerst | 060 | 814 | Gd | Y | 7 | 0 | NA |
126000 | 525 | NAmes | 020 | 882 | TA | Y | 4 | 0 | NA |
105500 | 320 | BrDale | 160 | 525 | TA | Y | 6 | 0 | NA |
120000 | 308 | NPkVill | 120 | 836 | Gd | Y | 4 | 0 | NA |
290941 | 868 | NridgHt | 020 | 1544 | Gd | Y | 7 | 0 | NA |
175500 | 474 | NridgHt | 160 | 764 | Gd | Y | 6 | 0 | NA |
160000 | 437 | Blmngtn | 120 | 1145 | Gd | Y | 6 | 0 | NA |
221000 | 486 | NoRidge | 060 | 1195 | Gd | Y | 7 | 0 | NA |
204500 | 676 | Somerst | 020 | 1218 | Gd | Y | 4 | 0 | NA |
233000 | 618 | SawyerW | 060 | 956 | Gd | Y | 8 | 0 | NA |
181000 | 484 | SawyerW | 060 | 831 | Gd | Y | 8 | 0 | NA |
125000 | 264 | SawyerW | 120 | 744 | Gd | Y | 4 | 0 | NA |
194500 | 457 | SawyerW | 060 | 996 | Gd | Y | 7 | 0 | NA |
152000 | 480 | SawyerW | 020 | 1040 | Gd | Y | 6 | 0 | NA |
67500 | 429 | SawyerW | 030 | 816 | TA | N | 5 | 0 | NA |
112000 | 539 | Sawyer | 090 | 0 | NA | Y | 8 | 0 | NA |
148000 | 576 | Sawyer | 085 | 1109 | TA | Y | 6 | 0 | NA |
122000 | 280 | Sawyer | 020 | 882 | TA | Y | 5 | 0 | NA |
127000 | 260 | Sawyer | 020 | 1040 | TA | Y | 6 | 0 | NA |
190000 | 588 | Somerst | 160 | 840 | Gd | Y | 3 | 0 | NA |
151000 | 480 | Somerst | 160 | 600 | Gd | Y | 4 | 0 | NA |
149500 | 480 | Somerst | 160 | 600 | Gd | Y | 4 | 0 | NA |
177500 | 440 | Somerst | 160 | 756 | Gd | Y | 5 | 0 | NA |
218500 | 535 | NWAmes | 020 | 1829 | TA | Y | 8 | 0 | NA |
171000 | 441 | NWAmes | 060 | 715 | TA | Y | 7 | 0 | NA |
142250 | 490 | NAmes | 020 | 1232 | TA | Y | 6 | 0 | NA |
128950 | 0 | NAmes | 020 | 950 | TA | Y | 6 | 0 | NA |
159000 | 504 | NAmes | 020 | 1209 | Gd | Y | 6 | 0 | NA |
178900 | 517 | NAmes | 020 | 1510 | TA | Y | 6 | 0 | NA |
136300 | 480 | NAmes | 080 | 533 | TA | Y | 8 | 0 | NA |
137500 | 480 | NAmes | 085 | 936 | TA | Y | 6 | 0 | NA |
84900 | 0 | NAmes | 090 | 1728 | TA | Y | 10 | 0 | NA |
116500 | 0 | BrkSide | 020 | 858 | TA | Y | 4 | 0 | NA |
76500 | 0 | BrkSide | 030 | 728 | TA | Y | 6 | 0 | NA |
128000 | 280 | NAmes | 020 | 1056 | TA | Y | 6 | 0 | NA |
154300 | 480 | NAmes | 090 | 1105 | TA | Y | 12 | 0 | NA |
135000 | 576 | NAmes | 090 | 1604 | TA | Y | 8 | 0 | NA |
136000 | 308 | NAmes | 020 | 1143 | TA | Y | 6 | 0 | NA |
145000 | 294 | NAmes | 020 | 1314 | TA | Y | 5 | 0 | NA |
148000 | 312 | NAmes | 020 | 1194 | TA | Y | 6 | 0 | NA |
142000 | 531 | NAmes | 020 | 1188 | TA | Y | 6 | 0 | NA |
108538 | 312 | NAmes | 020 | 1206 | TA | Y | 6 | 0 | NA |
135000 | 318 | NAmes | 020 | 864 | TA | Y | 4 | 0 | NA |
122500 | 305 | NAmes | 020 | 972 | TA | Y | 5 | 0 | NA |
105000 | 676 | NAmes | 030 | 576 | TA | Y | 4 | 0 | NA |
144900 | 490 | NAmes | 020 | 1086 | TA | Y | 6 | 0 | NA |
129000 | 308 | NAmes | 020 | 936 | TA | Y | 4 | 0 | NA |
144000 | 576 | OldTown | 090 | 1056 | TA | Y | 4 | 0 | NA |
132000 | 280 | NAmes | 050 | 816 | TA | Y | 5 | 0 | NA |
154000 | 305 | NAmes | 020 | 1246 | TA | Y | 6 | 0 | NA |
134800 | 576 | NAmes | 020 | 900 | TA | Y | 5 | 0 | NA |
148000 | 484 | NAmes | 020 | 1175 | TA | Y | 6 | 0 | NA |
143000 | 551 | OldTown | 020 | 1347 | TA | Y | 6 | 0 | NA |
107400 | 379 | OldTown | 050 | 840 | Fa | N | 8 | 0 | NA |
119000 | 240 | OldTown | 045 | 827 | Gd | Y | 6 | 0 | NA |
100000 | 315 | OldTown | 050 | 1008 | TA | Y | 6 | 0 | NA |
105900 | 484 | OldTown | 030 | 624 | TA | Y | 5 | 0 | NA |
139000 | 416 | OldTown | 050 | 686 | Fa | Y | 7 | 0 | NA |
240000 | 624 | OldTown | 070 | 346 | Fa | Y | 7 | 0 | NA |
76500 | 0 | OldTown | 190 | 840 | TA | N | 12 | 0 | NA |
149700 | 923 | OldTown | 020 | 912 | TA | Y | 6 | 0 | NA |
140750 | 624 | OldTown | 070 | 738 | Fa | Y | 6 | 0 | NA |
128500 | 363 | BrkSide | 050 | 988 | TA | Y | 7 | 0 | NA |
134000 | 240 | BrkSide | 050 | 608 | TA | Y | 5 | 0 | NA |
139900 | 312 | BrkSide | 050 | 780 | TA | Y | 6 | 0 | NA |
123900 | 624 | BrkSide | 050 | 528 | TA | Y | 5 | 0 | NA |
159900 | 0 | OldTown | 070 | 780 | TA | Y | 7 | 0 | NA |
122000 | 180 | OldTown | 070 | 662 | TA | Y | 6 | 0 | NA |
110000 | 516 | IDOTRR | 090 | 816 | Gd | N | 5 | 0 | NA |
55000 | 0 | IDOTRR | 190 | 0 | NA | N | 7 | 0 | NA |
107500 | 180 | ClearCr | 050 | 689 | Gd | N | 6 | 0 | NA |
95000 | 231 | SWISU | 050 | 600 | Fa | N | 5 | 0 | NA |
93369 | 0 | SWISU | 070 | 707 | TA | N | 7 | 0 | NA |
94000 | 0 | Sawyer | 050 | 780 | TA | N | 6 | 0 | NA |
136000 | 0 | Sawyer | 090 | 1832 | TA | N | 8 | 0 | NA |
158000 | 299 | Sawyer | 060 | 663 | TA | Y | 7 | 0 | NA |
85000 | 440 | Sawyer | 030 | 660 | Fa | N | 4 | 0 | NA |
128000 | 436 | Sawyer | 020 | 1067 | Gd | Y | 4 | 0 | NA |
83000 | 366 | Edwards | 030 | 458 | TA | N | 5 | 0 | NA |
129000 | 596 | Edwards | 020 | 1144 | TA | Y | 6 | 0 | NA |
114000 | 504 | Edwards | 020 | 1250 | TA | Y | 5 | 0 | NA |
147000 | 564 | SawyerW | 085 | 936 | Gd | Y | 5 | 0 | NA |
245350 | 776 | CollgCr | 020 | 1694 | Gd | Y | 7 | 0 | NA |
206000 | 632 | CollgCr | 020 | 1187 | Gd | Y | 6 | 0 | NA |
198900 | 740 | CollgCr | 020 | 1226 | Gd | Y | 6 | 0 | NA |
187000 | 615 | CollgCr | 020 | 1222 | Gd | Y | 6 | 0 | NA |
200500 | 523 | CollgCr | 060 | 804 | Gd | Y | 7 | 0 | NA |
150000 | 308 | CollgCr | 020 | 1026 | Gd | Y | 5 | 0 | NA |
161750 | 299 | CollgCr | 060 | 689 | Gd | Y | 6 | 0 | NA |
127000 | 484 | CollgCr | 020 | 876 | TA | Y | 5 | 0 | NA |
224900 | 598 | CollgCr | 020 | 1649 | Gd | Y | 6 | 0 | NA |
213000 | 606 | CollgCr | 020 | 1473 | Gd | Y | 7 | 0 | NA |
84900 | 240 | Edwards | 030 | 0 | NA | N | 5 | 0 | NA |
155891 | 319 | Edwards | 020 | 381 | Fa | Y | 6 | 0 | NA |
100000 | 0 | Edwards | 090 | 0 | NA | N | 8 | 0 | NA |
144000 | 336 | Edwards | 020 | 1196 | Gd | Y | 6 | 0 | NA |
90000 | 0 | Edwards | 020 | 960 | TA | Y | 5 | 0 | NA |
140000 | 440 | Edwards | 020 | 1121 | Gd | Y | 5 | 0 | NA |
80000 | 280 | Edwards | 190 | 672 | Gd | N | 5 | 0 | NA |
58500 | 200 | Edwards | 030 | 864 | TA | N | 5 | 0 | NA |
215000 | 484 | Crawfor | 090 | 1032 | TA | Y | 11 | 0 | NA |
203135 | 473 | Crawfor | 080 | 423 | Gd | Y | 6 | 0 | NA |
82000 | 200 | IDOTRR | 030 | 480 | TA | Y | 4 | 0 | NA |
68400 | 528 | IDOTRR | 050 | 698 | TA | Y | 6 | 0 | NA |
102776 | 384 | IDOTRR | 050 | 859 | TA | Y | 7 | 0 | NA |
55993 | 504 | IDOTRR | 020 | 540 | TA | N | 4 | 0 | NA |
50138 | 330 | IDOTRR | 030 | 756 | TA | Y | 5 | 0 | NA |
201000 | 573 | Mitchel | 020 | 1560 | Ex | Y | 7 | 0 | NA |
170000 | 776 | Mitchel | 090 | 1958 | TA | Y | 9 | 0 | NA |
179781 | 520 | Timber | 020 | 1214 | Gd | Y | 6 | 0 | NA |
174000 | 400 | Timber | 060 | 384 | Gd | Y | 7 | 0 | NA |
139000 | 0 | Mitchel | 090 | 912 | TA | Y | 8 | 0 | NA |
83500 | 286 | MeadowV | 160 | 546 | TA | Y | 6 | 0 | NA |
85000 | 336 | MeadowV | 160 | 536 | Gd | Y | 4 | 0 | NA |
76000 | 0 | MeadowV | 160 | 546 | TA | Y | 5 | 0 | NA |
75500 | 0 | MeadowV | 180 | 630 | Gd | Y | 3 | 0 | NA |
88250 | 0 | MeadowV | 160 | 546 | TA | Y | 5 | 0 | NA |
85500 | 286 | MeadowV | 160 | 546 | TA | Y | 5 | 0 | NA |
157900 | 312 | Mitchel | 020 | 1188 | TA | Y | 6 | 0 | NA |
159000 | 616 | Mitchel | 090 | 1216 | TA | Y | 10 | 0 | NA |
136000 | 576 | Mitchel | 060 | 624 | Gd | Y | 6 | 0 | NA |
161000 | 275 | Mitchel | 050 | 864 | TA | Y | 8 | 0 | NA |
124500 | 502 | NAmes | 020 | 882 | Fa | Y | 5 | 0 | NA |
240000 | 495 | StoneBr | 120 | 1418 | Gd | Y | 5 | 0 | NA |
239500 | 528 | StoneBr | 120 | 1587 | Gd | Y | 6 | 0 | NA |
180500 | 500 | Gilbert | 020 | 1424 | Gd | Y | 5 | 0 | NA |
136000 | 0 | NAmes | 090 | 896 | Gd | Y | 8 | 0 | NA |
128000 | 477 | NAmes | 020 | 1180 | TA | Y | 6 | 0 | NA |
143000 | 336 | NAmes | 020 | 1043 | Gd | Y | 6 | 0 | NA |
120500 | 660 | NAmes | 020 | 864 | TA | Y | 5 | 0 | NA |
124500 | 463 | NAmes | 020 | 864 | TA | Y | 5 | 0 | NA |
97000 | 576 | NAmes | 020 | 864 | TA | Y | 4 | 0 | NA |
111000 | 264 | BrDale | 160 | 483 | TA | Y | 5 | 0 | NA |
112000 | 280 | BrDale | 160 | 630 | TA | Y | 6 | 0 | NA |
97000 | 288 | BrDale | 160 | 483 | TA | Y | 5 | 0 | NA |
119500 | 264 | BrDale | 160 | 630 | TA | Y | 6 | 0 | NA |
100000 | 288 | NAmes | 020 | 892 | TA | Y | 5 | 0 | NA |
