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Abstract

We developed three machine learning models that predict hour-by-hour probabilities of a future 

lapse back to alcohol use with increasing temporal precision (i.e., lapses in the next week, 

next day, and next hour). Model features were based on raw scores and longitudinal change in 

theoretically implicated risk factors collected through ecological momentary assessment (EMA). 

Participants (N=151; 51% male; mean age = 41; 87% White, 97% Non-Hispanic) in early 

recovery (1–8 weeks of abstinence) from alcohol use disorder provided 4x daily EMA for up 

to three months. We used grouped, nested cross-validation to select best models and evaluate 

the performance of those best models. Models yielded median areas under the receiver operating 

curves (auROCs) of .89, .90, and .93 in the 30 held-out test sets for week, day, and hour level 

models, respectively. Some feature categories consistently emerged as being globally important to 

lapse prediction across our week, day, and hour level models (i.e., past use, future self-efficacy). 

However, most of the more punctate, time-varying constructs (e.g., craving, past stressful events, 

arousal) appear to have greater impact within the next hour prediction model. This research 

represents an important step toward the development of a smart (machine learning guided) sensing 

system that can both identify periods of peak lapse risk and recommend specific supports to 

address factors contributing to this risk.

General scientific summary: This study suggests that densely sampled self-report data 

can be used to predict lapses back to alcohol use with varying degrees of temporal precision. 

Additionally, the contextual features contributing to risk of lapse may offer important insight for 

treatment matching through a digital therapeutic.
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Introduction

Over 30 million adults in the United States (US) had an active alcohol use disorder (AUD) 

in 2021, and 23.3% reported engaging in past-month binge drinking (SAMHSA Center 

for Behavioral Health Statistics and Quality, 2021). Alcohol ranks as the third leading 

preventable cause of death in the US, accounting for approximately 140,000 fatalities 

Correspondence concerning this article should be addressed to John J. Curtin, Department of Psychology, University of Wisconsin-
Madison, 1202 W Johnson St, Madison, WI 53521, jjcurtin@wisc.edu.
KW & SJS contributed equally as co-first authors.

HHS Public Access
Author manuscript
J Psychopathol Clin Sci. Author manuscript; available in PMC 2024 November 12.

Published in final edited form as:
J Psychopathol Clin Sci. 2024 October ; 133(7): 527–540. doi:10.1037/abn0000901.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Centers for Disease Control and Prevention (CDC), n.d.) and economic costs that exceed 

$249 billion annually (Substance Abuse and Mental Health Services Administration (US) & 

Office of the Surgeon General (US), 2016).

Existing clinician-delivered treatments for AUD that were derived from Marlatt’s 

relapse prevention model (Marlatt & Gordon, 1985) are effective when delivered (e.g., 

cognitive-behavioral therapy, mindfulness-based relapse prevention (Bowen et al., 2014)). 

Unfortunately, fewer than 1 in 20 adults with an active AUD receive any treatment 

(SAMHSA Center for Behavioral Health Statistics and Quality, 2021). Even more 

concerning, failure to access treatment is associated with demographic factors including 

race, ethnicity, geographic region, and socioeconomic status, which further increase mental 

health disparities (Office of the Surgeon General (US) et al., 2001). This treatment gap and 

associated disparities stem from well-known barriers to receiving clinician-delivered mental 

healthcare related to affordability, accessibility, availability, and acceptability (Jacobson et 

al., 2022).

Digital therapeutics may help to overcome these barriers associated with in-person, 

clinician-delivered treatments. Digital therapeutics provide evidence-based interventions and 

other supports via smartphones to prevent, treat, or manage a medical disorder, either 

independently or in conjunction with traditional treatments (Jacobson et al., 2022). They 

offer highly scalable, on-demand therapeutic support that is accessible whenever and 

wherever it is needed most. Several large, randomized controlled trials have confirmed that 

digital therapeutics for AUD improve clinical outcomes (Campbell et al., 2014; Gustafson 

et al., 2014; Jacobson et al., 2022). Additionally, US adults (including patients with AUD 

(Wyant et al., 2023)) display high rates of smartphone ownership (over 85% in 2021), 

with minimal variation across race, ethnicity, socioeconomic status, and geographic settings 

(Center, 2021). Therefore, digital therapeutics may not only mitigate in-person treatment 

barriers but also combat associated disparities (Jacobson et al., 2022).

Improving Digital Therapeutics via Personal Sensing

Despite the documented benefits of digital therapeutics, their full potential has not yet been 

realized. Patients often don’t engage with digital therapeutics as developers intended, and 

long-term engagement may not be sustained or matched to patients’ needs (Hatch et al., 

2018; Jacobson et al., 2022). The substantial benefits of digital therapeutics come from 

easy, 24/7 access to their intervention and other support modules. However, the burden falls 

primarily on the patient to identify the most appropriate modules for them in that specific 

moment during their recovery.

This difficulty is magnified by the dynamic, chronic, and relapsing nature of AUD (Brandon 

et al., 2007). Numerous risk and protective factors interact in complex, non-linear ways 

to influence the probability, timing, and severity of relapse (i.e., a goal-inconsistent return 

to frequent, harmful alcohol use) (Witkiewitz & Marlatt, 2007). Factors such as urges, 

mood, lifestyle imbalances, self-efficacy, and motivation can all vary over time. Social 

networks may evolve to become more protective or risky, and high-risk situations can arise 

unexpectedly. Consequently, both relapse risk and the factors driving that risk fluctuate over 

time.
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Successful, continuous monitoring of risk for relapse and its contributing factors would 

enable patients to adapt their lifestyle, behaviors, and supports to their changing needs. 

Successful monitoring could also direct patients to engage with the most appropriate digital 

therapeutic modules, addressing the unique risks present at any given moment throughout 

their recovery. Such continuous monitoring is now feasible via personal sensing (i.e., in-situ 

data collection via sensors embedded in individuals’ daily lives) (Bae et al., 2018; Chih et 

al., 2014; Epstein et al., 2020; Moshontz et al., 2021; Soyster et al., 2022; Wyant et al., 

2023).

The current project focuses explicitly on using ecological momentary assessment (EMA) 

for monitoring risk of return to alcohol use. EMA can be easily implemented with only 

a smartphone. Moreover, comparable item responses can be collected consistently across 

different hardware and operating systems. Thus, EMA can be incorporated essentially 

identically into any existing or future smartphone-based digital therapeutic. EMA, like 

other personal sensing methods, can support the frequent, in-situ, longitudinal measurement 

necessary for monitoring fluctuating relapse risk. Long-term monitoring with EMA has been 

well-tolerated by individuals with AUD (Wyant et al., 2023). Additionally, previous research 

has validated the use of EMA to measure known risk and protective factors for relapse, 

including craving (Dulin & Gonzalez, 2017), mood (Russell et al., 2020), stressors (Wemm 

et al., 2019), positive life events (Dvorak et al., 2018), and motivation/efficacy (Dvorak et 

al., 2014). EMA offers privileged access into these and other subjective factors that may be 

difficult to quantify reliably through other sensing methods.

