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Abstract

In this article we address a number of important issues that arise in the analysis of nonindependent data.
Such data are common in studies in which predictors vary within “units” (e.g., within-subjects,
within-classrooms). Most researchers analyze categorical within-unit predictors with repeated-measures
ANOVAs, but continuous within-unit predictors with linear mixed-effects models (LMEMs). We show
that both types of predictor variables can be analyzed within the LMEM framework. We discuss designs
with multiple sources of nonindependence, for example, studies in which the same subjects rate the same
set of items or in which students nested in classrooms provide multiple answers. We provide clear
guidelines about the types of random effects that should be included in the analysis of such designs. We
also present a number of corrective steps that researchers can take when convergence fails in LMEM
models with too many parameters. We end with a brief discussion on the trade-off between power and
generalizability in designs with “within-unit” predictors.

Translational Abstract

Researchers and practitioners sometimes want to analyze data that are “nonindependent.” Data are said
to be nonindependent when the study is designed such that certain data points can be expected to be on
average more similar to each other than other data points. This is usually the case when each subject
provides multiple data points (so-called within-subject designs), when subjects belonging to higher-order
units influence each other (e.g., students clustered in classrooms, employees clustered in teams), or when
subjects react to or evaluate the same set of items (e.g., pictures, words, sentences, products, art works,
target individuals). In the present article, we propose that all types of nonindependent data can be
analyzed with the same statistical technique called “linear mixed-effects models.” Compared to standard
statistical tests belonging to the family of “General Linear Models” (e.g., ANOVA, regression), linear
mixed-effects models have a “complex error term,” i.e., the data analyst has to explicitly include all
possible reasons for why the predictions of the statistical model may be wrong (these possible reasons
are called “random effects”). It is not always obvious how to identify all possible sources of error. In this
article, we provide clear guidelines on the type of random effects that researchers and practitioners should
include when estimating linear mixed-effects models. Failure to include the appropriate random effects
leads to an unacceptable false positive rate (or “type I error rate”), i.e., a high proportion of statistically
significant results for effects that do not exist in reality.

Keywords: The analysis of nonindependent data, within-subjects designs, linear mixed-effects models,
fixed and random effects, convergence problems

In recent years, interest in “linear mixed-effects models”
(LMEMs) has increased drastically. Influential articles by Judd,
Westfall, and Kenny (2012) and Barr, Levy, Scheepers, and Tily
(2013) have made clear that many psychological studies require
these types of models. The traditional ANOVA/regression ap-

proach is limited in that it poorly handles missing data and cannot
handle continuous predictors that vary within “units” (e.g., within-
subjects, within-groups, within-classrooms). More importantly,
this approach yields biased inferential statistics when the same
subjects are exposed to the same set of items (or stimuli or targets).
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Only mixed models yield unbiased parameter estimates with ac-
ceptable type-1 and type-II error rates.

The increased use of LMEMs will shape the types of studies that
psychologists will conduct in the future. We now know that we
should think about items the same way we have always thought
about subjects: Ideally, both should be sampled from a larger pool
of possible exemplars, and we typically want to generalize our
findings from the sample to the entire population (Clark, 1973). In
order to do so, it is necessary to randomly select a sufficiently large
sample of subjects and a sufficiently large sample of items (Bahnik
& Vranka, 2017). Studies with only one observation per level of
the within-subject design suffer from limited generalizability. The
same is true for other elements of our studies: We probably will
want to generalize our findings beyond the specific groups, class-
rooms, confederates, tasks, and locations that we included in our
study. As such, the role of LMEMs in data analysis will likely
increase in the future: Most published studies will require LMEMs,
and a solid mastery of LMEMSs will be crucial for designing and
analyzing impactful research.

Although many researchers have recognized the need to analyze
their data with LMEMs, not all of them know how to correctly
specify these models for a variety of designs. The purpose of this
article is to provide clear guidance on the analysis of data with one
or more sources of nonindependence. Specifically, we will de-
scribe, in a user-friendly and pragmatic way (a) the type of effects
that should be included in models examining data from different
designs, and (b) how to address a variety of problems that one
might run into when estimating LMEMs.

The article addresses itself to a variety of audiences. The
initial sections target LMEM novices. We start out with an
introduction to linear mixed-effects models and the analysis of
dichotomous predictor variables that vary within units. We also
define fixed effects and random effects. Advanced LMEM
beginners may want to skip to the section on the analysis of
continuous within-subjects predictors. We show that dichoto-
mous and continuous within-subjects predictors can be ana-
lyzed using the same conceptual framework and with virtually
identical commands in most data analysis programs. We extend
the framework to multilevel models. The experienced LMEM
user may be most interested in the section on “Multiple Sources
of Nonindependence” and the remainder of the article. These
sections contain guidance on the types of random effects that
should be included depending on whether each predictor in the
model varies either within-units or between-units (e.g., sub-
jects, items, classrooms). We also propose corrective steps that
researchers can take to simplify their models when they run into
convergence problems. The article ends with a brief discussion
on statistical power and generalizability.