233170 | 644 | NridgHt | 020 | 1502 | Gd | Y | 7 | 0 | NA |
167000 | 400 | Gilbert | 080 | 384 | Gd | Y | 7 | 0 | NA |
275000 | 972 | Somerst | 020 | 1696 | Gd | Y | 7 | 0 | NA |
210000 | 676 | Somerst | 060 | 768 | Gd | Y | 6 | 0 | NA |
225000 | 529 | Somerst | 020 | 1436 | Ex | Y | 6 | 0 | NA |
229800 | 625 | Somerst | 020 | 1402 | Gd | Y | 7 | 0 | NA |
241000 | 438 | Somerst | 060 | 1092 | Gd | Y | 7 | 0 | NA |
185000 | 400 | Somerst | 020 | 1221 | Gd | Y | 6 | 0 | NA |
234500 | 588 | Somerst | 020 | 1553 | Gd | Y | 6 | 0 | NA |
203000 | 845 | SawyerW | 020 | 1512 | Gd | Y | 6 | 0 | NA |
184900 | 555 | SawyerW | 020 | 1176 | Gd | Y | 5 | 0 | NA |
159000 | 576 | SawyerW | 020 | 1114 | Gd | Y | 6 | 0 | NA |
142000 | 0 | SawyerW | 020 | 1114 | Gd | Y | 6 | 0 | NA |
224243 | 788 | SawyerW | 020 | 1450 | Gd | Y | 6 | 0 | NA |
171500 | 528 | SawyerW | 060 | 816 | Gd | Y | 6 | 0 | NA |
145000 | 542 | SawyerW | 120 | 1332 | Gd | Y | 5 | 0 | NA |
184000 | 495 | SawyerW | 060 | 754 | Gd | Y | 6 | 0 | NA |
162000 | 465 | SawyerW | 060 | 676 | Gd | Y | 6 | 0 | NA |
135000 | 484 | Sawyer | 020 | 980 | TA | Y | 6 | 0 | NA |
141000 | 732 | Sawyer | 020 | 864 | TA | Y | 5 | 0 | NA |
122000 | 440 | Sawyer | 020 | 864 | TA | Y | 5 | 0 | NA |
124100 | 288 | Sawyer | 020 | 1024 | TA | Y | 5 | 0 | NA |
123000 | 252 | Sawyer | 020 | 912 | TA | Y | 6 | 0 | NA |
164500 | 528 | Somerst | 160 | 612 | Gd | Y | 4 | 0 | NA |
172500 | 440 | Somerst | 160 | 729 | Gd | Y | 6 | 0 | NA |
180000 | 440 | Somerst | 160 | 756 | Gd | Y | 4 | 0 | NA |
241600 | 540 | Veenker | 020 | 1740 | Gd | Y | 7 | 0 | NA |
154000 | 441 | NWAmes | 060 | 727 | TA | Y | 8 | 0 | NA |
113000 | 336 | NWAmes | 020 | 1216 | TA | Y | 5 | 0 | NA |
227000 | 528 | NWAmes | 060 | 810 | Gd | Y | 6 | 0 | NA |
130000 | 312 | NAmes | 020 | 864 | TA | Y | 5 | 0 | NA |
143000 | 440 | NAmes | 020 | 1568 | TA | Y | 7 | 0 | NA |
118000 | 308 | NAmes | 020 | 864 | TA | Y | 5 | 0 | NA |
167000 | 472 | NAmes | 020 | 1516 | TA | Y | 6 | 0 | NA |
124500 | 270 | NAmes | 020 | 1041 | TA | Y | 6 | 0 | NA |
82500 | 0 | BrkSide | 030 | 420 | TA | Y | 5 | 0 | NA |
175000 | 550 | NAmes | 020 | 1680 | TA | Y | 5 | 0 | NA |
128900 | 338 | NAmes | 020 | 1050 | TA | Y | 5 | 0 | NA |
140000 | 271 | NAmes | 050 | 856 | TA | Y | 6 | 0 | NA |
124000 | 792 | NAmes | 090 | 1584 | TA | Y | 8 | 0 | NA |
150000 | 286 | NAmes | 020 | 1169 | TA | Y | 6 | 0 | NA |
155000 | 297 | NAmes | 020 | 1215 | TA | Y | 6 | 0 | NA |
120000 | 304 | NAmes | 020 | 1202 | TA | Y | 6 | 0 | NA |
153000 | 350 | NAmes | 020 | 1382 | TA | Y | 6 | 0 | NA |
131000 | 297 | NAmes | 020 | 1062 | TA | Y | 6 | 0 | NA |
123000 | 270 | NAmes | 020 | 608 | TA | Y | 5 | 0 | NA |
145500 | 230 | NAmes | 020 | 1031 | TA | Y | 5 | 0 | NA |
102900 | 616 | NAmes | 020 | 0 | NA | Y | 7 | 0 | NA |
95000 | 420 | OldTown | 190 | 978 | Fa | Y | 7 | 0 | NA |
129900 | 246 | NAmes | 020 | 1200 | TA | Y | 6 | 0 | NA |
99900 | 366 | OldTown | 020 | 792 | TA | Y | 4 | 0 | NA |
135000 | 180 | OldTown | 050 | 660 | Fa | Y | 8 | 0 | NA |
109500 | 240 | OldTown | 030 | 768 | TA | Y | 5 | 0 | NA |
105000 | 338 | OldTown | 050 | 840 | TA | Y | 6 | 0 | NA |
78500 | 320 | OldTown | 030 | 630 | TA | Y | 4 | 0 | NA |
190000 | 907 | NAmes | 090 | 1248 | TA | Y | 12 | 0 | NA |
154000 | 364 | NAmes | 020 | 1380 | TA | Y | 6 | 0 | NA |
200000 | 968 | NAmes | 090 | 1248 | TA | Y | 12 | 0 | NA |
143500 | 480 | NAmes | 020 | 951 | TA | Y | 6 | 0 | NA |
135000 | 308 | NAmes | 020 | 1105 | TA | Y | 5 | 0 | NA |
153000 | 756 | NAmes | 020 | 992 | TA | Y | 5 | 0 | NA |
92900 | 400 | NAmes | 090 | 0 | NA | N | 6 | 0 | NA |
128500 | 900 | NAmes | 050 | 795 | TA | N | 5 | 0 | NA |
138000 | 240 | NAmes | 050 | 1208 | TA | Y | 7 | 0 | NA |
128000 | 294 | NAmes | 020 | 1041 | TA | Y | 6 | 0 | NA |
139000 | 294 | NAmes | 020 | 1029 | TA | Y | 6 | 0 | NA |
138000 | 288 | NAmes | 080 | 528 | Gd | Y | 6 | 0 | NA |
132500 | 672 | NAmes | 020 | 1148 | TA | Y | 6 | 0 | NA |
133500 | 384 | NAmes | 050 | 832 | TA | Y | 6 | 0 | NA |
135000 | 576 | NAmes | 050 | 864 | TA | Y | 6 | 0 | NA |
144750 | 483 | NAmes | 060 | 780 | TA | Y | 8 | 0 | NA |
109500 | 308 | NAmes | 020 | 894 | TA | N | 5 | 0 | NA |
110000 | 440 | OldTown | 050 | 440 | TA | Y | 5 | 0 | NA |
128900 | 162 | OldTown | 050 | 901 | TA | Y | 6 | 0 | NA |
130000 | 472 | OldTown | 050 | 240 | TA | Y | 6 | 0 | NA |
129000 | 0 | OldTown | 070 | 504 | TA | Y | 7 | 0 | NA |
94550 | 0 | OldTown | 190 | 600 | Fa | N | 8 | 0 | NA |
124500 | 400 | OldTown | 090 | 960 | TA | Y | 10 | 0 | NA |
103000 | 0 | OldTown | 050 | 801 | Fa | N | 6 | 0 | NA |
129500 | 308 | OldTown | 050 | 768 | TA | Y | 6 | 0 | NA |
93000 | 256 | OldTown | 190 | 811 | TA | Y | 7 | 0 | NA |
80000 | 288 | OldTown | 030 | 861 | Fa | Y | 5 | 0 | NA |
45000 | 308 | OldTown | 030 | 0 | NA | N | 4 | 0 | NA |
37900 | 0 | OldTown | 050 | 600 | TA | N | 6 | 0 | NA |
99500 | 287 | OldTown | 030 | 624 | Fa | Y | 5 | 0 | NA |
113000 | 0 | OldTown | 190 | 736 | TA | Y | 8 | 0 | NA |
110000 | 240 | OldTown | 050 | 720 | TA | Y | 5 | 0 | NA |
160000 | 357 | OldTown | 070 | 917 | Fa | Y | 8 | 0 | NA |
124900 | 456 | OldTown | 050 | 1088 | TA | Y | 7 | 0 | NA |
146500 | 640 | OldTown | 070 | 741 | TA | Y | 8 | 0 | NA |
34900 | 0 | IDOTRR | 030 | 720 | TA | N | 4 | 0 | NA |
128000 | 240 | BrkSide | 050 | 672 | TA | Y | 6 | 0 | NA |
119000 | 180 | BrkSide | 045 | 884 | TA | Y | 4 | 0 | NA |
100000 | 440 | BrkSide | 030 | 1145 | TA | Y | 5 | 0 | NA |
141500 | 576 | BrkSide | 050 | 927 | TA | Y | 5 | 0 | NA |
133000 | 240 | BrkSide | 050 | 884 | TA | Y | 6 | 0 | NA |
105000 | 180 | BrkSide | 030 | 715 | TA | Y | 5 | 0 | NA |
115000 | 264 | BrkSide | 030 | 960 | TA | Y | 5 | 0 | NA |
214500 | 441 | BrkSide | 075 | 844 | TA | N | 10 | 0 | NA |
155000 | 576 | OldTown | 070 | 1048 | TA | Y | 8 | 0 | NA |
179900 | 216 | OldTown | 070 | 672 | TA | Y | 8 | 0 | NA |
62500 | 0 | OldTown | 090 | 1040 | TA | N | 11 | 0 | NA |
103000 | 539 | IDOTRR | 030 | 780 | TA | Y | 5 | 0 | NA |
97500 | 0 | OldTown | 190 | 1020 | TA | N | 9 | 0 | NA |
70000 | 0 | IDOTRR | 085 | 858 | Gd | Y | 5 | 0 | NA |
179000 | 0 | Edwards | 090 | 1200 | Gd | Y | 5 | 0 | NA |
179000 | 0 | Edwards | 090 | 1200 | Gd | Y | 5 | 0 | NA |
61000 | 0 | Edwards | 030 | 683 | Fa | N | 4 | 0 | NA |
63000 | 226 | Edwards | 050 | 585 | TA | N | 6 | 0 | NA |
139000 | 480 | Sawyer | 020 | 1121 | TA | Y | 5 | 0 | NA |
135000 | 284 | Edwards | 020 | 1134 | TA | Y | 6 | 0 | NA |
82500 | 539 | Edwards | 030 | 861 | TA | Y | 4 | 0 | NA |
122000 | 498 | Edwards | 020 | 0 | NA | Y | 6 | 0 | NA |
84000 | 290 | Edwards | 020 | 0 | NA | N | 5 | 0 | NA |
139500 | 266 | Edwards | 120 | 1049 | Gd | Y | 5 | 0 | NA |
105000 | 280 | Edwards | 050 | 560 | TA | Y | 6 | 0 | NA |
118964 | 410 | SawyerW | 090 | 0 | NA | Y | 8 | 0 | NA |
147983 | 720 | SawyerW | 090 | 0 | NA | Y | 8 | 0 | NA |
118858 | 400 | SawyerW | 090 | 0 | NA | Y | 8 | 0 | NA |
142953 | 528 | SawyerW | 090 | 0 | NA | Y | 12 | 0 | NA |
113722 | 400 | SawyerW | 090 | 0 | NA | Y | 8 | 0 | NA |
239000 | 702 | CollgCr | 020 | 1800 | Ex | Y | 7 | 0 | NA |
221800 | 810 | CollgCr | 020 | 1254 | Gd | Y | 5 | 0 | NA |
194500 | 632 | CollgCr | 020 | 1232 | Gd | Y | 6 | 0 | NA |
152000 | 576 | CollgCr | 020 | 1040 | Gd | Y | 6 | 0 | NA |
138000 | 480 | CollgCr | 020 | 990 | Gd | Y | 5 | 0 | NA |
197900 | 546 | CollgCr | 060 | 866 | Gd | Y | 6 | 0 | NA |
204000 | 577 | CollgCr | 020 | 1490 | Gd | Y | 6 | 0 | NA |
192000 | 666 | CollgCr | 020 | 1431 | Gd | Y | 6 | 0 | NA |
195000 | 493 | CollgCr | 060 | 831 | Gd | Y | 7 | 0 | NA |
227000 | 544 | CollgCr | 020 | 1573 | Gd | Y | 6 | 0 | NA |
230000 | 622 | CollgCr | 060 | 944 | Gd | Y | 6 | 0 | NA |
187100 | 605 | CollgCr | 020 | 1413 | Gd | Y | 6 | 0 | NA |
203000 | 577 | CollgCr | 020 | 1431 | Gd | Y | 6 | 0 | NA |
134900 | 444 | CollgCr | 020 | 914 | TA | Y | 5 | 0 | NA |
150500 | 484 | CollgCr | 020 | 1040 | Gd | Y | 5 | 0 | NA |
136500 | 336 | CollgCr | 020 | 864 | TA | Y | 6 | 0 | NA |