Promising Preliminary Research

Preliminary research is now emerging that uses EMA responses as features in machine 

learning models to predict the probability of future alcohol use (Bae et al., 2018; Chih et 

al., 2014; Soyster et al., 2022; Walters et al., 2021). This research is important because 

it rigorously required strict temporal ordering necessary for true prediction, with features 

measured before alcohol use outcomes. It also used resampling methods (e.g., cross-

validation) that prioritize model generalizability to increase the likelihood these models will 

perform well with new people.

Despite this initial promise, several important limitations exist. Some prediction models 

have been trained using convenience samples (e.g., college students) (Bae et al., 2018; 

Soyster et al., 2022). Other models have been developed to predict hazardous alcohol use 

in non-treatment-seeking populations (Walters et al., 2021). In both these instances, features 

that predict planned or otherwise intentional alcohol use among individuals not motivated to 

change their behavior may not generalize to people in AUD recovery. Moreover, individuals 

who have not yet begun to contemplate and/or commit to behavior change regarding their 

alcohol use are unlikely to use digital therapeutics designed for AUD recovery (Prochaska et 

al., 1992).

A handful of other models have been trained to predict putative precursors of substance use, 

such as craving (Burgess-Hull et al., 2022; Dumortier et al., 2016) and stress (Epstein et al., 

2020). Although craving and stress may be associated with substance use, their relationships 

with relapse are complex, inconsistent, and not always very strong (Fronk et al., 2020; 
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Sayette, 2016). For these reasons, we believe that explicit substance use may be a better 

target for prediction.

With respect to explicit substance use, we also argue that models that predict lapses (i.e., 

single instances of goal-inconsistent substance use) rather than relapse may be preferred. 

Lapses are clearly defined, observable, and have temporally precise onsets and offsets. 

Conversely, definitions of relapse vary widely (Witkiewitz & Marlatt, 2007), and it is 

difficult to delineate precisely when relapse begins or ends. Lapses always precede relapse 

and therefore may serve as an early warning sign for intervention. Finally, maladaptive 

responses to a lapse (e.g., abstinence violation effects; (Marlatt & Gordon, 1985)) can 

undermine recovery by themselves, making lapses clinically meaningful events to detect and 

address.

An early alcohol lapse prediction model developed by Gustafson and colleagues (Chih et al., 

2014) provided the foundation on which our current project builds. Participants completed 

EMAs once per week for 8 months while using a digital therapeutic after discharge from 

an inpatient treatment program for AUD. These EMAs were used as features in a machine 

learning model to predict lapses. However, the temporal precision for both the features and 

outcome was coarse. Model predictions were updated only once per week at most, and lapse 

onsets could occur anytime within the next two weeks. This coarseness restricts the model 

from being used to implement just-in-time interventions (e.g., guided mindfulness or other 

stress reduction techniques, urge surfing) that are well-suited to digital therapeutics.

The Current Study

The current study addresses these limitations of previously developed prediction models. 

We trained our models using participants in early recovery from moderate to severe AUD 

who reported a goal of alcohol abstinence. We developed three separate models that 

provide hour-by-hour probabilities of a future lapse back to alcohol use with increasing 

temporal precision: lapses in the next week, next day, and next hour. Model features were 

engineered from raw scores and longitudinal change in responses to 4X daily EMAs. These 

features were derived to measure theoretically-implicated risk factors and contexts that have 

considerable support as predictors of lapses including past use, craving, past pleasant events, 

past and future risky situations, past and future stressful events, emotional valence and 

arousal, and self-efficacy (Fronk et al., 2020; for reviews, see Marlatt & Gordon, 1985; 

Witkiewitz & Marlatt, 2007).

In this study, we characterize the performance of these three prediction models in held-out 

data (i.e., for observations from participants who were not used to train the models). We 

also evaluated the relative feature importance of key relapse prevention constructs in the 

models as part of the model validation process and to contribute to the relapse prevention 

literature. This research represents an important step toward the development of a “smart” 

(machine learning guided) sensing and prediction system that can be embedded within a 

digital therapeutic both to identify periods of peak lapse risk and to recommend specific 

supports to address factors contributing to this risk.
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Method

Transparency and Openness

We adhere to research transparency principles that are crucial for robust and replicable 

science. We reported how we determined the sample size, all data exclusions, all 

manipulations, and all study measures. We provide a transparency report in the supplement. 

Finally, our data, analysis scripts, annotated results, questionnaires, and other study 

materials are publicly available (https://osf.io/w5h9y/).

Our study design and analyses were not pre-registered. However, we restricted many 

researcher degrees of freedom via cross-validation. Cross-validation inherently includes 

replication; models are fit on held-in training sets, decisions are made in held-out validation 

sets, and final performance is evaluated on held-out test sets.

Participants

We recruited 151 participants in early recovery (1–8 weeks of abstinence) from AUD in 

Madison, Wisconsin, US. This sample size was determined based on traditional power 

analysis methods for logistic regression (Hsieh, 1989) because comparable approaches 

for machine learning models have not yet been validated. Participants were recruited 

through print and targeted digital advertisements and partnerships with treatment centers. 

We required participants:

1. were age 18 or older,

2. could write and read in English,

3. had at least moderate AUD (>= 4 self-reported DSM-5 symptoms),

4. were abstinent from alcohol for 1–8 weeks, and

5. were willing to use a single smartphone (personal or study provided) while on 

study.

We also excluded participants exhibiting severe symptoms of psychosis or paranoia.

Procedure

Participants completed five study visits over approximately three months. After an 

initial phone screen, participants attended an in-person screening visit to determine 

eligibility, complete informed consent, and collect self-report measures. Eligible, consented 

participants returned approximately one week later for an intake visit. Three additional 

follow-up visits occurred about every 30 days that participants remained on study. 

Participants were expected to complete four daily EMAs while on study. Other personal 

sensing data streams (geolocation, cellular communications, sleep quality, and audio check-

ins) were collected as part of the parent grant’s aims (R01 AA024391).

Measures

Ecological Momentary Assessments—Participants completed four brief (7–10 

questions) EMAs daily. The first and last EMAs of the day were scheduled within one 
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hour of participants’ typical wake and sleep times. The other two EMAs were scheduled 

randomly within the first and second halves of their typical day, with at least one hour 

between EMAs. Participants learned how to complete the EMA and the meaning of each 

question during their intake visit.

