Prediction of Blood Alcohol Concentrations in Human Subjects

Updating the Widmark Equation

Patricia E. Watson, M.H.Sc., Ian D. Watson, Ph.D. and Richard D. Batt, Ph.D., D.Phil.

SUMMARY. Equations are derived for expressing the relationship between alcohol intake and blood alcohol concentration in terms of total body water and the blood water fraction. These equations are more exact than Widmark's, and if used in conjunction with regression equations to calculate total body water, will give more accurate predictions of BAC.

In recent years traffic and health authorities around the world have presented the drinking public with numerous charts and reckoners that aim to inform people of the amount of beverage alcohol they can drink with safety. Most of these are based on calculations that use the Widmark equation (1) to estimate blood alcohol concentration (BAC).

It is nearly 50 years since Widmark first published this important equation, and while still basically correct, to use it in the same form today is to fail to take advantage of the data from numerous studies on body fluids published since 1950 (2). We show herein that the Widmark equation can be recast, with use of these data, to yield more accurate predictions of BAC.

The Widmark Equation

The Widmark equation describes the relationship, under fasting conditions, between the total amount of alcohol ingested (A), the alcohol concentration in blood at zero time (C_0) and the body weight (p):

$$ A = r \times p \times C_0. \quad [1] $$

1 From the Department of Chemistry, Biochemistry and Biophysics, Massey University, Palmerston North, New Zealand.

Received for publication: 12 May 1980. Revision: 26 November 1980.
Here \(r \) is a factor defined as the fraction of the body mass in which alcohol would be present if it were distributed at concentrations equal to that in blood.

The rate of alcohol metabolism in humans is linear under most conditions, particularly at moderate BACs, and under such conditions, the Widmark equation can be modified by substituting the term

\[
C_0 = C_t + \beta t, \tag{2}
\]

so that equation 1 becomes

\[
A = r \times p (C_t + \beta t) \tag{3}
\]

where \(C_t \) is the blood alcohol concentration after time \(t \), and \(\beta \) is the rate of ethanol disappearance from the blood, i.e., the slope of the descending portion of the blood alcohol curve.

Values for \(r \) can be determined if all other variables in equation 1 or 3 are known. However, in most situations in which the Widmark equation is used, such as in predicting BACs, all other variables are not known, and \(r \) must be assigned a value. From measurements on 30 subjects (20 men), Widmark (1) assigned to \(r \) mean values of 0.68 ± 0.085 for men and 0.55 ± 0.055 for women. Since these estimations in 1932, other investigators have reported values ranging from 0.50 to 0.94 (3). In cases in which \(r \) was not measured under fasting conditions, values greater than 1.0 have been recorded, presumably due to delayed absorption of alcohol because of food in the gastrointestinal or alimentary tract (4). In such situations, alcohol would not be distributed rapidly to equilibrate throughout the body.

The Alcohol: Total-Body-Water Equation

The decision on what value to ascribe to \(r \) can be entirely avoided by reducing the problem to first principles. The composition of the total body mass can be described as the sum of the body fat mass (i.e., ether-soluble lipids) and the lean body mass. The latter may be defined as the total body water mass plus the total lean solids mass. Since alcohol does not dissolve in body fat to any appreciable extent but is freely miscible with water, ingested alcohol will be almost totally associated with the body water. Accordingly, in any tissue, the alcohol content will be proportional to that tissue’s water content. Alcohol is thus suitable for use as a solute to measure total body water volume and, in fact, has been used for this purpose (5–8). If we assume that when alcohol is ingested it is absorbed and uniformly through the concentration of alcohol in blood water. However, if measured in whole-blood alcohol per unit volume, it can be related to the fraction of water in body weight

\[
B_w = \frac{A}{TBW} \tag{4}
\]

If the weight (in kg) of alcohol in the blood is \(A \), the total volume of body water (TBW) and the hypothetical zero water content of the body is

\[
\frac{A}{TBW} = B_w
\]

or, using equation 2

\[
\frac{p (C_t + \beta t)}{TBW} = B_w
\]

In deriving these equations for the distribution of alcohol from the liver.