133900 | 396 | CollgCr | 085 | 768 | Gd | Y | 5 | 0 | NA |
133000 | 396 | CollgCr | 085 | 768 | Gd | Y | 5 | 0 | NA |
250000 | 1231 | CollgCr | 020 | 1569 | Gd | Y | 6 | 0 | NA |
198500 | 550 | CollgCr | 060 | 840 | Gd | Y | 6 | 0 | NA |
211000 | 608 | CollgCr | 060 | 944 | Gd | Y | 6 | 0 | NA |
219500 | 645 | CollgCr | 060 | 1057 | Gd | Y | 8 | 0 | NA |
178000 | 573 | CollgCr | 020 | 1212 | Gd | Y | 6 | 0 | NA |
140000 | 420 | CollgCr | 120 | 848 | Gd | Y | 4 | 0 | NA |
190000 | 572 | CollgCr | 060 | 864 | Gd | Y | 7 | 0 | NA |
190000 | 570 | CollgCr | 020 | 1500 | Gd | Y | 6 | 0 | NA |
167000 | 480 | Edwards | 020 | 1486 | TA | Y | 7 | 0 | NA |
145500 | 525 | Edwards | 180 | 547 | Gd | Y | 5 | 0 | NA |
118000 | 0 | Edwards | 020 | 698 | TA | Y | 4 | 0 | NA |
85000 | 320 | Edwards | 020 | 876 | TA | Y | 5 | 0 | NA |
120000 | 195 | Edwards | 020 | 1078 | Fa | Y | 6 | 0 | NA |
98000 | 240 | Edwards | 050 | 0 | NA | N | 9 | 0 | NA |
99900 | 0 | Edwards | 030 | 864 | Fa | Y | 4 | 0 | NA |
82000 | 528 | Edwards | 020 | 0 | NA | N | 4 | 0 | NA |
119900 | 0 | Edwards | 090 | 1678 | TA | Y | 10 | 0 | NA |
110000 | 528 | Edwards | 050 | 684 | TA | Y | 7 | 0 | NA |
117000 | 660 | Edwards | 050 | 984 | TA | Y | 6 | 0 | NA |
159434 | 281 | SWISU | 050 | 793 | TA | Y | 6 | 0 | NA |
60000 | 246 | SWISU | 030 | 290 | TA | N | 3 | 0 | NA |
155000 | 576 | SWISU | 070 | 560 | Gd | Y | 6 | 0 | NA |
163500 | 432 | Crawfor | 030 | 876 | Gd | Y | 5 | 0 | NA |
147000 | 468 | IDOTRR | 070 | 672 | TA | Y | 6 | 0 | NA |
123000 | 576 | IDOTRR | 070 | 760 | TA | N | 11 | 0 | NA |
78000 | 189 | IDOTRR | 070 | 596 | TA | N | 6 | 0 | NA |
75000 | 200 | IDOTRR | 030 | 572 | TA | N | 4 | 0 | NA |
57625 | 280 | IDOTRR | 030 | 0 | NA | N | 4 | 0 | NA |
126000 | 539 | Mitchel | 090 | 0 | NA | Y | 8 | 0 | NA |
152000 | 672 | Mitchel | 020 | 1582 | Gd | Y | 5 | 0 | NA |
224500 | 650 | Timber | 060 | 846 | Ex | Y | 6 | 0 | NA |
170000 | 486 | Timber | 060 | 912 | Gd | Y | 9 | 0 | NA |
139500 | 384 | Mitchel | 020 | 1008 | TA | Y | 6 | 0 | NA |
130000 | 288 | Mitchel | 020 | 864 | TA | Y | 5 | 0 | NA |
80000 | 286 | MeadowV | 180 | 630 | Gd | Y | 3 | 0 | NA |
88000 | 286 | MeadowV | 160 | 546 | TA | Y | 6 | 0 | NA |
131900 | 336 | Mitchel | 085 | 796 | Gd | Y | 4 | 0 | NA |
112000 | 0 | Mitchel | 020 | 833 | TA | Y | 5 | 0 | NA |
143000 | 480 | Mitchel | 050 | 796 | Gd | Y | 5 | 0 | NA |
130000 | 440 | Mitchel | 060 | 624 | Gd | Y | 6 | 0 | NA |
177900 | 404 | Gilbert | 020 | 1348 | Gd | Y | 7 | 0 | NA |
180000 | 506 | StoneBr | 120 | 1280 | Gd | Y | 5 | 0 | NA |
181900 | 598 | NWAmes | 020 | 1260 | Gd | Y | 6 | 0 | NA |
175000 | 540 | NWAmes | 020 | 1126 | Gd | Y | 6 | 0 | NA |
133000 | 480 | NAmes | 090 | 896 | Gd | Y | 8 | 0 | NA |
151000 | 460 | NAmes | 020 | 1054 | Gd | Y | 6 | 0 | NA |
111900 | 288 | NAmes | 020 | 936 | Gd | Y | 4 | 0 | NA |
123000 | 576 | NAmes | 020 | 864 | Gd | Y | 5 | 0 | NA |
103400 | 264 | BrDale | 160 | 483 | TA | Y | 5 | 0 | NA |
100000 | 264 | BrDale | 160 | 483 | TA | Y | 5 | 0 | NA |
100500 | 352 | BrDale | 160 | 483 | TA | Y | 5 | 0 | NA |
106000 | 280 | BrDale | 160 | 483 | TA | Y | 5 | 0 | NA |
89500 | 264 | BrDale | 160 | 483 | TA | Y | 5 | 0 | NA |
111750 | 264 | BrDale | 160 | 630 | TA | Y | 6 | 0 | NA |
140000 | 440 | NPkVill | 120 | 1069 | Gd | Y | 4 | 0 | NA |
143000 | 460 | NPkVill | 160 | 855 | Gd | Y | 7 | 0 | NA |
110000 | 264 | NAmes | 020 | 864 | TA | Y | 5 | 0 | NA |
317500 | 905 | NridgHt | 020 | 1582 | Ex | Y | 7 | 0 | NA |
155000 | 474 | NridgHt | 160 | 764 | Gd | Y | 6 | 0 | NA |
154000 | 474 | NridgHt | 160 | 764 | Gd | Y | 6 | 0 | NA |
190000 | 400 | Gilbert | 080 | 856 | Gd | Y | 5 | 0 | NA |
176000 | 400 | Gilbert | 060 | 728 | Gd | Y | 8 | 0 | NA |
227680 | 554 | Somerst | 020 | 1417 | Gd | Y | 6 | 0 | NA |
212700 | 588 | Somerst | 020 | 1363 | Gd | Y | 6 | 0 | NA |
250580 | 529 | Somerst | 020 | 1372 | Ex | Y | 6 | 0 | NA |
182000 | 480 | Somerst | 020 | 1428 | Gd | Y | 6 | 0 | NA |
226700 | 603 | Somerst | 060 | 866 | Gd | Y | 7 | 0 | NA |
205950 | 562 | Somerst | 060 | 813 | Gd | Y | 7 | 0 | NA |
207500 | 673 | Somerst | 060 | 864 | Gd | Y | 7 | 0 | NA |
141000 | 0 | SawyerW | 020 | 1080 | Gd | Y | 6 | 0 | NA |
159000 | 576 | SawyerW | 020 | 1114 | TA | Y | 6 | 0 | NA |
155000 | 576 | SawyerW | 020 | 1114 | Gd | Y | 6 | 0 | NA |
173000 | 520 | SawyerW | 060 | 798 | Gd | Y | 6 | 0 | NA |
170000 | 483 | SawyerW | 020 | 1162 | Gd | Y | 6 | 0 | NA |
182000 | 525 | SawyerW | 060 | 754 | Gd | Y | 6 | 0 | NA |
163000 | 474 | SawyerW | 060 | 886 | Gd | Y | 7 | 0 | NA |
190500 | 627 | SawyerW | 060 | 827 | Gd | Y | 7 | 0 | NA |
179200 | 496 | SawyerW | 020 | 1278 | Gd | Y | 6 | 0 | NA |
153900 | 530 | SawyerW | 120 | 1199 | Gd | Y | 5 | 0 | NA |
144000 | 352 | Sawyer | 020 | 912 | TA | Y | 4 | 0 | NA |
119916 | 276 | Sawyer | 020 | 864 | Gd | Y | 5 | 0 | NA |
196000 | 530 | Somerst | 120 | 1391 | Gd | Y | 5 | 0 | NA |
171900 | 625 | Somerst | 160 | 625 | Gd | Y | 5 | 0 | NA |
178000 | 495 | Somerst | 120 | 1235 | Gd | Y | 5 | 0 | NA |
146000 | 540 | Somerst | 160 | 689 | Gd | Y | 5 | 0 | NA |
172900 | 440 | Somerst | 160 | 744 | Gd | Y | 6 | 0 | NA |
170000 | 462 | Somerst | 160 | 672 | Gd | Y | 5 | 0 | NA |
200000 | 480 | Somerst | 160 | 960 | Gd | Y | 7 | 0 | NA |
162500 | 516 | Veenker | 020 | 1232 | Gd | Y | 6 | 0 | NA |
183000 | 516 | NWAmes | 080 | 1427 | TA | Y | 7 | 0 | NA |
145000 | 528 | NWAmes | 020 | 1258 | TA | Y | 5 | 0 | NA |
140500 | 484 | NWAmes | 090 | 1625 | TA | Y | 8 | 0 | NA |
141000 | 470 | NAmes | 060 | 732 | TA | Y | 7 | 0 | NA |
147000 | 576 | NAmes | 020 | 912 | TA | Y | 5 | 0 | NA |
135000 | 576 | NAmes | 020 | 912 | TA | Y | 5 | 0 | NA |
142600 | 576 | NAmes | 090 | 1728 | TA | Y | 10 | 0 | NA |
135000 | 506 | NWAmes | 090 | 1656 | TA | Y | 8 | 0 | NA |
170000 | 464 | NWAmes | 060 | 825 | Gd | Y | 7 | 0 | NA |
173000 | 484 | NWAmes | 060 | 800 | TA | Y | 7 | 0 | NA |
178400 | 588 | NAmes | 085 | 944 | TA | Y | 6 | 0 | NA |
109008 | 352 | NAmes | 020 | 907 | TA | Y | 5 | 0 | NA |
155000 | 525 | NAmes | 020 | 1120 | TA | Y | 6 | 0 | NA |
174900 | 490 | NAmes | 080 | 1127 | TA | Y | 6 | 0 | NA |
145000 | 504 | NAmes | 020 | 1092 | Gd | Y | 6 | 0 | NA |
168500 | 520 | NAmes | 080 | 1248 | TA | Y | 6 | 0 | NA |
140000 | 451 | NAmes | 020 | 1114 | TA | Y | 5 | 0 | NA |
142000 | 528 | NAmes | 020 | 1252 | TA | Y | 7 | 0 | NA |
153000 | 264 | NAmes | 020 | 1118 | TA | Y | 6 | 0 | NA |
72500 | 287 | BrkSide | 020 | 0 | NA | N | 4 | 0 | NA |
87000 | 231 | BrkSide | 070 | 348 | TA | Y | 5 | 0 | NA |
141500 | 450 | NAmes | 020 | 1296 | TA | Y | 6 | 0 | NA |
119000 | 288 | NAmes | 050 | 1032 | TA | Y | 6 | 0 | NA |
112900 | 312 | NAmes | 020 | 1036 | TA | Y | 5 | 0 | NA |
124000 | 336 | NAmes | 020 | 1144 | TA | Y | 6 | 0 | NA |
140000 | 506 | NAmes | 020 | 931 | TA | Y | 6 | 0 | NA |
136000 | 288 | NAmes | 020 | 1080 | TA | Y | 5 | 0 | NA |
133000 | 384 | NAmes | 020 | 1104 | TA | Y | 5 | 0 | NA |
116000 | 240 | NAmes | 020 | 720 | TA | Y | 4 | 0 | NA |
137500 | 636 | NAmes | 020 | 1152 | TA | Y | 6 | 0 | NA |
130000 | 400 | NAmes | 020 | 984 | TA | N | 5 | 0 | NA |
89900 | 390 | OldTown | 020 | 0 | NA | N | 3 | 0 | NA |
114000 | 288 | OldTown | 050 | 747 | TA | Y | 5 | 0 | NA |
86900 | 308 | OldTown | 030 | 672 | TA | Y | 4 | 0 | NA |
106250 | 0 | OldTown | 190 | 0 | NA | N | 7 | 0 | NA |
98300 | 420 | NAmes | 020 | 0 | NA | Y | 7 | 0 | NA |
159000 | 311 | NAmes | 020 | 1256 | TA | Y | 6 | 0 | NA |
125900 | 299 | NAmes | 020 | 1027 | TA | Y | 6 | 0 | NA |
138000 | 576 | NAmes | 050 | 768 | TA | Y | 5 | 0 | NA |
112500 | 280 | NAmes | 045 | 936 | TA | Y | 4 | 0 | NA |
105500 | 528 | NAmes | 045 | 832 | TA | Y | 4 | 0 | NA |
130000 | 0 | NAmes | 090 | 1800 | TA | N | 10 | 0 | NA |
150000 | 480 | NAmes | 050 | 768 | TA | Y | 6 | 0 | NA |
109500 | 350 | NAmes | 020 | 825 | TA | Y | 4 | 0 | NA |
167900 | 442 | NAmes | 060 | 780 | TA | Y | 7 | 0 | NA |
136870 | 264 | NAmes | 020 | 1117 | TA | Y | 6 | 0 | NA |