On all EMAs, participants reported dates/times of any unreported past alcohol use. Next, 

participants rated the intensity of four recent experiences:

• craving [“How intense was your greatest urge to drink?”],

• risky situations [“Did you encounter any risky situations (people, places, or 

things)? If yes, rate the intensity of the situation.”],

• stressful events [“Has a hassle or stressful event occurred? If yes, rate the 

intensity of the event.”],

• pleasant events [Has a pleasant or positive event occurred? If yes, rate the 

intensity of the event.”].

For each of these experiences, participants rated the maximum intensity since their last 

EMA on a 12-point ordinal scale (mid- and end-point anchors of “Mild”, “Moderate”, and 

“Strong”). If they did not experience an event since their last EMA, participants selected 

“No” to indicate that no experience occurred for that respective question.

Next, participants rated their current affect using 11-point bipolar scales measuring valence 

(end-point anchors of “Unpleasant/Unhappy” to “Pleasant/Happy”) and arousal (end-point 

anchors of “Calm/Sleepy” to “Aroused/Alert”).

On the first EMA each day, participants used an 11-point bipoloar scale (end-point anchors 

of “Very Unlikely” to “Very Likely”) to rate the likelihood of:

• future risky situations [“How likely are you to encounter risky situations (people, 

places, or things) within the next week?”],

• future stressful events [“How likely are you to encounter a stressful event within 

the next week?”],

• abstinence efficacy [“How likely are you to drink any alcohol within the next 

week?”].

Individual Differences—We collected self-report information about demographics (age, 

sex, race, ethnicity, education, marital status, employment, and income) and clinical 

characteristics (AUD milestones, number of quit attempts, lifetime AUD treatment history, 

lifetime receipt of AUD medication, DSM-5 AUD symptom count, and current drug 

use (WHO ASSIST Working Group, 2002)). This information was collected primarily to 

characterize the sample and to evaluate the diversity of the training data. We also included 

demographic features in our models to quantify the importance of relapse prevention 

constructs beyond these static characteristics, given known disparities in AUD and other 

health outcomes (Jacobson et al., 2022)1.
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Data Analytic Strategy

Data preprocessing, modeling, and Bayesian analyses were done in R using the tidymodels 

ecosystem (Kuhn & Wickham, 2020). Models were trained and evaluated using high-

throughput computing resources provided by the University of Wisconsin Center for High 

Throughput Computing (Center for High Throughput Computing, 2006).

Lapse Labels—We predicted future lapses in three prediction window widths: one week, 

one day, and one hour. Prediction windows were updated hourly. All classification models 

provide hour-by-hour predictions of future lapse probability for all three window widths.

For each participant, the first prediction window for all three widths began at midnight on 

their second day of participation and ended one week, one day, or one hour later. This 

ensured at least 24 hours of past EMAs for future lapse prediction in these first windows. 

Subsequent windows for each participant were created by repeatedly rolling the window 

start/end forward one hour until the end of their study participation (i.e., each participant’s 

last prediction window started one week, one day, or one hour before their last recorded 

EMA).

We labeled each prediction window as lapse or no lapse using participants’ reports from the 

EMA question “Have you drank any alcohol that you have not yet reported?”. If participants 

answered yes to this question, they entered the date and hour of the start and end of the 

drinking episode. During monthly follow-up sessions, participants could review and correct 

their lapses reported by EMA and report to staff any additional lapses.

A prediction window was labeled lapse if the start date/hour of any drinking episode fell 

within that window. A window was labeled no lapse if no alcohol use occurred within that 

window +/− 24 hours. If no alcohol use occurred within the window but did occur within 24 

hours of the start or end of the window, the window was excluded. We used this conservative 

24-hour fence for labeling windows as no lapse (vs. excluded) to increase the fidelity of 

these labels. Given that most windows were labeled no lapse, and the outcome was highly 

unbalanced, it was not problematic to exclude some no lapse events to further increase 

confidence in those labels.

Feature Engineering—Features were calculated using only data collected before the start 

of each prediction window to ensure our models were making true future predictions. We 

created features for both baseline and full models. The baseline models were developed 

to determine how well we could predict lapses using a simple model based only on the 

participants’ histories of previous lapses. The full models used all EMA responses combined 

with demographic and day/time features.

The baseline models had only one dummy-coded feature: lapse frequency (high vs. low). 

The median number of lapses across participants during the study period was 1. Therefore, 

the lapse frequency feature was coded low when the participant had a history of 1 or fewer 

1Features for income and employment were inadvertently excluded from all models.
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lapses before that prediction window. This feature was coded high when the participant had 

more than 1 lapse before that window.

Features for the full model were derived from three sources: 1) common demographic 

characteristics, 2) day of the week and hour of the day at prediction window onset, and 

3) previous EMA responses. We created a quantitative feature for age, and dummy-coded 

features for sex (male vs. female), race/ethnicity (White/Non-Hispanic vs. other), marital 

status (never married vs. married vs. other), and education (high school or less vs. some 

college vs. 4-year degree or more). We created dummy-coded features to indicate time of 

day (5pm - midnight vs. any other time) and day of week that the prediction window began.

We created raw EMA features for varying scoring epochs before the start of the prediction 

window for all EMA items excluding the alcohol use question. For the six EMA questions 

that appeared on all four daily EMAs, we used five scoring epochs of 12, 24, 48, 72, and 

168 hours. For the three EMA questions that only appeared on the morning EMA, we 

used three scoring epochs of 48, 72, and 168 hours. Raw features included min, max, and 

median scores for each EMA question across all EMAs in each epoch for that participant. 

We calculated change features by subtracting the participant’s mean score for each EMA 

question (using all EMAs collected before the start of the prediction window) from the 

associated raw feature. These change features allowed us to capture within-subject effects by 

comparing recent EMA responses relative to an individual’s own baseline. For both raw and 

change features, the feature was set to missing (and later imputed; see below) if no responses 

to the specific EMA question were provided by the participant within the associated scoring 

epoch.

We also created raw and change features based on the most recent response for each EMA 

question (excluding the alcohol use question). This generated two features for each EMA 

question: 1) raw value of the most recent previous response, and 2) difference between that 

raw value and the mean response to that EMA question over all EMAs collected before that 

prediction window.

We also calculated raw and change rate features from previously reported lapses. We 

calculated lapse rate features using the same five scoring epochs described earlier. Raw lapse 

rate features were generated by dividing the total number of previously observed lapses 

within a scoring epoch by the duration of that epoch. For change rate features, we subtracted 

the rate of previous lapses for that participant (i.e., total number of lapses while on-study 

divided by total hours on-study before the prediction window) from their associated raw 

lapse rate. We employed a similar approach to calculate raw and change rate of missing 

EMAs (i.e., number of full EMA surveys that were requested but not completed in a scoring 

epoch / duration of epoch).