Estimation of the Vc

To solve equation 4, values of \(p \), \(C_t \), \(\beta \), and \(B_w \) are necessary. \(p \) can be obtained by direct measurement, but \(C_t \), \(\beta \), and \(B_w \) are not practical to measure. Instead, some anthropometrically determined constants and solutes other than ethanol are used to construct linear equations relating body mass to body height and weight. These equations apply to healthy subjects with normal alcohol metabolism.
BLOOD ALCOHOL CONCENTRATIONS

he body mass in which ingested it is absorbed immediately and spreads instantaneously and uniformly throughout the body water, it follows that the concentration of alcohol in the total body water equals that in the blood water. However, alcohol concentrations are normally measured in whole-blood samples and expressed as the weight of alcohol per unit volume of blood. These whole-blood concentrations can be related to the concentration in blood water through the fraction of water in whole blood \(B_w \), defined as

\[
B_w = \frac{\text{volume of water in blood}}{\text{volume of blood}}
\]

If the weight (in grams) of alcohol ingested by fasting subjects is \(A \), the total volume (in liters) of water in the body is \(TBW \), and the hypothetical zero-time equilibrated blood alcohol concentration (in grams per liter) is \(C_0 \), then it follows that

\[
\frac{A}{TBW} = \frac{C_0}{B_w} \quad \text{and} \quad A = \frac{TBW}{B_w} \times C_0
\]

or, using equation 2,

\[
A = \frac{TBW}{B_w} (C_t + \beta t).
\]

In deriving these equations it has been assumed that elimination of alcohol from the body follows zero-order kinetics.

Estimation of the Volumes of Body and Blood Water

To solve equation 5 or 6, estimates of \(TBW \) and \(B_w \) for each subject are necessary. The most precise estimate of \(TBW \) is obtained by direct measurement using isotope or other dilution methods which have an accuracy of ± 2 to 5% (9). In alcohol research, however, the time, equipment or expertise for such direct measurements may not be available. In that case, the volume of body water can be estimated with reasonable accuracy (± 9 to 11%) from linear regression equations derived by us (10) from simple anthropometric data. Total body water measurements (using solutes other than ethanol) of 458 men (aged 17 to 86) and 265 women (aged 17 to 84) were collected from the literature and used to construct linear-regression equations relating \(TBW \) to age, height and weight. The equations were designed to apply to any healthy Western adult population, from lean to obese. They do not apply to subjects with clinical evidence of edema or malnutrition,
or to those receiving diuretic therapy, i.e., conditions where the relationship between TBW and body weight is disturbed.

In women, age was found not to be a significant variable, and the linear-regression equation which best fit the reported experimental data (when TBW was in liters, height in centimeters and weight in kilograms) was

\[TBW = -2.097 + 0.1069 \text{ Height} + 0.2466 \text{ Weight}. \]

[7]

The total variation (coefficient of determination, \(\text{cd} \)) explained by this equation was 73.6\%, and the standard deviation (\(\text{sd} \)) of the total body water was 3.6. The following simpler form was almost as satisfactory (\(\text{cd} = 71.7\%, \text{ sd} = 3.72 \)):

\[TBW = 14.46 + 0.2549 \text{ Weight}. \]

[8]

For men, the corresponding equations (including age in years which was found to be a significant variable) were as follows:

\[TBW = 2.447 - 0.09516 \text{ Age} + 0.1074 \text{ Height} \]
\[+ 0.3362 \text{ Weight}, \]

[9]

(\(\text{cd} = 70.4\%, \text{ sd} = 3.76 \)) and the next best equation (\(\text{cd} = 68.9\%, \text{ sd} = 3.86 \)),

\[TBW = 20.03 - 0.1183 \text{ Age} + 0.3626 \text{ Weight}. \]

[10]

The derivation of these equations is fully reported elsewhere (10), together with nomograms\(^*\) for estimating TBW in men and women based on these equations. Equations 7 through 10 will need to be revised in the future if a major change in life-style results in a significant shift in the mean TBW of a population.