143000 | 308 | OldTown | 020 | 192 | TA | N | 7 | 0 | NA |
73000 | 504 | OldTown | 030 | 680 | Fa | N | 4 | 0 | NA |
122600 | 400 | OldTown | 050 | 780 | TA | Y | 6 | 0 | NA |
111000 | 330 | OldTown | 070 | 680 | TA | N | 6 | 0 | NA |
64000 | 256 | OldTown | 030 | 672 | Fa | Y | 4 | 0 | NA |
139500 | 308 | OldTown | 075 | 728 | TA | Y | 7 | 0 | NA |
200000 | 484 | OldTown | 050 | 1362 | Gd | Y | 6 | 0 | NA |
119164 | 440 | OldTown | 050 | 801 | TA | Y | 8 | 0 | NA |
95000 | 0 | OldTown | 050 | 684 | Fa | Y | 5 | 0 | NA |
115000 | 250 | OldTown | 020 | 789 | TA | Y | 5 | 0 | NA |
147000 | 528 | OldTown | 020 | 924 | TA | Y | 6 | 0 | NA |
112500 | 288 | OldTown | 020 | 928 | TA | Y | 5 | 0 | NA |
107900 | 281 | OldTown | 020 | 901 | TA | Y | 4 | 0 | NA |
65000 | 0 | OldTown | 020 | 448 | Fa | Y | 6 | 0 | NA |
98000 | 513 | OldTown | 070 | 624 | TA | N | 7 | 0 | NA |
114000 | 308 | OldTown | 050 | 346 | TA | Y | 5 | 0 | NA |
129400 | 0 | OldTown | 070 | 572 | Fa | Y | 7 | 0 | NA |
55000 | 400 | OldTown | 070 | 723 | Fa | N | 5 | 0 | NA |
131500 | 352 | OldTown | 050 | 1050 | TA | N | 7 | 0 | NA |
97000 | 308 | OldTown | 020 | 0 | NA | Y | 4 | 0 | NA |
115500 | 308 | OldTown | 020 | 869 | TA | Y | 5 | 0 | NA |
108000 | 252 | BrkSide | 050 | 672 | TA | Y | 8 | 0 | NA |
124000 | 240 | BrkSide | 050 | 672 | TA | Y | 6 | 0 | NA |
106900 | 200 | BrkSide | 070 | 554 | TA | Y | 6 | 0 | NA |
79000 | 280 | BrkSide | 020 | NA | NA | Y | 4 | 0 | NA |
81300 | 164 | BrkSide | 030 | 0 | NA | N | 6 | 0 | NA |
68500 | 240 | BrkSide | 030 | 520 | TA | N | 4 | 0 | NA |
145000 | 240 | BrkSide | 050 | 883 | TA | Y | 8 | 0 | NA |
130000 | 275 | BrkSide | 030 | 816 | TA | Y | 5 | 0 | NA |
160000 | 360 | OldTown | 060 | 1242 | TA | Y | 8 | 0 | NA |
127500 | 228 | OldTown | 050 | 796 | Gd | Y | 7 | 0 | NA |
120000 | 400 | IDOTRR | 050 | 880 | TA | Y | 6 | 0 | NA |
127500 | 320 | IDOTRR | 030 | 1040 | TA | Y | 5 | 0 | NA |
89500 | 0 | IDOTRR | 050 | 319 | TA | Y | 6 | 0 | NA |
79900 | 0 | OldTown | 050 | 901 | TA | Y | 7 | 0 | NA |
85000 | 576 | IDOTRR | 030 | 451 | Fa | Y | 5 | 0 | NA |
82375 | 0 | IDOTRR | 190 | 536 | TA | N | 8 | 0 | NA |
124000 | 240 | Sawyer | 020 | 1046 | TA | N | 6 | 0 | NA |
127500 | 0 | Edwards | 190 | 644 | TA | Y | 6 | 0 | NA |
148000 | 440 | Sawyer | 085 | 981 | Gd | Y | 6 | 0 | NA |
129500 | 384 | Sawyer | 020 | 1040 | TA | Y | 5 | 0 | NA |
130000 | 450 | Sawyer | 020 | 894 | TA | Y | 5 | 0 | NA |
152000 | 506 | Sawyer | 085 | 1060 | Gd | Y | 5 | 0 | NA |
108959 | 400 | Sawyer | 090 | 1198 | Gd | Y | 6 | 0 | NA |
95541 | 400 | Sawyer | 190 | 1300 | TA | Y | 6 | 0 | NA |
80000 | 0 | Sawyer | 020 | 1006 | TA | Y | 5 | 0 | NA |
149350 | 271 | Sawyer | 020 | 1228 | TA | Y | 6 | 0 | NA |
144900 | 300 | Sawyer | 020 | 960 | TA | Y | 6 | 0 | NA |
140000 | 300 | Sawyer | 080 | 533 | TA | Y | 6 | 0 | NA |
99600 | 0 | Edwards | 090 | 864 | Gd | N | 4 | 0 | NA |
134500 | 280 | Edwards | 060 | 621 | TA | Y | 7 | 0 | NA |
107500 | 0 | Edwards | 190 | 1117 | Gd | Y | 5 | 0 | NA |
125000 | 240 | Edwards | 190 | 1164 | TA | N | 5 | 0 | NA |
79000 | 0 | Edwards | 050 | 572 | TA | N | 5 | 0 | NA |
200000 | 603 | ClearCr | 060 | 616 | Gd | Y | 8 | 0 | NA |
155000 | 528 | CollgCr | 020 | 990 | Gd | Y | 5 | 0 | NA |
145000 | 672 | CollgCr | 020 | 990 | Gd | Y | 5 | 0 | NA |
215700 | 600 | CollgCr | 060 | 864 | Gd | Y | 6 | 0 | NA |
207500 | 532 | CollgCr | 060 | 782 | Gd | Y | 6 | 0 | NA |
188000 | 527 | CollgCr | 060 | 880 | Gd | Y | 8 | 0 | NA |
191000 | 577 | CollgCr | 020 | 1468 | Gd | Y | 6 | 0 | NA |
235000 | 626 | CollgCr | 060 | 928 | Gd | Y | 6 | 0 | NA |
130250 | 308 | CollgCr | 020 | 938 | Gd | Y | 5 | 0 | NA |
147000 | 576 | CollgCr | 080 | 940 | Gd | Y | 5 | 0 | NA |
110000 | 280 | CollgCr | 020 | 924 | Gd | Y | 5 | 0 | NA |
127000 | 352 | CollgCr | 020 | 864 | TA | Y | 5 | 0 | NA |
124900 | 352 | CollgCr | 020 | 780 | TA | Y | 4 | 0 | NA |
224900 | 543 | CollgCr | 060 | 884 | Gd | Y | 8 | 0 | NA |
136500 | 420 | CollgCr | 120 | 848 | Gd | Y | 3 | 0 | NA |
145000 | 420 | CollgCr | 120 | 848 | Gd | Y | 3 | 0 | NA |
185000 | 721 | CollgCr | 090 | 1838 | Gd | Y | 8 | 0 | NA |
208500 | 548 | CollgCr | 060 | 856 | Gd | Y | 8 | 0 | NA |
186500 | 470 | CollgCr | 020 | 1445 | Gd | Y | 6 | 0 | NA |
210000 | 484 | CollgCr | 020 | 1436 | Gd | Y | 8 | 0 | NA |
179900 | 484 | CollgCr | 020 | 1234 | Ex | Y | 7 | 0 | NA |
218836 | 814 | CollgCr | 020 | 1564 | Gd | Y | 6 | 0 | NA |
85000 | 0 | Edwards | 030 | 796 | Fa | Y | 4 | 0 | NA |
145900 | 0 | Edwards | 090 | 1272 | TA | Y | 9 | 0 | NA |
147500 | 276 | Edwards | 020 | 1256 | TA | Y | 6 | 0 | NA |
148000 | 525 | Edwards | 180 | 547 | Gd | Y | 5 | 0 | NA |
82000 | 0 | Edwards | 090 | 0 | NA | N | 6 | 0 | NA |
82000 | 0 | Edwards | 090 | 0 | NA | N | 6 | 0 | NA |
118000 | 0 | Edwards | 090 | 1440 | TA | N | 8 | 0 | NA |
82500 | 0 | Edwards | 090 | 0 | NA | N | 6 | 0 | NA |
91900 | 0 | Edwards | 190 | 784 | TA | N | 4 | 0 | NA |
120000 | 0 | Edwards | 050 | 585 | TA | Y | 5 | 0 | NA |
96000 | 0 | Edwards | 050 | 0 | NA | Y | 8 | 0 | NA |
130500 | 240 | Edwards | 050 | 768 | TA | Y | 6 | 0 | NA |
135000 | 548 | Edwards | 050 | 941 | TA | Y | 7 | 0 | NA |
135500 | 300 | Edwards | 050 | 816 | TA | Y | 8 | 0 | NA |
100000 | 312 | Edwards | 080 | 416 | Ex | Y | 6 | 0 | NA |
108000 | 205 | Edwards | 030 | 949 | TA | Y | 6 | 0 | NA |
98000 | 0 | Edwards | 030 | 864 | TA | N | 5 | 0 | NA |
67000 | 0 | Edwards | 030 | 864 | TA | N | 5 | 0 | NA |
135900 | 0 | SWISU | 190 | 780 | TA | N | 9 | 0 | NA |
140000 | 400 | SWISU | 070 | 672 | TA | N | 7 | 0 | NA |
189000 | 621 | SWISU | 070 | 612 | TA | Y | 8 | 0 | NA |
177000 | 308 | Crawfor | 070 | 840 | Gd | Y | 8 | 0 | NA |
115000 | 240 | SWISU | 050 | 1064 | TA | Y | 6 | 0 | NA |
110000 | 225 | Crawfor | 050 | 884 | TA | Y | 6 | 0 | NA |
120000 | 240 | IDOTRR | 050 | 720 | Fa | Y | 5 | 0 | NA |
119000 | 0 | IDOTRR | 050 | 780 | Gd | Y | 7 | 0 | NA |
99500 | 360 | IDOTRR | 030 | 520 | TA | Y | 5 | 0 | NA |
13100 | 487 | IDOTRR | 020 | 0 | NA | N | 4 | 0 | NA |
40000 | 250 | IDOTRR | 070 | 649 | TA | N | 6 | 0 | NA |
81000 | 1248 | IDOTRR | 030 | 894 | TA | Y | 6 | 0 | NA |
65000 | 216 | IDOTRR | 070 | 592 | Fa | Y | 5 | 0 | NA |
300000 | 786 | Mitchel | 020 | 1840 | Ex | Y | 7 | 0 | NA |
100000 | 484 | Mitchel | 090 | 0 | NA | Y | 8 | 0 | NA |
294000 | 788 | Timber | 020 | 1518 | Ex | Y | 8 | 0 | NA |
167500 | 400 | Timber | 080 | 384 | Gd | Y | 7 | 0 | NA |
218689 | 666 | Timber | 060 | 796 | Gd | Y | 6 | 0 | NA |
195000 | 435 | Timber | 020 | 1666 | Ex | Y | 6 | 0 | NA |
206300 | 784 | Mitchel | 090 | 1344 | Gd | Y | 8 | 0 | NA |
160500 | 392 | Mitchel | 120 | 1189 | Ex | Y | 4 | 0 | NA |
124000 | 499 | MeadowV | 120 | 1040 | Gd | Y | 6 | 0 | NA |
105000 | 297 | MeadowV | 180 | 526 | Gd | Y | 5 | 0 | NA |
81000 | 0 | MeadowV | 180 | 630 | Gd | Y | 3 | 0 | NA |
128500 | 264 | Mitchel | 020 | 816 | TA | Y | 4 | 0 | NA |
119500 | 264 | Mitchel | 020 | 876 | TA | Y | 5 | 0 | NA |
138000 | 816 | Mitchel | 020 | 816 | TA | Y | 4 | 0 | NA |
134500 | 264 | Mitchel | 020 | 845 | TA | Y | 6 | 0 | NA |
160000 | 423 | Mitchel | 050 | 983 | Gd | Y | 7 | 0 | NA |
137500 | 484 | Mitchel | 020 | 864 | TA | Y | 6 | 0 | NA |
103000 | 288 | IDOTRR | 070 | 686 | TA | Y | 7 | 0 | NA |
177000 | 388 | Gilbert | 060 | 794 | Gd | Y | 6 | 0 | NA |
251000 | 499 | StoneBr | 120 | 1494 | Gd | Y | 6 | 0 | NA |
178750 | 420 | Gilbert | 060 | 691 | Gd | Y | 6 | 0 | NA |
160000 | 420 | Gilbert | 020 | 1168 | Gd | Y | 6 | 0 | NA |
170000 | 461 | StoneBr | 120 | 1074 | Gd | Y | 5 | 0 | NA |
182000 | 480 | StoneBr | 120 | 1166 | Gd | Y | 5 | 0 | NA |
155000 | 828 | Gilbert | 190 | 1100 | Gd | Y | 7 | 0 | NA |
174000 | 480 | NWAmes | 020 | 1284 | Gd | Y | 5 | 0 | NA |
151500 | 495 | NWAmes | 020 | 1153 | Gd | Y | 6 | 0 | NA |
152000 | 462 | NWAmes | 060 | 780 | TA | Y | 7 | 0 | NA |
139000 | 288 | NAmes | 080 | 372 | TA | Y | 5 | 0 | NA |
184000 | 484 | NAmes | 060 | 725 | TA | Y | 7 | 0 | NA |