Other generic feature engineering steps included: 1) imputing missing data (median 

imputation for numeric features, mode imputation for nominal features); 2) dummy coding 

for nominal features; and 3) removing zero-variance features. Medians/modes for missing 

data imputation and identification of zero variance features were derived from held-in 

(training) data and applied to held-out (validation and test) data (see Cross-validation section 
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below). We recognize that median/mode imputation is a coarse method for handling missing 

data; however, computational costs of more sophisticated methods (e.g., KNN imputation, 

multiple imputation) were not practical for this study. A sample feature engineering script 

(i.e., tidymodels recipe) containing all feature engineering steps is available on our OSF 

study page.

Model Training and Evaluation

Statistical Algorithm and Hyperparameters.: We trained and evaluated six separate 

classification models: one baseline and one full model for each prediction window 

(week, day, and hour). We initially considered four well-established statistical algorithms 

(XGBoost, Random Forest, K-Nearest Neighbors, and Elastic Net) that vary across 

characteristics expected to affect model performance (e.g., flexibility, complexity, handling 

higher-order interactions natively) (Kuhn & Johnson, 2018). However, preliminary 

exploratory analyses suggested that XGBoost consistently outperformed the other three 

algorithms2. Furthermore, the Shapley Additive Explanations (SHAP) method, which 

we planned to use for explanatory analyses of feature importance in our full models, 

is optimized for XGBoost. Consequently, we focused our primary model training and 

evaluation on the XGBoost algorithm only.

Candidate XGBoost model configurations differed across sensible values for the 

hyperparameters mtry, tree depth, and learning rate using grid search. All configurations 

used 500 trees with early stopping to prevent over-fitting. All other hyperparameters 

were set to tidymodels package defaults. Candidate model configurations also differed on 

outcome resampling method (i.e., up-sampling and down-sampling of the outcome using 

majority/no lapse to minority/lapse ratios ranging from 1:1 to 5:1). We calibrated predicted 

probabilities using the beta distribution to support optimal decision-making under variable 

outcome distributions (Kull et al., 2017).

Model training and evaluation used all participants (N = 151), regardless if they had 

any positive labels (i.e., lapses) because XGBoost itself does not use grouping of 

observations within participants. This grouping is handled instead by a participant-grouped 

cross-validation procedure (below).

Performance Metric.: Our primary performance metric for model selection and evaluation 

was area under the Receiver Operating Characteristic Curve (auROC) (Kuhn & Johnson, 

2018). auROC indexes the probability that the model will predict a higher score for a 

randomly selected positive case (lapse) relative to a randomly selected negative case (no 

lapse). This metric was selected because it 1) combines sensitivity and specificity, which are 

both important characteristics for clinical implementation; 2) is an aggregate metric across 

all decision thresholds, which is important because optimal decision thresholds may differ 

across settings and goals; and 3) is unaffected by class imbalance, which is important for 

comparing models with differing prediction window widths and levels of class imbalance.

2In early exploratory analyses, we evaluated auROCs of all four algorithms using grouped k-fold cross-validation for models based on 
preliminary feature engineering using the EMAs. XGBoost models consistently outperformed other algorithms such that we focused 
all further development on XGBoost to reduce the substantial computational time associated with model training and evaluation.
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Cross-validation.: We used participant-grouped, nested cross-validation for model training, 

selection, and evaluation with auROC. Grouped cross-validation assigns all data from 

a participant as either held-in or held-out to avoid bias introduced when predicting a 

participant’s data from their own data. Nested cross-validation uses two nested loops for 

dividing and holding out folds: an outer loop, where held-out folds serve as test sets for 

model evaluation; and inner loops, where held-out folds serve as validation sets for model 

selection. Importantly, these sets are independent, maintaining separation between data used 

to train the models, select the best models, and evaluate those best models. Therefore, nested 

cross-validation removes optimization bias from the evaluation of model performance in the 

test sets and can yield lower variance performance estimates than single test set approaches 

(Jonathan et al., 2000).

We used 1 repeat of 10-fold cross-validation for the inner loops and 3 repeats of 10-fold 

cross-validation for the outer loop. Best model configurations were selected using median 

auROC across the 10 validation sets. Final performance evaluation of those best model 

configurations used median auROC across the 30 test sets. We report median auROC for our 

six best model configurations in the test sets. For completeness, we also report auROCs for 

these models from the validation sets in the Supplement. In addition, we report other key 

performance metrics for the best full model configurations including sensitivity, specificity, 

balanced accuracy, positive predictive value (PPV), and negative predictive value (NPV) 

from the test sets (Kuhn & Johnson, 2018).

Bayesian Estimation of auROC and Model Comparisons—We used a Bayesian 

hierarchical generalized linear model to estimate the posterior probability distributions and 

95% Bayesian confidence intervals (CIs) for auROC for the six best models. To estimate 

the probability that the full model outperformed the baseline model, we regressed the 

auROCs (logit transformed) from the 30 test sets for each model as a function of model 

type (baseline vs. full). To determine the probability that full models’ performances differed 

systematically from each other, we regressed the auROCs (logit transformed) from the 30 

test sets for each full model as a function of prediction window width (week vs. day vs. 

hour). Following recommendations from the tidymodels team (Kuhn, 2022), we set two 

random intercepts: one for the repeat, and another for the fold within repeat (folds are nested 

within repeats for 3×10-fold cross-validation). We report the 95% (equal-tailed) Bayesian 

CIs from the posterior probability distributions for our models’ auROCs. We also report 95% 

(equal-tailed) Bayesian CIs for the differences in performance associated with the Bayesian 

comparisons. For more detail on these analyses, see Bayesian Analyses in Supplemental 

Methods section of the Supplement.

Shapley Additive Explanations for Feature Importance—We computed Shapley 

Values (Lundberg & Lee, 2017) to provide a consistent, objective explanation of the 

importance of categories of features (based on EMA questions) across our three full models. 

Shapley values possess several useful properties including: Additivity (Shapley values for 

each feature can be computed independently and summed); Efficiency (the sum of Shapley 

values across features must add up to the difference between predicted and observed 

outcomes for each observation); Symmetry (Shapley values for two features should be equal 
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if the two features contribute equally to all possible coalitions); and Dummy (a feature that 

does not change the predicted value in any coalition will have a Shapley value of 0).