The TBW of any person thus can be either measured directly, calculated using one of the above equations or read from the appropriate nomogram. The fraction of water in the blood (\(B_w \)) can also be measured directly, or a mean value of .80 (6, 11) can be used, depending on the accuracy required. Normal variations from this mean value are small, and the error introduced by using .80 is acceptable. With this value for \(B_w \), equations 5 and 6 then become

\[A = \frac{TBW}{.80} \times C_0 \]

[11]

and

\(^*\) Enlarged versions of the nomograms from which TBW can be read more easily are available on request from the authors.
BLOOD ALCOHOL CONCENTRATIONS

\[A = \frac{TBW}{.80} (C_t + \beta t). \] \[12 \]

The Accuracy Gained by Using TBW Estimations

The improved accuracy obtained by using the TBW estimation equations may be demonstrated if actual measured \(C_0 \) values are compared with those predicted by equation 11, and by the Widmark equation, transformed as follows:

\[C_0 = \frac{.80}{TBW} \times A \] \[13 \]

and

\[C_0 = \frac{A}{r \times p}. \] \[14 \]

Studies of alcohol consumption by healthy subjects under fasting conditions provided test data on 54 women (12–14) and 85 men (12, 14, 15). In the studies of women, TBW was estimated using equation 7 for one group (12), but equation 8 was used for the others (13, 14) because height measurements were missing. Widmark’s mean \(r \) value of 0.55 was used in equation 14, with measured values for \(A \) and \(p \). Alcohol dose varied from 0.4 to 0.9 g per kg of body weight, and the resultant zero-time blood alcohol levels (\(C_0 \)) ranged from 58 to 136 mg per dl. The mean (± sd) measured \(C_0 \) was 91 ± 22 mg per dl; the mean \(C_0 \) calculated using the \(A:TBW \) equation (i.e., equation 13) was 93 ± 23 and that calculated using the Widmark equation was 104 ± 26 mg per dl. Thus, while the \(A:TBW \) equation gave a \(C_0 \) value very close to the measured value, Widmark’s equation tended to overestimate blood alcohol by 13 mg per dl on average. The discrepancy is illustrated in Figure 1, where a histogram presents the difference between the measured and predicted \(C_0 \) values, calculated as a percentage of the measured value. When the \(A:TBW \) equation was used, a normal distribution about zero (i.e., the measured \(C_0 \) value) resulted, 35% of subjects being within ± 5% of the measured \(C_0 \), 63% within ± 10%, and 83% within ± 15%. However, when the Widmark equation was used, the results were positively skewed, and in the majority of subjects the \(C_0 \) values were underestimated, many considerably so. Only 17% of subjects were within ± 5%, 31% within ± 10% and 50% within ± 15% of the measured \(C_0 \).
In two studies of men (12, 15), equation 9 was used to calculate TBW, while in the third (14)—again because of lack of height measurements—TBW was calculated from equation 10. Widmark’s mean r value of 0.68 was used in equation 14. Alcohol intake varied from 0.4 to 1.25 g per kg of body weight, and the resultant C_0 values varied from 48 to 212 mg per dl.

The mean measured C_0 for men was 103 ± 52 mg per dl, the mean C_0 calculated from the A : TBW equation was 101 ± 51 and that calculated from the Widmark equation, 110 ± 54. Again, while the A : TBW equation result was comparable with the mean measured value, the value derived from Widmark’s equation was higher. The extent of this overestimation is shown more clearly in the histogram in Figure 2, which illustrates the difference between measured and predicted C_0 values, calculated as percentages of the measured C_0. When the A : TBW equation was used, a normal distribution about zero again resulted, 44% of the subjects being within $\pm 5\%$, 62% within $\pm 10\%$ and 87% within $\pm 15\%$ of the measured C_0 values. However, results were again underestimated. Here 27% were $\pm 10\%$ and 72% were $\pm 20\%$.

Consideration of the BACs, rather than C_0, is similar to those in the measured C_0 again, either men or women.

Hence, not only are the blood alcohol levels much less precisely measured, but the latter can be considerably overestimated.

Practical Consequence

The alcohol-loading procedure produces a required C_0 of 0.5 mg per kilogram of body weight.
measured \(C_0 \) value. When the Widmark equation was used, the results were again positively skewed, with most \(C_0 \) values overestimated. Here 27% of subjects were within \(\pm 5\% \), 51% within \(\pm 10\% \) and 72% within \(\pm 15\% \) of the measured \(C_0 \).

Consideration of the difference between measured and predicted BACs, rather than \(C_0 \), for both men and women gave results very similar to those in Figure 1 and Figure 2. Furthermore, a plot of measured \(C_0 \) against predicted \(C_0 \) showed no trend with dose, for either men or women, when the A:TBW equation was used.

Hence, not only does the Widmark equation overestimate the blood alcohol level in most cases, but it also predicts \(C_0 \) values much less precisely, particularly in women.