155000 | 576 | NAmes | 020 | 925 | TA | Y | 7 | 0 | NA |
119500 | 280 | NAmes | 020 | 950 | TA | Y | 5 | 0 | NA |
110000 | 684 | NAmes | 020 | 858 | TA | Y | 4 | 0 | NA |
128000 | 270 | NAmes | 020 | 914 | TA | Y | 4 | 0 | NA |
133000 | 367 | NAmes | 120 | 723 | Gd | Y | 4 | 0 | NA |
113500 | 264 | BrDale | 160 | 525 | TA | Y | 6 | 0 | NA |
113000 | 264 | BrDale | 160 | 672 | TA | Y | 7 | 0 | NA |
122500 | 440 | BrDale | 160 | 765 | TA | Y | 6 | 0 | NA |
142500 | 319 | NPkVill | 120 | 1061 | Gd | Y | 4 | 0 | NA |
129250 | 360 | NAmes | 020 | 988 | TA | Y | 5 | 0 | NA |
232698 | 554 | NridgHt | 020 | 1721 | Gd | Y | 7 | 0 | NA |
250000 | 876 | NridgHt | 060 | 1298 | Gd | Y | 7 | 0 | NA |
181755 | 572 | Gilbert | 060 | 768 | Gd | Y | 7 | 0 | NA |
168165 | 454 | Gilbert | 060 | 608 | Gd | Y | 6 | 0 | NA |
203000 | 388 | Gilbert | 020 | 1326 | Gd | Y | 6 | 0 | NA |
176485 | 436 | Gilbert | 020 | 1302 | Gd | Y | 6 | 0 | NA |
181134 | 396 | Gilbert | 020 | 1340 | Gd | Y | 6 | 0 | NA |
166000 | 440 | Gilbert | 060 | 752 | Gd | Y | 6 | 0 | NA |
177594 | 400 | Gilbert | 060 | 728 | Gd | Y | 7 | 0 | NA |
173500 | 462 | Gilbert | 020 | 1246 | Gd | Y | 6 | 0 | NA |
188500 | 437 | Gilbert | 080 | 835 | Gd | Y | 5 | 0 | NA |
162000 | 400 | Gilbert | 060 | 660 | Gd | Y | 6 | 0 | NA |
213133 | 605 | Somerst | 020 | 1369 | Gd | Y | 5 | 0 | NA |
260000 | 484 | Somerst | 020 | 1538 | Gd | Y | 7 | 0 | NA |
225000 | 474 | Somerst | 020 | 1496 | Gd | Y | 7 | 0 | NA |
250000 | 574 | Somerst | 060 | 982 | Gd | Y | 7 | 0 | NA |
208900 | 598 | Somerst | 020 | 1338 | Gd | Y | 6 | 0 | NA |
255000 | 590 | Somerst | 060 | 896 | Gd | Y | 8 | 0 | NA |
212109 | 561 | Somerst | 060 | 725 | Gd | Y | 8 | 0 | NA |
249700 | 826 | Somerst | 020 | 1656 | Gd | Y | 7 | 0 | NA |
146000 | 0 | SawyerW | 020 | 1100 | Gd | Y | 6 | 0 | NA |
201000 | 471 | SawyerW | 060 | 928 | Gd | Y | 7 | 0 | NA |
144000 | 504 | SawyerW | 085 | 840 | Gd | Y | 5 | 0 | NA |
120750 | 308 | Sawyer | 020 | 894 | Gd | Y | 5 | 0 | NA |
132500 | 264 | Sawyer | 020 | 999 | TA | Y | 6 | 0 | NA |
129000 | 544 | Sawyer | 020 | 1040 | TA | Y | 5 | 0 | NA |
145000 | 686 | Sawyer | 020 | 1040 | TA | Y | 5 | 0 | NA |
128500 | 572 | Sawyer | 020 | 988 | TA | Y | 5 | 0 | NA |
129000 | 431 | Sawyer | 020 | 1037 | Fa | Y | 5 | 0 | NA |
166000 | 484 | Somerst | 120 | 1141 | Gd | Y | 5 | 0 | NA |
207500 | 528 | Somerst | 120 | 1550 | Gd | Y | 5 | 0 | NA |
177000 | 440 | Somerst | 160 | 756 | Gd | Y | 4 | 0 | NA |
204000 | 625 | Somerst | 020 | 1339 | Gd | Y | 5 | 0 | NA |
143450 | 412 | NWAmes | 020 | 912 | TA | Y | 7 | 0 | NA |
164000 | 528 | NWAmes | 020 | 1295 | Gd | Y | 6 | 0 | NA |
127000 | 311 | NWAmes | 020 | 1052 | TA | Y | 6 | 0 | NA |
127000 | 308 | NAmes | 020 | 949 | TA | Y | 5 | 0 | NA |
126500 | 461 | NAmes | 020 | 1065 | TA | Y | 6 | 0 | NA |
145000 | 264 | NAmes | 080 | 588 | TA | Y | 6 | 0 | NA |
120000 | 297 | NAmes | 020 | 912 | TA | Y | 5 | 0 | NA |
106500 | 294 | NAmes | 020 | 0 | NA | Y | 5 | 0 | NA |
117600 | 312 | NAmes | 020 | 894 | TA | Y | 5 | 0 | NA |
161000 | 440 | NAmes | 080 | 1042 | TA | Y | 5 | 0 | NA |
150750 | 624 | NAmes | 020 | 1063 | TA | Y | 7 | 0 | NA |
101800 | 462 | NAmes | 090 | 0 | NA | Y | 6 | 0 | NA |
138500 | 512 | NAmes | 045 | 822 | TA | Y | 4 | 0 | NA |
64000 | 0 | BrkSide | 050 | 370 | TA | N | 4 | 0 | NA |
144000 | 288 | NAmes | 020 | 1078 | TA | Y | 6 | 0 | NA |
126000 | 792 | NAmes | 090 | 1560 | TA | Y | 8 | 0 | NA |
114500 | 275 | NAmes | 020 | 912 | TA | Y | 5 | 0 | NA |
144000 | 315 | NAmes | 050 | 874 | TA | Y | 7 | 0 | NA |
139400 | 260 | NAmes | 020 | 1056 | TA | Y | 6 | 0 | NA |
116000 | 308 | NAmes | 020 | 922 | TA | Y | 5 | 0 | NA |
135000 | 286 | NAmes | 020 | 1048 | TA | Y | 6 | 0 | NA |
142000 | 336 | NAmes | 020 | 864 | TA | Y | 6 | 0 | NA |
128600 | 484 | NAmes | 090 | 1560 | TA | Y | 8 | 0 | NA |
125000 | 410 | NAmes | 020 | 948 | TA | Y | 5 | 0 | NA |
134500 | 240 | NAmes | 020 | 1008 | TA | Y | 6 | 0 | NA |
127000 | 252 | NAmes | 020 | 925 | TA | Y | 5 | 0 | NA |
132000 | 252 | NAmes | 020 | 928 | Gd | Y | 4 | 0 | NA |
301600 | 1200 | NAmes | 070 | 666 | TA | Y | 9 | 0 | NA |
109000 | 240 | OldTown | 050 | 735 | TA | Y | 5 | 0 | NA |
103200 | 0 | OldTown | 045 | 882 | TA | Y | 4 | 0 | NA |
128500 | 580 | OldTown | 050 | 1151 | TA | Y | 6 | 0 | NA |
148000 | 0 | OldTown | 070 | 736 | Gd | Y | 6 | 0 | NA |
120000 | 240 | NAmes | 020 | 920 | TA | Y | 5 | 0 | NA |
128500 | 288 | NAmes | 020 | 952 | TA | Y | 5 | 0 | NA |
135000 | 254 | NAmes | 020 | 1010 | TA | Y | 6 | 0 | NA |
99000 | 300 | NAmes | 020 | 0 | NA | Y | 7 | 0 | NA |
125500 | 294 | NAmes | 020 | 864 | TA | Y | 5 | 0 | NA |
132000 | 360 | OldTown | 070 | 264 | Fa | Y | 7 | 0 | NA |
127500 | 576 | OldTown | 050 | 845 | TA | Y | 6 | 0 | NA |
140000 | 672 | OldTown | 090 | 936 | Gd | Y | 4 | 0 | NA |
120000 | 308 | OldTown | 050 | 649 | TA | Y | 6 | 0 | NA |
89471 | 672 | OldTown | 030 | 907 | Fa | Y | 7 | 0 | NA |
85000 | 252 | OldTown | 050 | 570 | Fa | N | 6 | 0 | NA |
108500 | 308 | OldTown | 030 | 960 | TA | Y | 5 | 0 | NA |
110500 | 0 | OldTown | 030 | 686 | TA | Y | 4 | 0 | NA |
100000 | 480 | OldTown | 030 | 968 | TA | Y | 5 | 0 | NA |
184900 | 816 | OldTown | 070 | 725 | TA | N | 7 | 0 | NA |
114000 | 480 | OldTown | 070 | 616 | TA | Y | 6 | 0 | NA |
90000 | 560 | OldTown | 190 | 662 | TA | N | 10 | 0 | NA |
144100 | 468 | OldTown | 050 | 926 | Gd | Y | 6 | 0 | NA |
117500 | 205 | OldTown | 070 | 1008 | TA | Y | 8 | 0 | NA |
152000 | 216 | OldTown | 040 | 1149 | TA | Y | 5 | 0 | NA |
153500 | 812 | OldTown | 030 | 1559 | TA | Y | 5 | 0 | NA |
104500 | 331 | OldTown | 020 | 0 | NA | Y | 5 | 0 | NA |
128250 | 308 | BrkSide | 050 | 910 | Fa | Y | 6 | 0 | NA |
135000 | 224 | BrkSide | 050 | 728 | TA | Y | 6 | 0 | NA |
132000 | 280 | BrkSide | 050 | 672 | TA | Y | 7 | 0 | NA |
132500 | 379 | BrkSide | 050 | 756 | TA | Y | 6 | 0 | NA |
137500 | 180 | BrkSide | 070 | 939 | TA | Y | 8 | 0 | NA |
165000 | 576 | BrkSide | 050 | 768 | TA | Y | 7 | 0 | NA |
90000 | 576 | BrkSide | 050 | 750 | Fa | Y | 7 | 0 | NA |
153575 | 384 | BrkSide | 070 | 698 | TA | Y | 7 | 0 | NA |
117000 | 216 | OldTown | 050 | 969 | TA | N | 6 | 0 | NA |
127000 | 0 | IDOTRR | 070 | 684 | TA | Y | 7 | 0 | NA |
101000 | 288 | IDOTRR | 075 | 530 | TA | N | 6 | 0 | NA |
50000 | 264 | IDOTRR | 050 | 771 | TA | Y | 6 | 0 | NA |
126000 | 240 | Edwards | 050 | 756 | TA | N | 7 | 0 | NA |
130000 | 308 | Sawyer | 190 | 925 | Gd | Y | 6 | 0 | NA |
115400 | 440 | Sawyer | 020 | 1005 | TA | Y | 5 | 0 | NA |
118500 | 261 | Sawyer | 020 | 1029 | TA | Y | 5 | 0 | NA |
123000 | 264 | Sawyer | 020 | 1040 | TA | Y | 6 | 0 | NA |
125000 | 384 | Sawyer | 020 | 894 | TA | Y | 5 | 0 | NA |
108000 | 300 | Sawyer | 020 | 948 | TA | Y | 6 | 0 | NA |
119900 | 576 | Sawyer | 190 | 768 | Gd | Y | 6 | 0 | NA |
115000 | 264 | Sawyer | 020 | 876 | TA | Y | 5 | 0 | NA |
134500 | 528 | Sawyer | 020 | 943 | TA | Y | 5 | 0 | NA |
127000 | 386 | Sawyer | 020 | 955 | TA | Y | 6 | 0 | NA |
89500 | 460 | Sawyer | 020 | 0 | NA | N | 5 | 0 | NA |
109900 | 336 | Edwards | 020 | 484 | TA | N | 4 | 0 | NA |
154000 | 332 | Edwards | 050 | 988 | TA | Y | 6 | 0 | NA |
118000 | 399 | SWISU | 020 | 864 | TA | Y | 6 | 0 | NA |
150000 | 0 | Edwards | 090 | 1440 | Gd | Y | 8 | 0 | NA |
86000 | 0 | Edwards | 030 | 528 | TA | Y | 5 | 0 | NA |
130000 | 264 | Edwards | 120 | 1038 | TA | Y | 5 | 0 | NA |
125000 | 256 | Edwards | 020 | 1342 | Fa | Y | 7 | 0 | NA |
96000 | 280 | Edwards | 050 | 951 | TA | N | 7 | 0 | NA |
360000 | 894 | CollgCr | 020 | 2140 | Gd | Y | 8 | 0 | NA |
203000 | 508 | CollgCr | 020 | 1274 | Gd | Y | 6 | 0 | NA |
195400 | 628 | CollgCr | 020 | 1208 | Gd | Y | 6 | 0 | NA |
217000 | 796 | CollgCr | 020 | 1546 | Gd | Y | 7 | 0 | NA |
191000 | 578 | CollgCr | 060 | 879 | Gd | Y | 7 | 0 | NA |
187500 | 444 | ClearCr | 060 | 832 | TA | Y | 9 | 0 | NA |
139500 | 747 | CollgCr | 020 | 1022 | Gd | Y | 6 | 0 | NA |
146000 | 384 | CollgCr | 020 | 990 | Gd | Y | 5 | 0 | NA |