We calculated Shapley values from the 30 test sets using the SHAPforxgboost package that 

provides Shapley values in log-odds units for binary classification models. We averaged 

the three Shapley values for each observation for each feature across the three repeats to 

increase their stability. The additivity property of Shapley values allowed us to create 18 

feature categories from the 286 separate features. We created separate feature categories 

for each of the nine EMA questions (excluding the alcohol use question), the rates of past 

alcohol use and missing surveys, the time of day and day of the week of the start of the 

prediction window, and the five demographic variables included in the models. For the EMA 

questions and rates of past alcohol use and missing surveys, these categories included all 

individual raw and change features across the three to five scoring epochs (see Feature 

Engineering above) and the most recent response. To calculate the local (i.e., for each 

observation) importance for each category of features, we added Shapley values across all 

features in a category, separately for each observation. To calculate global importance for 

each feature category, we averaged the absolute value of the Shapley values of all features 

in the category across all observations. These local and global importance scores based 

on Shapley values allow us to answer questions of relative feature importance. However, 

these are descriptive analyses because standard errors or other indices of uncertainty for 

importance scores are not available for Shapley values.

Results

Demographic and Clinical Characteristics

One hundred ninety-two participants were eligible. Of these, 191 consented to participate, 

and 169 subsequently enrolled in the study. Fifteen participants discontinued before the first 

monthly follow-up visit. We excluded data from one participant who did not maintain a goal 

of abstinence during their participation. We also excluded data from two participants due to 

evidence of careless responding and unusually low compliance. Our final sample consisted 

of 151 participants (see Figure S1 for more detail on enrollment and disposition).

The final sample included approximately equal numbers of men (N=77; 51.0%) and women 

(N=74; 49.0%) who ranged in age from 21 – 72 years old. The sample was majority White 

(N=131; 86.8%) and non-Hispanic (N=147; 97.4%). Participants self-reported a median 

of 9.0 DSM-5 symptoms of AUD (mean=8.9; SD=1.9; range=4.0–11.0) and a median of 

4.0 previous quit attempts (mean=5.5; SD=5.8; range=0.0–30.0). Most participants (N=84; 

55.6%) reported one or more lapses during participation. The median number of lapses 

per participant while on-study was 1.0 (mean=6.8; SD = 12.0; range=0.0–75.0). Table 1 

provides more detail on demographic and clinical characteristics of the sample.

EMA Compliance, Features, and Prediction Window Labels

Participants on average completed 3.1 (SD=0.6) of the four EMAs each day (78.4% 

compliance overall). Participants completed at least one EMA on 95.0% of days. Across 

individual weeks on-study, EMA compliance percentages ranged from 75.3% – 86.8% 
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completion for all of the 4x daily EMAs and from 91.7% – 99.1% for at least one daily 

EMA completed (see Figure S2).

Using these EMA reports, we created datasets with 270,081, 274,179, and 267,287 future 

prediction windows for the week, day, and hour window widths, respectively. Each dataset 

contained 286 features and an outcome labeled as lapse or no lapse. These datasets were 

unbalanced with respect to the outcome such that lapses were observed in 68,467 (25.4%) 

week windows, 21,107 (7.7%) day windows, and 1,017 (0.4%) hour windows.

Features had missing values if the participant did not respond to the relevant EMA question 

during the associated scoring epoch. The median proportions of missing values across 

features were relatively low: 0.020 (range = 0 – 0.121), 0.022 (range = 0 – 0.125), and 0.023 

(range = 0 – 0.127) for the week, day, and hour prediction windows. There were no missing 

values for demographic features, the hour and day of the start of the prediction window, or 

lapse rate and missing survey rate features (see Figure S3 for histograms of missingness).

Model Performance

auROC for Baseline Models—We selected the best baseline model (previous lapse 

frequency feature only) configurations using auROCs from the validation sets. We 

report the median and IQR auROCs from the validation sets for these best baseline 

model configurations in Supplemental Results. We evaluated these best baseline model 

configurations using test set performance to remove the optimization bias present 

in performance metrics from validation sets. The median auROC across the 30 test 

sets was moderate for the week (median=0.792, IQR=0.079, range=0.671–0.915), day 

(median=0.784, IQR=0.070, range=0.687–0.890), and hour (median=0.779, IQR=0.077, 

range=0.675–0.884) prediction windows.

We used the 30 test set auROCs to estimate the posterior probability distribution for the 

auROC of these baseline models. The median auROCs from these posterior distributions 

were 0.798 (week), 0.785 (day), and 0.780 (hour). These values represent our best estimates 

for the magnitude of the auROC parameter for each model. The 95% Bayesian CI for 

the auROCs for these models were relatively narrow and did not contain 0.5 (chance 

performance) for any window width: week [0.770–0.822], day [0.757–0.810], hour [0.752–

0.806].

auROCs for Full Models—We next selected the best full model (which included all 

features) configurations using auROCs from the validation sets. We report the median 

and IQR auROCs from the validation sets for these best full model configurations 

in Supplemental Results. We evaluated these best full model configurations using 

test set performance. The median auROC across the 30 test sets was high for the 

week (median=0.891, IQR=0.043, range=0.785–0.963), day (median=0.899, IQR=0.05, 

range=0.788–0.969), and hour (median=0.929, IQR=0.045, range=0.847–0.972) prediction 

windows. Figure 1 (left panel) displays the ROC curves by prediction window derived 

by aggregating predicted lapse probabilities across all test sets. Figure S4 presents the 

individual ROC curves from each test set.
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The right panel of Figure 1 displays posterior probability distributions for the auROC for the 

full models by prediction window. The median auROCs from these posterior distributions 

were 0.895 (week), 0.905 (day), and 0.930 (hour). These values represent our best estimates 

for the magnitude of the auROC parameter for each model. The 95% Bayesian CI for 

the auROCs for these models were relatively narrow and did not contain 0.5 (chance 

performance) for any window width: week [0.876–0.910], day [0.888–0.919], hour [0.916–

0.940].

Bayesian Comparisons of Baseline vs. Full Models—We used the posterior 

probability distributions for the auROCs to formally compare the baseline vs. full models 

(matched for prediction window). The median increase in auROC for the full vs. baseline 

week model was 0.097 (95% CI=[0.081–0.114], yielding a probability of 1.000 that the 

full week model had superior performance. The median increase in auROC for the full vs. 

baseline day model was 0.120 (95% CI=[0.102–0.138], yielding a probability of 1.000 that 

the full day model had superior performance. The median increase in auROC for the full vs. 

baseline hour model was 0.149 (95% CI=[0.131–0.170], yielding a probability of 1.000 that 

the full hour model had superior performance. Figure S5 presents histograms of the posterior 

probability distributions for these model contrasts on auROC.

Bayesian Comparisons of Full Models by Prediction Window—We also used the 

posterior probability distributions for the auROCs for the three full models to formally 

compare the differences in performance by prediction window width. The median increase 

in auROC for the hour vs. the day model was 0.025 (95% CI=[0.017–0.034], yielding a 

probability of 1.000 that the hour (vs. day) model had superior performance. The median 

increase in auROC for the hour vs. the week model was 0.035 (95% CI=[0.026–0.045], 

yielding a probability of 1.000 that the hour model (vs. week) had superior performance. 