Practical Consequences of Using the A:TBW Equation

The alcohol-loading dose given to an experimental subject to produce a required \(C_0 \) is usually calculated in grams of alcohol per kilogram of body weight, with no correction for individual varia-
tions of the ratio of body fat to total body mass. Accordingly, there are wide variations in C_0, even when subjects are the same body weight. More uniform C_0 values between subjects will be obtained if the $A:TBW$ equation is used and doses are calculated on the basis of grams of alcohol per liter of body water. Alternatively, doses could be expressed as grams of alcohol per kilogram of lean body mass, since this is directly related to body water by the Pace and Rathbun equation (16):

$$\text{Lean Body Mass} = \frac{TBW}{0.73} \tag{15}$$

In experimental work two additional factors are frequently estimated: the total amount of alcohol eliminated from the body per hour (b_{60}), and the rate of alcohol metabolism (R), expressed as the amount of alcohol eliminated from the body per kilogram per hour. Widmark calculated these factors using the following formulae:

$$b_{60} = p \times r \times \beta_{60} \tag{16}$$

and

$$R = \frac{b_{60}}{p} = r \times \beta_{60} \tag{17}$$

where the rate constant (β_{60}) is expressed per hour.

As methods of measuring body-fluid volume had not been developed in Widmark's time, he used the function $p \times r$ in equation 16 to estimate the body mass in which alcohol would be present if it were distributed at concentrations equal to those in blood. This is not necessary today, and the two factors can be defined more exactly as follows:

$$b_{60} = \frac{TBW \times \beta_{60}}{B_w} \tag{18}$$

and

$$R' = \frac{b_{60}}{TBW} = \frac{\beta_{60}}{B_w} \tag{19}$$

where R' is the weight of alcohol eliminated per liter of body water per hour. However, as alcohol is metabolized primarily in the liver, and liver size is considered to be proportional to lean body mass (LBM), it may be preferable to define R in terms of LBM as follows:

where LBM is calculated in kilograms and expressed as grams of alcohol per hour.

Using either equation, the effects of obesity can be considered in relation to its body-weight.

The major advantages of b_{60} or alcohol elimination and R or alcohol metabolism over the mean value must, however, only be regarded as the $A:TBW$ equation using equations 7 through 9, individual results can be compared with the mean value of TBW.

9. Sni, W. E. The gro
Accordingly, there are the same body projects will be obtained are calculated on the water. Alternatively, per kilogram of lean dry water by the Pace

\[R'' = \frac{b_{60}}{LBM} = 0.73 \frac{\beta_{60}}{B_w} \]

[20]

where \textit{LBM} is calculated using equation 15 and \(R'' \) is now expressed as grams of alcohol eliminated per kilogram of \textit{LBM} per hour.

Using either equation 19 or 20 eliminates the confusion over effects of obesity on \(R \) which can arise if Widmark’s formula 16 with its body-weight factor is used.

\textbf{CONCLUSION}

The major advantage of the \(A:TBW \) equation lies in the prediction of \textit{BACs} or alcohol intake. When Widmark’s equation is used, a mean value must be assigned to \(r \), and the resultant values can only be regarded as approximate for the individual. When the \(A:TBW \) equation is used, however, with \textit{TBW} estimated from equations 7 through 10, and a value of .80 for \(B_w \), more precise individual results can be obtained. Variations in individual \(B_w \) from the mean value of .80 are minimal compared with variations in \textit{TBW}.

\textbf{REFERENCES}

Blood

Lillian Gleiber
Ernest H.

SUMMARY. Blood types in heavy drinkers than among
drinkers.

THE SEARCH

and various

an extensive

(1). As was true for associations between
mostly the ABO h
described an elevatio
cated an elevation of
while the others (6
11–13) of other gen
alcoholism was th
shown (13) to be p
Reid et al. (10), h
between 100 cirrh
Heden (9) reported ev
on nonsecretion.

Besides this pa
with “alcoholics,” (1
None related to no
prerequisite of alco
on the distribution
blood serum and

1 Department of Epidemiology
2 Department of Human Nutrition
3 Department of Psychotherapy

ACKNOWLEDGMENT.—TI
and Alcoholism grant RO1
University of Michigan School
Received for publication

4 Madden, J. S. ABO h