123600 | 0 | CollgCr | 020 | 990 | Gd | Y | 5 | 0 | NA |
226000 | 558 | CollgCr | 020 | 1453 | Gd | Y | 7 | 0 | NA |
180000 | 500 | CollgCr | 060 | 840 | Gd | Y | 8 | 0 | NA |
134900 | 748 | CollgCr | 020 | 1040 | Gd | Y | 5 | 0 | NA |
120000 | 440 | CollgCr | 020 | 864 | TA | Y | 5 | 0 | NA |
122000 | 440 | CollgCr | 020 | 969 | TA | Y | 5 | 0 | NA |
127000 | 576 | CollgCr | 020 | 864 | TA | Y | 5 | 0 | NA |
200000 | 542 | CollgCr | 060 | 860 | Gd | Y | 7 | 0 | NA |
131500 | 420 | CollgCr | 120 | 848 | Gd | Y | 3 | 0 | NA |
185000 | 531 | CollgCr | 020 | 1337 | Gd | Y | 6 | 0 | NA |
179400 | 552 | CollgCr | 060 | 738 | Gd | Y | 7 | 0 | NA |
213500 | 639 | CollgCr | 060 | 939 | Gd | Y | 8 | 0 | NA |
179600 | 626 | CollgCr | 020 | 1422 | Gd | Y | 7 | 0 | NA |
173500 | 578 | CollgCr | 020 | 1169 | Gd | Y | 5 | 0 | NA |
167000 | 400 | CollgCr | 060 | 768 | Gd | Y | 6 | 0 | NA |
110000 | 520 | Edwards | 020 | 1088 | TA | Y | 4 | 0 | NA |
110000 | 622 | Edwards | 020 | 1179 | TA | Y | 5 | 0 | NA |
141000 | 579 | Edwards | 090 | 0 | NA | Y | 11 | 0 | NA |
157000 | 450 | Edwards | 020 | 1090 | Ex | Y | 5 | 0 | NA |
171500 | 489 | Edwards | 060 | 734 | Gd | Y | 6 | 0 | NA |
140000 | 525 | Edwards | 180 | 547 | Gd | Y | 5 | 0 | NA |
131750 | 392 | Edwards | 020 | 960 | TA | Y | 4 | 0 | NA |
111000 | 248 | Edwards | 020 | 864 | TA | Y | 5 | 0 | NA |
98500 | 0 | Edwards | 090 | 1195 | TA | N | 8 | 0 | NA |
79000 | 0 | Edwards | 030 | 544 | TA | Y | 6 | 0 | NA |
112000 | 384 | Edwards | 050 | 560 | Fa | N | 6 | 0 | NA |
79275 | 528 | Edwards | 020 | 864 | TA | Y | 5 | 0 | NA |
200000 | 0 | SWISU | 190 | 1440 | TA | Y | 14 | 0 | NA |
150000 | 0 | SWISU | 090 | 1296 | TA | N | 12 | 0 | NA |
96500 | 200 | Crawfor | 045 | 768 | TA | N | 5 | 0 | NA |
136500 | 352 | Crawfor | 030 | 1290 | TA | Y | 6 | 0 | NA |
145000 | 492 | Crawfor | 090 | 979 | Gd | N | 8 | 0 | NA |
140000 | 528 | Crawfor | 190 | 728 | TA | Y | 5 | 0 | NA |
170000 | 628 | Crawfor | 020 | 1680 | Gd | Y | 7 | 0 | NA |
200000 | 509 | Blueste | 120 | 1004 | Gd | Y | 4 | 0 | NA |
115000 | 0 | IDOTRR | 050 | 793 | TA | N | 7 | 0 | NA |
141000 | 720 | IDOTRR | 050 | 720 | TA | Y | 6 | 0 | NA |
87000 | 360 | IDOTRR | 045 | 720 | TA | N | 5 | 0 | NA |
150909 | NA | IDOTRR | 070 | 859 | Gd | Y | 6 | 0 | NA |
67000 | 338 | IDOTRR | 030 | 961 | Fa | Y | 6 | 0 | NA |
152000 | 282 | IDOTRR | 050 | 910 | TA | Y | 6 | 0 | NA |
68104 | 256 | IDOTRR | 050 | 0 | NA | Y | 4 | 0 | NA |
119600 | 0 | IDOTRR | 190 | 957 | TA | N | 9 | 0 | NA |
140000 | 720 | IDOTRR | 020 | 1073 | TA | Y | 6 | 0 | NA |
134000 | 484 | Mitchel | 020 | 1084 | TA | Y | 5 | 0 | NA |
148000 | 360 | Mitchel | 080 | 852 | TA | Y | 4 | 0 | NA |
231713 | 433 | Timber | 020 | 1689 | Gd | Y | 7 | 0 | NA |
174000 | 528 | Timber | 020 | 1265 | Gd | Y | 6 | 0 | NA |
180500 | 471 | Timber | 020 | 1267 | Ex | Y | 5 | 0 | NA |
147000 | 0 | Mitchel | 020 | 1120 | Gd | Y | 6 | 0 | NA |
130000 | 1041 | Mitchel | 020 | 0 | NA | Y | 9 | 0 | NA |
132250 | 648 | Mitchel | 020 | 1064 | TA | Y | 5 | 0 | NA |
143000 | 576 | Mitchel | 090 | 1632 | TA | Y | 8 | 0 | NA |
85500 | 253 | MeadowV | 160 | 546 | TA | Y | 5 | 0 | NA |
93900 | 0 | MeadowV | 160 | 546 | TA | Y | 5 | 0 | NA |
75000 | 286 | MeadowV | 160 | 546 | TA | Y | 6 | 0 | NA |
84500 | 0 | MeadowV | 180 | 630 | Gd | Y | 3 | 0 | NA |
80000 | 444 | Mitchel | 020 | 1396 | TA | N | 6 | 0 | NA |
129500 | 360 | Mitchel | 020 | 845 | TA | Y | 4 | 0 | NA |
135000 | 502 | Mitchel | 020 | 1090 | Gd | Y | 6 | 0 | NA |
124500 | 264 | Mitchel | 020 | 816 | TA | Y | 5 | 0 | NA |
139000 | 264 | Mitchel | 020 | 816 | Gd | Y | 4 | 0 | NA |
149900 | 452 | NAmes | 020 | 1178 | TA | Y | 5 | 0 | NA |
270000 | 618 | StoneBr | 160 | 2062 | Gd | Y | 9 | 0 | NA |
145000 | 572 | Gilbert | 190 | 1056 | TA | N | 5 | 0 | NA |
202500 | 440 | NWAmes | 020 | 1208 | Gd | Y | 8 | 0 | NA |
229000 | 786 | NWAmes | 050 | 1204 | Gd | Y | 9 | 0 | NA |
153500 | 495 | NWAmes | 020 | 1056 | Gd | Y | 6 | 0 | NA |
155000 | 462 | NWAmes | 020 | 1103 | TA | Y | 6 | 0 | NA |
138800 | 299 | NAmes | 020 | 1096 | TA | Y | 6 | 0 | NA |
116050 | 280 | NAmes | 020 | 864 | TA | Y | 5 | 0 | NA |
97500 | 576 | NAmes | 020 | 864 | TA | Y | 5 | 0 | NA |
190000 | 543 | NAmes | 120 | 1487 | Gd | Y | 4 | 0 | NA |
105500 | 440 | BrDale | 160 | 525 | TA | Y | 6 | 0 | NA |
116000 | 264 | BrDale | 160 | 494 | TA | Y | 6 | 0 | NA |
118000 | 264 | BrDale | 160 | 672 | TA | Y | 7 | 0 | NA |
89000 | 264 | BrDale | 160 | 483 | TA | Y | 5 | 0 | NA |
137500 | 319 | NPkVill | 120 | 1055 | TA | Y | 4 | 0 | NA |
342643 | 840 | NridgHt | 060 | 1249 | Ex | Y | 9 | 0 | NA |
174190 | 427 | Gilbert | 020 | 1326 | Gd | Y | 6 | 0 | NA |
185101 | 440 | Gilbert | 060 | 738 | Gd | Y | 8 | 0 | NA |
156820 | 440 | Blmngtn | 120 | 1142 | Gd | Y | 6 | 0 | NA |
287602 | 617 | Gilbert | 060 | 1035 | Gd | Y | 8 | 0 | NA |
199000 | 510 | Somerst | 020 | 1504 | Gd | Y | 7 | 0 | NA |
186500 | 615 | Somerst | 060 | 756 | Gd | Y | 6 | 0 | NA |
200825 | 615 | Somerst | 060 | 858 | Gd | Y | 7 | 0 | NA |
197000 | 614 | Somerst | 060 | 770 | Gd | Y | 6 | 0 | NA |
139500 | 0 | SawyerW | 020 | 1142 | TA | Y | 5 | 0 | NA |
186800 | 612 | SawyerW | 020 | 1400 | Gd | Y | 6 | 0 | NA |
132000 | 0 | SawyerW | 020 | 1131 | Gd | Y | 6 | 0 | NA |
142500 | 484 | SawyerW | 020 | 1141 | Gd | Y | 6 | 0 | NA |
158000 | 576 | SawyerW | 020 | 1158 | Gd | Y | 5 | 0 | NA |
184000 | 462 | SawyerW | 060 | 891 | Gd | Y | 8 | 0 | NA |
184900 | 449 | SawyerW | 060 | 784 | Gd | Y | 7 | 0 | NA |
175900 | 484 | SawyerW | 060 | 761 | Gd | Y | 7 | 0 | NA |
248500 | 462 | SawyerW | 060 | 836 | Gd | Y | 7 | 0 | NA |
151000 | 484 | SawyerW | 120 | 1217 | Gd | Y | 5 | 0 | NA |
150000 | 472 | SawyerW | 060 | 636 | Gd | Y | 6 | 0 | NA |
107000 | 384 | SawyerW | 020 | 1056 | TA | Y | 5 | 0 | NA |
119900 | 300 | SawyerW | 020 | 828 | TA | Y | 6 | 0 | NA |
129500 | 624 | Sawyer | 020 | 988 | TA | Y | 6 | 0 | NA |
125000 | 504 | Sawyer | 090 | 1728 | TA | Y | 10 | 0 | NA |
116000 | 294 | Sawyer | 020 | 882 | TA | Y | 5 | 0 | NA |
133500 | 484 | Sawyer | 020 | 925 | TA | Y | 5 | 0 | NA |
137000 | 288 | Sawyer | 020 | 935 | TA | Y | 5 | 0 | NA |
151000 | 480 | Somerst | 160 | 600 | Gd | Y | 4 | 0 | NA |
147400 | 480 | Somerst | 160 | 600 | Gd | Y | 4 | 0 | NA |
149900 | 480 | Somerst | 160 | 600 | Gd | Y | 4 | 0 | NA |
144152 | 480 | Somerst | 160 | 600 | Gd | Y | 4 | 0 | NA |
166000 | 440 | Somerst | 160 | 756 | Gd | Y | 4 | 0 | NA |
165000 | 490 | Somerst | 160 | 673 | Gd | Y | 6 | 0 | NA |
164500 | 477 | NWAmes | 020 | 1334 | TA | Y | 7 | 0 | NA |
140000 | 528 | NWAmes | 020 | 1164 | TA | Y | 6 | 0 | NA |
155000 | 530 | NAmes | 060 | 900 | Gd | Y | 7 | 0 | NA |
138500 | 288 | NAmes | 020 | 1052 | TA | Y | 5 | 0 | NA |
124400 | 264 | NAmes | 020 | 1051 | TA | Y | 6 | 0 | NA |
158000 | 568 | NAmes | 080 | 1141 | TA | Y | 6 | 0 | NA |
146000 | 884 | NAmes | 020 | 864 | TA | Y | 6 | 0 | NA |
136500 | 368 | NAmes | 020 | 1050 | TA | Y | 6 | 0 | NA |
145000 | 588 | NAmes | 090 | 1626 | TA | Y | 8 | 0 | NA |
140000 | 264 | NAmes | 190 | 588 | TA | Y | 6 | 0 | NA |
150000 | 750 | NAmes | 020 | 1008 | TA | Y | 6 | 0 | NA |
151500 | 286 | NAmes | 020 | 1248 | TA | Y | 6 | 0 | NA |
85500 | 0 | BrkSide | 030 | 440 | Gd | Y | 4 | 0 | NA |
79900 | 528 | BrkSide | 030 | 600 | Fa | Y | 5 | 0 | NA |
127000 | 576 | BrkSide | 050 | 504 | Fa | Y | 5 | 0 | NA |
135000 | 280 | NAmes | 020 | 1056 | TA | Y | 7 | 0 | NA |
121000 | 240 | NAmes | 020 | 936 | TA | Y | 5 | 0 | NA |
98600 | 480 | NAmes | 020 | 1235 | TA | Y | 6 | 0 | NA |
118000 | 286 | NAmes | 020 | 936 | TA | Y | 5 | 0 | NA |
132500 | 540 | NAmes | 090 | 1106 | TA | Y | 6 | 0 | NA |
156000 | 286 | NAmes | 020 | 1050 | TA | Y | 6 | 0 | NA |
139500 | 280 | NAmes | 020 | 1008 | TA | Y | 4 | 0 | NA |
127000 | 684 | NAmes | 080 | 301 | Gd | Y | 6 | 0 | NA |
142000 | 270 | NAmes | 020 | 884 | TA | Y | 4 | 0 | NA |
127000 | 649 | NAmes | 050 | 784 | TA | Y | 6 | 0 | NA |