The median increase in auROC for the day vs. the week model was 0.010 (95% CI=[0.001–

0.020], yielding a probability of 0.982 that the day (vs. week) model had superior 

performance. Figure S6 presents histograms of the posterior probability distributions for 

these prediction window width contrasts on auROC.

Other Performance Metrics for the Full Models—Figure S7 displays histograms 

for the predicted probabilities of lapse for all observations in the 30 test sets separately 

by prediction window and true outcome for the full models. We evaluated the sensitivity, 

specificity, balanced accuracy, PPV, and NPV when these predicted lapse probabilities were 

used for binary classification (lapse vs. no lapse) with decision thresholds identified by 

Youden’s Index. All three full models had high sensitivity, specificity, balanced accuracy, 

and NPV (Table 2). PPV, however, notably declined as the prediction window width 

decreased.

PPV can be increased by increasing the decision threshold; however, increasing the decision 

threshold will also lower the model’s sensitivity. To evaluate the trade-off between PPV 

(i.e., precision) and sensitivity (i.e., recall) across decision thresholds, we created Precision-

Recall curves by concatenating predicted lapse probabilities across the 30 test sets (Figure 

2). For example, the dotted lines in Figure 2 depict the sensitivities (0.718, 0.473, and 0.327 
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for week, day, and hour models, respectively) associated with decision thresholds that yield 

0.700 PPV for each model.

Feature Importance for Full Models

Global importance (mean |Shapley value|) for feature categories for each full model appears 

in Panel A of Figure 3. Past use was the most important feature category for lapse prediction 

across prediction window widths. Future abstinence efficacy was also globally important 

across window widths. Time-varying constructs (craving, time of day) appear to have more 

impact in lapse prediction for the hour model compared to the day and week models.

Sina plots of local Shapley values (i.e., the influence of feature categories on individual 

observations) for each model show that some feature categories (e.g., past pleasant events, 

future stressful events) impact lapse probability for specific individuals at specific times 

even if they are not globally important across all observations (Figure 3, Panels B-D).

Discussion

Model Performance

All baseline models, which used only past frequency of lapses to predict future lapses, 

performed moderately well with auROCs in the upper .70s. These results confirm what we 

would expect: past behavior is a relatively good predictor of future behavior. However, there 

was still substantial room for increased predictive performance. Furthermore, these baseline 

models do not identify specific risk factors contributing to lapse predictions at any moment 

in time for each participant.

All three full models performed exceptionally well, yielding auROCs of 0.89, 0.90, and 0.93 

for week, day, and hour level models, respectively. auROCs above .9 are generally described 

as having “excellent” performance; the model will correctly assign a higher probability to a 

positive case (e.g., lapse) than a negative case 90% of the time (Mandrekar, 2010). Bayesian 

comparisons indicated that these full models performed better than the baseline models for 

the same prediction window. This confirms that EMA can predict future alcohol lapses in the 

next week, next day, and next hour with high sensitivity and specificity for new individuals. 

And, as we describe later, using features that map onto important relapse prevention risk 

constructs may illuminate momentary contributors to predicted lapses.

This study addressed several important limitations of previous research to advance toward 

robust sensing and prediction models that can be embedded within digital therapeutics. 

First, our models were trained on a relatively large, treatment-seeking sample of adults 

in early recovery from AUD that closely matches the individuals most likely to benefit 

from such models within a digital therapeutic. Second, we explicitly predicted episodes of 

goal-inconsistent alcohol use (i.e., lapses) because features that predict goal-inconsistent use 

likely differ from those that predict other types of alcohol use. Third, we measured EMA 

features and alcohol use with sufficient frequency and granularity to train well-performing 

models with high temporal resolution - specifically, hour-by-hour predicted probabilities for 

lapses in the next week, day, and hour. Fourth, we collected features and outcomes over 

three months during a high risk period (initial remission (Hagman et al., 2022) from AUD). 
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Fifth, we used cutting-edge resampling methods (grouped, nested, k-fold cross-validation) 

to provide valid estimates of how our models would perform with new individuals. Finally, 

we used interpretable machine learning methods (SHAP (Lundberg & Lee, 2017; Molnar, 

2022)) to better understand how our models made predictions globally and locally for 

specific participants at discrete moments in time.

Understanding & Contextualizing Model Performance

We used SHAP to describe the relative importance of key relapse prevention model 

constructs (represented by categories of features) to predicted lapses in our three full models. 

Some constructs consistently emerged as globally important across week, day, and hour 

level models. Unsurprisingly, the largest contribution to lapse prediction was past use. This 

is consistent with decades of research on relapse precipitants and our understanding of 

human behavior more generally (i.e., past behavior predicts future behavior) (Marlatt & 

Gordon, 1985). Decreases in abstinence self-efficacy were also strongly associated with 

increased probability of future lapses across windows.

The relative importance of some constructs descriptively differed by window width. 

Punctate, time-varying constructs (e.g., craving, arousal, recent risky situation) had greater 

impact on predicted lapse probabilities in the hour model compared to day or week models. 

The time of day feature was relatively important (top four) in the hour model, such that 

lapses were more likely for hour-level prediction windows that began in the evenings. The 

day of week feature made a small contribution to the hour and day models given that lapses 

were more likely on weekends. The time and day features were not useful in the week model 

because its associated prediction window (a full week) spanned all days and times, making 

the time and day that the window began irrelevant. The increased global importance for 

all these punctate features/constructs to immediate lapse risk likely contributed to the hour 

model outperforming the day and week models. These important global differences in next 

hour lapse risk also highlight the need for just-in-time interventions that can address these 

imminent but short-lived risks.

The individual, local Shapley values also shed light on the multidimensional and 

heterogeneous nature of lapse risk in our sample. Sina plots of local Shapley values (Figure 

3) display meaningful ranges of scores for most feature categories. This means that even 

feature categories with lower global importance (e.g., past pleasant events, future stressful 

events) still consequentially impacted predictions for some individuals at specific times. This 

variability in locally important features highlights the potential benefits of recommending 

optimal interventions and other supports that are personalized for that person at that moment 

in time.

Our demographic features did not display high global or local importance. Despite the 

diversity in sex, age, education, and marital status in our sample, these features did not 

meaningfully contribute to lapse prediction. Although this does not preclude these features’ 

predictive utility, it does suggest that other EMA feature categories may be more relevant 

for lapse prediction than these characteristics. Race/ethnicity also did not emerge as globally 

or locally important features. However, the limited representation of participants of color in 
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our sample warrants caution in drawing conclusions about the predictive utility of race and 

ethnicity at this time.

Considerations for Clinical Implementation

Smart Digital Therapeutics—We believe these full models may be most effective when 

embedded in a “smart” digital therapeutic that guides patients toward optimal, adaptive 

engagement to address their ongoing and momentary risks. These models can provide the 

patient’s predicted future lapse probability and the features that meaningfully contribute 

to that probability. We consciously selected EMA items that map onto well-known risk 

factors from the relapse prevention literature. Consequently, these outputs can be used 

to recommend specific intervention and support modules that are risk-relevant for each 

patient - much like a clinician would do if they were available in-the-moment. For example, 

during sensed periods of high stress, stress reduction techniques (e.g., guided mindfulness) 

could be recommended. If increased time with risky people or locations is driving lapse 

risk, the digital therapeutic can support patients to attend support meetings, or encourage 

participation in the in-app discussion board.

Module recommendations can also be tuned more precisely using the patient’s current lapse 

probability. If increased craving yields a high predicted lapse probability, stimulus control 

modules would be recommended (e.g., remove drinking cues, leave unsafe environment). 

Conversely, if craving is detected but lapse probability is lower, urge management modules 

that permit coping with the craving in-place could be recommended (e.g., urge surfing, 

distracting activities/games).

Of course, we must first determine how best to provide module recommendations such 

that patients trust and follow the recommendation. Increasing the interpretability and 

transparency of otherwise “black box” machine learning prediction models can improve 

perceptions, but providing complex or unnecessary information may instead undermine 

trust (Molnar, 2022). Additional research using appropriate research designs is needed to 

optimize recommendation messaging to increase adherence and clinical outcomes (Collins, 

2018).

A smart digital therapeutic can potentially improve clinical outcomes in multiple ways. 

First, feedback from the prediction model could improve patient insight and self-monitoring 

by connecting their daily experiences to changing risk. Second, it can remove patient 

uncertainty by guiding selection from the substantial content available. Third, a smart 

digital therapeutic could encourage risk-relevant engagement. Rather than trying to increase 

overall time using the digital therapeutic, patients could be guided to use the supports that 

specifically target their personal risk factors at that moment in time. Thus, smart digital 

therapeutics are well-positioned to pursue the precision mental health goal to “provide the 

right treatment to the right patient at the right time, every time” (Kaiser, 2015).

Categorical Lapse Predictions—Our models natively provide quantitative predictions 

of lapse probabilities. These lapse probabilities can also be used to make categorical 

predictions (lapse vs. no-lapse) by applying a decision threshold to the quantitative predicted 

lapse probabilities (i.e., predict lapse when the probability exceeds the decision threshold).
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We observed high sensitivity and specificity for these categorical predictions at a decision 

threshold selected to balance these two performance metrics. However, the PPV (proportion 

of predicted lapses that were true lapses) of these categorical predictions in our full models 

was moderate to very low at this threshold (ranging from .630 down to .025 across window 

widths). For this reason, categorical predictions should be provided to patients with extreme 

caution, if at all. Instead, we favor the quantitative lapse probabilities as risk indicators to 

guide intervention and support recommendations.

If categorical predictions are necessary, PPV can be improved by raising the decision 

threshold, but this comes at the cost of reduced sensitivity. We explored this trade-off in 

the precision-recall curves displayed in Figure 2. From these curves, it is clear decision 

thresholds that yield higher PPV (e.g., .700) exist for all three full models, but the associated 

sensitivity will be lower (e.g., 0.718, 0.473, and 0.327 for the week, day, and hour models, 

respectively, at this threshold). Clinical implementation of categorical predictions will 

require selecting an optimal decision threshold after weighing the cost of missing true lapses 

(low sensitivity) vs. predicting lapses that subsequently do not occur (low PPV). Different 

thresholds could be used depending on the purpose, context, available resources, or even 

patient preference.

Additional Limitations and Future Directions

Successful clinical implementation of our models will require several important steps to 

address limitations in our work to-date. First, we need to enrich the training data to include 

diversity across race, ethnicity, and geographic region. Our current prediction models may 

not work well for people of color or people from rural communities. Prediction models 

must use diverse training samples to avoid exacerbating rather than mitigating existing 

disparities. We must also collect data from individuals in later stages of recovery beyond 

initial remission; features that predict lapses may differ in these later periods. We are 

intentionally addressing these issues in a current NIH protocol that recruits nationally for 

demographic and geographic diversity and follows participants for up to 1.5 years into their 

recovery (Moshontz et al., 2021).

The chronic nature of AUD may require sustained use of a sensing and prediction system. 

Consequently, the burden of using such systems must be considered. Participants with AUD 

find three months of 4x daily EMA to be generally acceptable and report that they could 

hypothetically sustain this for at least a year if there were clinical benefits to them (Wyant 

et al., 2023). They also report that 1x daily EMA may be more feasible still (Wyant et al., 

2023). We plan to develop future prediction models that use only the single morning EMA 

to contrast the assessment burden vs. model performance trade-off between our current 

models and putatively lower burden models. We also plan to train models that use features 

based on passively sensed geolocation and cellular communications data-streams (i.e., meta-

data from calls and text messages; text message content) that were also collected from our 

participants. These passively sensed signals may be sufficient as inputs to an exceptionally 

low burden prediction model. Alternatively, they can be added to models that also include 

EMA to increase model performance further and/or to reduce the frequency or length of the 

EMA surveys while maintaining comparable performance.

Wyant et al. Page 17

J Psychopathol Clin Sci. Author manuscript; available in PMC 2024 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our current models predict probability of imminent lapses. The hour and day full models 

are well-positioned to identify and recommend just-in-time interventions to address these 

immediate risks. However, the week model may not have sufficient temporal specificity to 

recommend immediate patient action. Instead, its clinical utility may improve if we shift 

this coarser window width into the future. For example, we could train a model to predict 

the probability of lapse at any point during a week window that begins two weeks in 

the future. This “time-lagged” model could provide patients with increased lead time to 

implement supports that might not be immediately available to them (e.g., schedule therapy 

appointment, request support from an AA sponsor).

Finally, XGBoost does not take advantage of grouping observations within participants or 

systematic variation unique to individual participants3. Independence of observations is not 

necessary for statistically valid prediction. When observations are grouped/repeated within 

participants, linear mixed effects models or other statistical models that can estimate both 

population-level (fixed) effects and participant-level (random) effects may predict better 

for the participants on which they were trained than would XGBoost. However, we are 

not interested in making predictions for participants in our training set. We want to know 

how well our models will work with new individuals like those that will use smart digital 

therapeutics in the future.