112000 | 398 | OldTown | 050 | 617 | Fa | Y | 6 | 0 | NA |
99800 | 371 | OldTown | 030 | 713 | TA | Y | 5 | 0 | NA |
117000 | 326 | OldTown | 020 | 833 | TA | Y | 4 | 0 | NA |
108480 | 326 | OldTown | 030 | 1073 | TA | Y | 4 | 0 | NA |
68000 | 660 | NAmes | 030 | 715 | TA | N | 4 | 0 | NA |
86900 | 280 | OldTown | 050 | 448 | Fa | Y | 5 | 0 | NA |
105000 | 936 | OldTown | 050 | 672 | TA | Y | 6 | 0 | NA |
147000 | 264 | NAmes | 020 | 1135 | TA | Y | 6 | 0 | NA |
115000 | 288 | NAmes | 020 | 912 | TA | Y | 5 | 0 | NA |
120000 | 288 | NAmes | 020 | 864 | TA | Y | 4 | 0 | NA |
129900 | 308 | NAmes | 020 | 816 | TA | Y | 5 | 0 | NA |
147500 | 597 | NAmes | 050 | 910 | TA | Y | 6 | 0 | NA |
135000 | 0 | NAmes | 050 | 720 | TA | N | 6 | 0 | NA |
109500 | 625 | NAmes | 020 | 0 | NA | Y | 5 | 0 | NA |
109900 | 420 | NAmes | 020 | 0 | NA | Y | 4 | 0 | NA |
81400 | 400 | NAmes | 090 | 0 | NA | N | 6 | 0 | NA |
87500 | 400 | NAmes | 090 | 0 | NA | N | 6 | 0 | NA |
119000 | 0 | NAmes | 090 | 1556 | TA | Y | 8 | 0 | NA |
141000 | 300 | NAmes | 020 | 1150 | TA | Y | 6 | 0 | NA |
146000 | 288 | NAmes | 020 | 1150 | TA | Y | 6 | 0 | NA |
134500 | 300 | NAmes | 085 | 925 | TA | Y | 6 | 0 | NA |
105000 | 336 | NAmes | 020 | 864 | TA | Y | 5 | 0 | NA |
124000 | 0 | NAmes | 190 | 1025 | TA | Y | 6 | 0 | NA |
107000 | 210 | OldTown | 070 | 686 | TA | N | 8 | 0 | NA |
135000 | 240 | OldTown | 050 | 1212 | TA | Y | 6 | 0 | NA |
156500 | 400 | OldTown | 050 | 780 | TA | Y | 7 | 0 | NA |
139900 | 576 | OldTown | 070 | 712 | TA | Y | 7 | 0 | NA |
111500 | 576 | OldTown | 190 | 938 | TA | N | 9 | 0 | NA |
108000 | 280 | OldTown | 030 | 1032 | TA | N | 5 | 0 | NA |
105000 | 528 | OldTown | 020 | 576 | TA | Y | 5 | 0 | NA |
116000 | 440 | OldTown | 050 | 648 | Fa | Y | 6 | 0 | NA |
96900 | 216 | OldTown | 070 | 738 | TA | Y | 7 | 0 | NA |
135500 | 576 | OldTown | 190 | 960 | TA | Y | 5 | 0 | NA |
139000 | 450 | OldTown | 050 | 816 | TA | Y | 7 | 0 | NA |
61500 | 200 | OldTown | 030 | 492 | Fa | Y | 3 | 0 | NA |
64000 | 250 | OldTown | 030 | 798 | TA | Y | 5 | 0 | NA |
137000 | 440 | OldTown | 190 | 1020 | Fa | N | 9 | 0 | NA |
87000 | 779 | OldTown | 070 | 1095 | TA | N | 8 | 0 | NA |
155000 | 432 | OldTown | 075 | 1226 | TA | Y | 9 | 0 | NA |
79000 | 352 | OldTown | 050 | 540 | TA | N | 6 | 0 | NA |
114504 | 216 | OldTown | 070 | 684 | TA | N | 7 | 0 | NA |
157000 | 576 | OldTown | 070 | 596 | Fa | Y | 8 | 0 | NA |
125000 | 312 | OldTown | 030 | 1200 | TA | Y | 7 | 0 | NA |
125000 | 624 | OldTown | 020 | 960 | TA | Y | 5 | 0 | NA |
64500 | 0 | IDOTRR | 050 | 1020 | TA | N | 5 | 0 | NA |
88000 | 450 | BrkSide | 030 | 768 | TA | N | 6 | 0 | NA |
80500 | 0 | BrkSide | 050 | 0 | NA | N | 3 | 0 | NA |
110000 | 180 | BrkSide | 050 | 741 | TA | Y | 7 | 0 | NA |
117000 | 255 | OldTown | 050 | 485 | TA | Y | 5 | 0 | NA |
116500 | 390 | IDOTRR | 070 | 396 | Fa | Y | 7 | 0 | NA |
72000 | 0 | IDOTRR | 030 | 610 | TA | N | 4 | 0 | NA |
150000 | 576 | Sawyer | 090 | 1921 | TA | Y | 8 | 0 | NA |
130000 | 288 | ClearCr | 080 | 1062 | TA | Y | 6 | 0 | NA |
80000 | 180 | SWISU | 030 | 830 | TA | Y | 4 | 0 | NA |
157000 | 246 | SWISU | 020 | 1073 | Gd | Y | 4 | 0 | NA |
154500 | 264 | Sawyer | 020 | 1059 | TA | Y | 6 | 0 | NA |
156500 | 580 | Sawyer | 090 | 1967 | Gd | Y | 10 | 0 | NA |
157000 | 586 | Sawyer | 090 | 1949 | TA | Y | 10 | 0 | NA |
145000 | 364 | Sawyer | 080 | 648 | TA | Y | 3 | 0 | NA |
130000 | 576 | Sawyer | 085 | 782 | Gd | Y | 4 | 0 | NA |
148400 | 450 | ClearCr | 150 | 430 | Gd | Y | 7 | 0 | NA |
136900 | 325 | Edwards | 050 | 994 | TA | Y | 7 | 0 | NA |
149900 | 305 | Edwards | 050 | 1000 | TA | Y | 7 | 0 | NA |
123500 | 308 | Edwards | 020 | 980 | Ex | Y | 6 | 0 | NA |
224500 | 920 | SawyerW | 090 | 1344 | Gd | Y | 8 | 0 | NA |
183600 | 632 | CollgCr | 020 | 1208 | Gd | Y | 6 | 0 | NA |
221500 | 865 | CollgCr | 020 | 1614 | Gd | Y | 7 | 0 | NA |
204900 | 675 | CollgCr | 020 | 1498 | Gd | Y | 5 | 0 | NA |
239799 | 868 | CollgCr | 060 | 1391 | Gd | Y | 7 | 0 | NA |
181000 | 610 | CollgCr | 060 | 784 | Gd | Y | 6 | 0 | NA |
148000 | 576 | CollgCr | 085 | 870 | Gd | Y | 5 | 0 | NA |
193000 | 591 | CollgCr | 020 | 1425 | Gd | Y | 5 | 0 | NA |
217000 | 576 | CollgCr | 020 | 1479 | Gd | Y | 6 | 0 | NA |
214000 | 472 | CollgCr | 020 | 1588 | Gd | Y | 6 | 0 | NA |
196000 | 515 | CollgCr | 060 | 842 | Gd | Y | 7 | 0 | NA |
200000 | 492 | CollgCr | 060 | 916 | Gd | Y | 8 | 0 | NA |
157500 | 317 | CollgCr | 060 | 675 | Gd | Y | 6 | 0 | NA |
174000 | 672 | CollgCr | 080 | 995 | TA | Y | 6 | 0 | NA |
119900 | 297 | CollgCr | 020 | 864 | TA | Y | 5 | 0 | NA |
137000 | 484 | Landmrk | 160 | 630 | Gd | Y | 5 | 0 | NA |
222000 | 591 | CollgCr | 060 | 826 | Gd | Y | 6 | 0 | NA |
197000 | 529 | CollgCr | 060 | 872 | Gd | Y | 8 | 0 | NA |
230000 | 900 | CollgCr | 020 | 1654 | Gd | Y | 6 | 0 | NA |
207000 | 545 | CollgCr | 020 | 1390 | Gd | Y | 7 | 0 | NA |
200000 | 544 | CollgCr | 020 | 1682 | Gd | Y | 7 | 0 | NA |
203160 | 578 | CollgCr | 060 | 851 | Gd | Y | 7 | 0 | NA |
195800 | 572 | CollgCr | 060 | 784 | Gd | Y | 6 | 0 | NA |
212900 | 782 | CollgCr | 020 | 1552 | Gd | Y | 7 | 0 | NA |
196500 | 565 | CollgCr | 060 | 860 | Gd | Y | 7 | 0 | NA |
198000 | 502 | CollgCr | 020 | 1336 | Gd | Y | 6 | 0 | NA |
98000 | 528 | Edwards | 070 | 676 | Gd | Y | 6 | 0 | NA |
102000 | 396 | Edwards | 020 | 836 | Fa | Y | 6 | 0 | NA |
119900 | 360 | Edwards | 020 | 1176 | Gd | Y | 5 | 0 | NA |
117250 | 0 | Edwards | 020 | 914 | Gd | Y | 4 | 0 | NA |
142500 | 525 | Edwards | 180 | 547 | Gd | Y | 5 | 0 | NA |
134000 | 380 | Edwards | 160 | 970 | Gd | Y | 7 | 0 | NA |
137500 | 380 | Edwards | 160 | 970 | Gd | Y | 7 | 0 | NA |
97900 | 265 | Edwards | 050 | 624 | Fa | Y | 5 | 0 | NA |
92000 | 528 | Edwards | 050 | 832 | Fa | Y | 7 | 0 | NA |
107000 | 288 | Edwards | 050 | 1093 | TA | N | 9 | 0 | NA |
81000 | 0 | Edwards | 050 | 658 | TA | Y | 8 | 0 | NA |
115000 | 572 | Edwards | 020 | 864 | TA | Y | 5 | 0 | NA |
116000 | 280 | Edwards | 050 | 686 | TA | Y | 7 | 0 | NA |
128000 | 440 | SWISU | 190 | 780 | TA | N | 6 | 0 | NA |
102000 | 0 | SWISU | 050 | 1008 | TA | Y | 7 | 0 | NA |
112000 | 240 | SWISU | 050 | 824 | Fa | N | 6 | 0 | NA |
102000 | 215 | IDOTRR | 030 | 976 | TA | N | 5 | 0 | NA |
145400 | 506 | IDOTRR | 050 | 861 | TA | Y | 6 | 0 | NA |
72000 | 0 | IDOTRR | 030 | 432 | Fa | N | 4 | 0 | NA |
108000 | 570 | IDOTRR | 050 | 637 | TA | Y | 7 | 0 | NA |
35311 | 308 | IDOTRR | 020 | 480 | TA | N | 4 | 0 | NA |
115000 | 0 | IDOTRR | 190 | 660 | TA | N | 8 | 0 | NA |
78000 | 0 | IDOTRR | 050 | 216 | Fa | N | 6 | 0 | NA |
209000 | 490 | Mitchel | 020 | 1491 | Ex | Y | 7 | 0 | NA |
135000 | 504 | Mitchel | 090 | 975 | Gd | Y | 4 | 0 | NA |
148000 | 528 | Mitchel | 080 | 1128 | TA | Y | 6 | 0 | NA |
171000 | 766 | Mitchel | 090 | 1907 | TA | Y | 9 | 0 | NA |
230000 | 312 | GrnHill | 120 | 0 | NA | Y | 5 | 0 | NA |
250000 | 693 | Timber | 060 | 1216 | Gd | Y | 8 | 0 | NA |
81500 | 270 | Mitchel | 020 | 0 | NA | Y | 6 | 0 | NA |
215000 | 784 | Mitchel | 090 | 1288 | Gd | Y | 8 | 0 | NA |
153500 | 405 | Mitchel | 120 | 1237 | Ex | Y | 5 | 0 | NA |
126500 | 288 | Mitchel | 020 | 864 | TA | Y | 5 | 0 | NA |
146500 | 928 | Mitchel | 090 | 1652 | TA | Y | 8 | 0 | NA |
79400 | 253 | MeadowV | 160 | 546 | TA | Y | 5 | 0 | NA |
92000 | 0 | MeadowV | 180 | 630 | Gd | Y | 3 | 0 | NA |
87550 | 286 | MeadowV | 160 | 546 | TA | Y | 5 | 0 | NA |
90500 | 0 | MeadowV | 160 | 546 | TA | Y | 5 | 0 | NA |
71000 | 286 | MeadowV | 160 | 546 | TA | Y | 6 | 0 | NA |
150900 | 574 | Mitchel | 090 | 1728 | TA | Y | 8 | 0 | NA |
188000 | 560 | Mitchel | 090 | 1728 | TA | Y | 8 | 0 | NA |
131000 | 484 | Mitchel | 020 | 864 | Gd | Y | 5 | 0 | NA |
# Convert NAs to "none" where stated in codebook
<- ames_all |>
ames_all mutate(bsmt_qual = fct_expand(bsmt_qual, "no_bsmt"), # add a new level to the factor
bsmt_qual = replace_na(bsmt_qual, "no_bsmt"), # recode NA to that new level
fireplace_qu = fct_expand(fireplace_qu, "no_fireplace"),
fireplace_qu = replace_na(fireplace_qu, "no_fireplace"))
# review order of levels b/c they are ordinal, no fireplace/basement is worst
$bsmt_qual |> levels() ames_all
[1] "Ex" "Fa" "Gd" "TA" "no_bsmt"
$fireplace_qu |> levels() ames_all
[1] "Ex" "Fa" "Gd" "Po" "TA"
[6] "no_fireplace"
<- c("no_bsmt", "Po", "Fa", "TA", "Gd", "Ex")
bq_levels <- ames_all |>
ames_all mutate(bsmt_qual = forcats::fct_relevel(bsmt_qual, bq_levels))
Warning: There was 1 warning in `mutate()`.
ℹ In argument: `bsmt_qual = forcats::fct_relevel(bsmt_qual, bq_levels)`.
Caused by warning:
! 1 unknown level in `f`: Po
# the warning about the missing level "Po" is OK. No basements were rated poor
$bsmt_qual |> levels() ames_all
[1] "no_bsmt" "Fa" "TA" "Gd" "Ex"
<- c("no_fireplace", "Po", "Fa", "TA", "Gd", "Ex")
fq_levels <- ames_all |>
ames_all ::mutate(fireplace_qu = forcats::fct_relevel(fireplace_qu, fq_levels))
dplyr
$fireplace_qu |> levels() ames_all
[1] "no_fireplace" "Po" "Fa" "TA" "Gd"
[6] "Ex"
Missing data notes: Basement and fireplace quality both have high numbers of missing values. The codebook explicitly states that ‘NA’ for these variables represents observations that do not have garages or fireplaces (we can also see that these observations have either garage areas of 0 or 0 fireplaces respectively). These observations may be better represented as “no basement” ” and “no fireplace” than missing (though this may not be best for the ordinal nature of these variables). We can explore that further during modeling EDA
Numeric variables
Explore min
and max
values for numeric variables, recording notes on any observations that look suspicious or potentially invalid. Use the data dictionary and associated variables to help you decide whether suspicious observations may represent (in)valid responses.
# skim data, looking at numeric min and max values
|>
ames_all skim_some() |>
filter(skim_type == "numeric") |> # Select only numeric variables since min/max only apply to them
select(skim_variable, numeric.p0, numeric.p100)
# A tibble: 5 × 3
skim_variable numeric.p0 numeric.p100
<chr> <dbl> <dbl>
1 sale_price 12789 745000
2 garage_area 0 1488
3 total_bsmt_sf 0 6110
4 tot_rms_abv_grd 3 14
5 fireplaces 0 3
# 14 rooms above ground isn't impossible, but seems high. Lets take a look
|>
ames_all filter(tot_rms_abv_grd == 14) |>
print_kbl()
sale_price | garage_area | neighborhood | ms_sub_class | total_bsmt_sf | bsmt_qual | central_air | tot_rms_abv_grd | fireplaces | fireplace_qu |
---|---|---|---|---|---|---|---|---|---|
2e+05 | 0 | SWISU | 190 | 1440 | TA | Y | 14 | 0 | no_fireplace |
Numeric variable notes: Numeric values appear to be in the expected range. There were no numeric values coded as factor that made sense to convert to examine min/max values (e.g. ms_sub_class is not ordinal, doesn’t make sense to look at numeric values). I thought 14 rooms above ground seemed like a lot and looked at that one further – the observation with 14 rooms above ground had an ms_sub_class of “190” indicating it is a 2 family conversion home, which makes this number more believable. No changes need to be made at this step because its not an obvious error. We can explore it as a possible outlier further in modeling EDA
Categorical variables
print the levels of each categorical variable. Used walk()
to do all the categorical variables at once. You can use tidy_responses()
(a function from John) to convert all responses to snake_case. Check to make sure all levels converted properly. If needed, correct response levels with conversion errors using mutate()
and fct_recode()
. Document observations for categorical levels.
# View all categorical response labels
|>
ames_all select(where(is.factor)) |>
walk(\(column) print(levels(column)))
[1] "Blmngtn" "Blueste" "BrDale" "BrkSide" "ClearCr" "CollgCr" "Crawfor"
[8] "Edwards" "Gilbert" "Greens" "GrnHill" "IDOTRR" "Landmrk" "MeadowV"
[15] "Mitchel" "NAmes" "NoRidge" "NPkVill" "NridgHt" "NWAmes" "OldTown"
[22] "Sawyer" "SawyerW" "Somerst" "StoneBr" "SWISU" "Timber" "Veenker"
[1] "020" "030" "040" "045" "050" "060" "070" "075" "080" "085" "090" "120"
[13] "150" "160" "180" "190"
[1] "no_bsmt" "Fa" "TA" "Gd" "Ex"
[1] "N" "Y"
[1] "no_fireplace" "Po" "Fa" "TA" "Gd"
[6] "Ex"
# Tidy all character responses except ms_sub_class (since these are numbers and do not need to be tidied)
<- ames_all |>
ames_all mutate(across(where(is.factor) & !all_of("ms_sub_class"), tidy_responses))
# Check response labels
|>
ames_all select(where(is.factor)) |>
walk(\(column) print(levels(column)))
[1] "blmngtn" "blueste" "brdale" "brkside" "clearcr" "collgcr" "crawfor"
[8] "edwards" "gilbert" "greens" "grnhill" "idotrr" "landmrk" "meadowv"
[15] "mitchel" "names" "noridge" "npkvill" "nridght" "nwames" "oldtown"
[22] "sawyer" "sawyerw" "somerst" "stonebr" "swisu" "timber" "veenker"
[1] "020" "030" "040" "045" "050" "060" "070" "075" "080" "085" "090" "120"
[13] "150" "160" "180" "190"
[1] "no_bsmt" "fa" "ta" "gd" "ex"
[1] "n" "y"
[1] "no_fireplace" "po" "fa" "ta" "gd"
[6] "ex"
Categorical variable notes: Since tidy_responses adds x before numeric variables, we opted to tidy all character responses except ms_sub_class
so we would not need to correct these labels later (there is nothing to tidy when responses are completely numeric). We notice that ms_sub_class is best considered nominal, quality variables are best considered ordinal , and that neighborhood has many levels that I might consider collapsing, but these types of conversions will occur during eda_modeling.
Train test split
Now that we have completed our data cleaning, we will split our data into train and test sets and save out the cleaned files. Since John held out a separate test set from the data we were given, your split will actually create our training and validation sets. We will use his holdout set as the test data.
Generate a train/test split
Assign 25% of the data to be our validation set. Stratify this split on the sale_price
variable.
set.seed(12345)
<- ames_all %>%
splits initial_split(prop = 3/4, strata = "sale_price", breaks = 4)
Save cleaned files
Save out cleaned train and validation sets as csv files and name them hw_unit_2_train.csv
and hw_unit_2_val.csv
.
|>
splits analysis() |>
glimpse() |>
write_csv(here::here(path_data, "ames_clean_class_trn.csv"))
Rows: 1,465
Columns: 10
$ sale_price <dbl> 105000, 126000, 115000, 127500, 120000, 99500, 125000,…
$ garage_area <dbl> 730, 525, 0, 440, 308, 264, 264, 429, 539, 260, 0, 0, …
$ neighborhood <fct> names, names, names, npkvill, npkvill, sawyerw, sawyer…
$ ms_sub_class <fct> 020, 020, 020, 120, 120, 120, 120, 030, 090, 020, 020,…
$ total_bsmt_sf <dbl> 882, 882, 864, 1069, 836, 918, 744, 816, 0, 1040, 950,…
$ bsmt_qual <fct> ta, ta, ta, gd, gd, gd, gd, ta, no_bsmt, ta, ta, ta, t…
$ central_air <fct> y, y, y, y, y, y, y, n, y, y, y, y, y, y, y, y, y, y, …
$ tot_rms_abv_grd <dbl> 5, 4, 5, 4, 4, 5, 4, 5, 8, 6, 6, 10, 4, 6, 6, 6, 5, 4,…
$ fireplaces <dbl> 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ fireplace_qu <fct> no_fireplace, no_fireplace, po, fa, no_fireplace, ta, …
|>
splits assessment() |>
glimpse() |>
write_csv(here::here(path_data, "ames_clean_class_val.csv"))
Rows: 490
Columns: 10
$ sale_price <dbl> 189900, 105500, 306000, 222500, 355000, 221500, 204500…
$ garage_area <dbl> 482, 320, 772, 434, 962, 880, 676, 678, 280, 762, 588,…
$ neighborhood <fct> gilbert, brdale, nridght, gilbert, noridge, somerst, s…
$ ms_sub_class <fct> 060, 160, 020, 060, 060, 020, 020, 060, 020, 060, 160,…
$ total_bsmt_sf <dbl> 928, 525, 1704, 884, 1629, 1595, 1218, 991, 882, 1231,…
$ bsmt_qual <fct> gd, ta, ex, gd, ex, gd, gd, gd, ta, gd, gd, gd, gd, ta…
$ central_air <fct> y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, …
$ tot_rms_abv_grd <dbl> 6, 6, 7, 8, 7, 6, 4, 8, 5, 9, 3, 4, 7, 7, 6, 7, 7, 8, …
$ fireplaces <dbl> 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 2, 1, 0, …
$ fireplace_qu <fct> ta, no_fireplace, gd, gd, ta, gd, no_fireplace, gd, no…