In some domains, there has been increasing interest in idiographic approaches where models 

are trained and then implemented for the same individual(Fisher et al., 2019; Wright & 

Zimmermann, 2019). Such approaches may also yield superior predictive performance 

but are not possible to implement for outcomes like alcohol use lapse. A person-specific 

lapse prediction model requires a sufficient number of positive labels (i.e., lapses) for 

that individual. It may be too late to prevent relapse if we must wait until an individual 

has lapsed multiple (perhaps many) times to offer help. We believe the most promising 

approaches may involve first developing population-based models and updating these 

models with person-specific information as the patient uses the system (Zhou et al., 2018). 

We are pursuing these cutting-edge models as a near-term future direction.

In this study, we have demonstrated that sensing and prediction systems can now be 

developed to predict future lapses with high temporal resolution. Important steps still remain 

before these systems can be embedded within smart digital therapeutics and delivered to 

patients. However, the necessary steps are clear and, when completed, these smart digital 

therapeutics hold promise to advance us toward precision mental health solutions that may 

reduce both barriers and disparities in AUD treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

3Although XGBoost ignores participant-level information, we do leverage this information to some degree by including change 
features that anchor participants’ EMA responses to their own previous responses.
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Figure 1. 
ROC curves and posterior probabilities for auROCs by prediction window. The left 

panel depicts the aggregate receiver operating characteristic (ROC) curve for each model, 

derived by concatenating predicted lapse probabilities across all test sets. The dotted line 

represents the expected ROC curve for a random classifier. The histograms on the right 

depict the posterior probability distribution for the areas under the receiver operating 

characteristic curves (auROCs) for each model. The vertical lines represent the median 

posterior probability and the horizontal line represents the boundaries 95% CI.
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Figure 2. 
Precision-recall Curves by Prediction Window for the Full Models. The plot depicts the 

aggregate precision-recall curves for each full model, derived by concatenating predicted 

lapse probabilities across all test sets. The dotted lines depict the sensitivities (0.718, 0.473, 

and 0.327 for week, day, and hour models, respectively) associated with decision thresholds 

that yield 0.700 positive predictive value for each of those models.
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Figure 3. 
Feature importance (Shapley values) for Full Models by Prediction Window. Panel A 

displays the global importance (mean |Shapley value|) for feature categories for each full 

model. Raw EMA features are grouped into categories by the original question from the 

EMA. Features based on the rates of previous lapses and previous missing surveys, as 

well as demographics, and the time of day and day of the week for the start of the 

prediction window are also included. Feature categories are ordered by their aggregate 

global importance (i.e., total bar length) across the three models. The importance of 

each feature category for specific models is displayed separately by color. Panels B-D 

display local Shapley values that quantify the influence of feature categories on individual 

observations (i.e., a single prediction window for a specific participant) for each model.
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Table 1

Demographics and clinical characteristics

N % M SD Range

Age 41 11.9 21–72

Sex

 Female 74 49.0

 Male 77 51.0

Race

 American Indian/Alaska Native 3 2.0

 Asian 2 1.3

 Black/African American 8 5.3

 White/Caucasian 131 86.8

 Other/Multiracial 7 4.6

Hispanic, Latino, or Spanish Origin

 Yes 4 2.6

 No 147 97.4

Education

 Less than high school or GED degree 1 0.7

 High school or GED 14 9.3

 Some college 41 27.2

 2-Year degree 14 9.3

 College degree 58 38.4

 Advanced degree 23 15.2

Employment

 Employed full-time 72 47.7

 Employed part-time 26 17.2

 Full-time student 7 4.6

 Homemaker 1 0.7

 Disabled 7 4.6

 Retired 8 5.3

 Unemployed 18 11.9

 Temporarily laid off, sick leave, or maternity leave 3 2.0

 Other, not otherwise specified 9 6.0

Personal Income $34,298 $31,807 $0–200,000

Marital Status

 Never married 67 44.4

 Married 32 21.2

 Divorced 45 29.8

 Separated 5 3.3

 Widowed 2 1.3

Alcohol Use Disorder Milestones

 Age of first drink 14.6 2.9 6–24
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N % M SD Range

 Age of regular drinking 19.5 6.6 11–56

 Age at which drinking became problematic 27.8 9.6 15–60

 Age of first quit attempt 31.5 10.4 15–65

Number of Quit Attempts* 5.5 5.8 0–30

Lifetime History of Treatment (Can choose more than 1)

 Long-term residential (6+ months) 8 5.3

 Short-term residential (< 6 months) 49 32.5

 Outpatient 74 49.0

 Individual counseling 97 64.2

 Group counseling 62 41.1

 Alcoholics Anonymous/Narcotics 93 61.6

Anonymous

 Other 40 26.5

Received Medication for Alcohol Use Disorder

 Yes 59 39.1

 No 92 60.9

DSM-5 Alcohol Use Disorder Symptom Count 8.9 1.9 4–11

Current (Past 3 Month) Drug Use

 Tobacco products (cigarettes, chewing tobacco, cigars, etc.) 84 55.6

 Cannabis (marijuana, pot, grass, hash, etc.) 66 43.7

 Cocaine (coke, crack, etc.) 18 11.9

 Amphetamine type stimulants (speed, diet pills, ecstasy, etc.) 15 9.9

 Inhalants (nitrous, glue, petrol, paint thinner, etc.) 3 2.0

 Sedatives or sleeping pills (Valium, Serepax, Rohypnol, etc.) 22 14.6

 Hallucinogens (LSD, acid, mushrooms, PCP, Special K, etc.) 14 9.3

 Opioids (heroin, morphine, methadone, codeine, etc.) 16 10.6

Reported 1 or More Lapse During Study Period

 Yes 84 55.6

 No 67 44.4

Number of reported lapses 6.8 12 0–75

Note:

N = 151

Two participants reported 100 or more quit attempts. We removed these outliers prior to calculating the mean (M), standard deviation (SD), and 
range.

J Psychopathol Clin Sci. Author manuscript; available in PMC 2024 November 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wyant et al. Page 27

Table 2

Performance Metrics for Full models by Prediction Window

Metric Week Day Hour

auROC 0.891 0.899 0.929

sensitivity 0.823 0.828 0.864

specificity 0.819 0.845 0.881

balanced accuracy 0.828 0.835 0.854

positive predictive value 0.630 0.300 0.025

negative predictive value 0.944 0.988 0.999

Note: Areas under the receiver operating characteristic curves (auROCs) summarize the model’s sensitivity and specificity over all possible 
decision thresholds. Sensitivity, specificity, balanced accuracy, positive predictive value, and negative predictive value are performance metrics 
calculated at a single decision threshold for each model determined with Youdens index. All metrics represent median values across 30 held-out test 
sets.
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