Terminology and Data Formats

In this article, we will use the term “linear mixed-effects
models” (LMEM:s) to refer to models with one or more random
effects. These models include data analytic techniques like
hierarchical regression, hierarchical linear modeling (HLM),
multilevel regression, multilevel linear modeling, linear mixed
models, and random coefficient models. The common charac-
teristic of these models is that they allow researchers to analyze
data with one or more sources of nonindependence. Data are
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nonindependent when multiple data points are collected from
each subject (e.g., within-subject design, longitudinal research)
or when subjects belong to groups and group members influ-
ence each other (e.g., subjects belong to the same family or
discussion group, students are nested in classrooms). The data
are also nonindependent when subjects are exposed to the same
set of items (e.g., subjects react to pictures, judge words, or
evaluate target individuals). Among the five assumptions of
ANOVA and regression—exact X, independence, normality,
constant variance, and linearity—a violation of the indepen-
dence assumption is generally considered the most serious one
in that it produces the most incorrect inferential statistics (Judd,
McClelland, & Ryan, 2009). In this article, we will frequently
use examples in which the predictor variable varies within-
subjects, but readers should be aware that the presented data-
analytic techniques can also be used when the predictor varies
within higher-order “units,” such as groups or classrooms.

In order to adopt the “LMEM way of thinking,” an increasing
number of researchers now analyze their data in “long format”
rather than “wide format” when there are multiple observations per
subject. When data are presented in wide format, there is one row
per subject and the multiple observations appear in different col-
umns. In long format, there is one row per observation and thus
multiple lines per subject. Imagine a hypothetical experiment
(which we will refer to as “Study 17 throughout the article) in
which researchers recruit 100 undergraduates and ask them to list
two high-prestige classes and two low-prestige classes they took in
college. Prestige is defined as the extent to which a class “looks
good” on the students’ transcript (e.g., difficult science classes,
honors classes, graduate level classes). Students are then asked to
indicate, on a 9-point scale, their liking for each of the four classes.
Let’s further assume that the study takes place at a large public
university so that each student evaluates a different set of four
classes. The experiment has a single dichotomous within-subjects
predictor, which we will call “prestige.” The outcome variable is
“liking.” The data in wide format would contain 100 rows (and,
among other variables, four columns corresponding to the liking
for each of the four classes), whereas the data in long format would
contain 400 rows (and all four liking ratings from the same subject
would appear in the same column; see Table 1 for an example.).

LMEMs require data to be in long format. In addition, many
researchers argue that data files in long format are more “tidy”
in that they resemble those of between-subjects designs: There
is one column that represents the dependent variable and one or
more columns that correspond to the predictor variable(s), and
one observation is associated with one row (Wickham, 2014).
The reshape function in R allows researchers to transform
data files from wide format into long format, and vice versa (see
Appendix A).

Although the data format has no impact on the conclusions—
both formats yield statistically identical results when analyzed
with the appropriate models—a long data format helps researchers
understand the underlying logic of LMEM, which can then easily
be generalized to more complex designs, such as studies with a
continuous within-unit predictors or studies in which there are
multiple sources of nonindependence. Data files in long format,
however, require a different syntax in most data analysis programs.
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The Same Data in Wide Format (Top) and Long Format (Bottom)

Row subject.ID like.lo1 like.lo2 like.hil like.hi2 gender age
1 1 6 5 7 8 1 20
2 2 1 4 3 3 2 18
3 3 7 6 7 5 2 21
4 4 7 8 9 9 1 19
100 100 4 5 7 5 2 20
Row subject.ID like prestige gender age item.ID
1 1 6 1 1 20 1
2 1 5 1 1 20 2
3 1 7 2 1 20 3
4 1 8 2 1 20 4
5 2 1 1 2 18 5
6 2 4 1 2 18 6
7 2 3 2 2 18 7
8 2 3 2 2 18 8
9 3 7 1 2 21 9
10 3 6 1 2 21 10
11 3 7 2 2 21 11
12 3 5 2 2 21 12
13 4 7 1 1 19 13
14 4 8 1 1 19 14
15 4 9 2 1 19 15
16 4 9 2 1 19 16
400 100 5 2 2 20 400
Note. Only the data from the first four subjects and the last row in the data file are shown. Low-prestige classes

are referred to with “lo” (top panel) or “1” (bottom panel), whereas high-prestige classes are referred to with “hi”
(top panel) or “2” (bottom Panel). Although not necessary, we added a variable called “item.id” to the data file
in long format to make explicit that each subject evaluated his/her own set of four classes.

As we will see, this syntax is often shorter and more intuitive than
the one we use when data are in wide format."

Introduction to Linear Mixed-Effects Models

Consider the hypothetical experiment presented above (Study
1): One hundred subjects rate the extent to which they liked two
high-prestige classes and two low-prestige classes. Table 2 pres-
ents the R script for the data in the traditional wide format. If the
difference score is statistically different from zero, then subjects’

Table 2
R Script for Hypothetical Study 1, When the Data are in
Wide Format

d <- dfReadDat ("data_ Studyl wide.dat")
dSave_like_lo <- (d$like_lol + d$like_1lo02)/2
d$ave_like_hi <- (d$like_hil + d$like_hi2)/2
dSdifference <- dSave_like_hi — dSave_like_ lo
model_la <- 1lm(difference ~ 1, data = d)
summary (model_la)

Note. The Study contains a single dichotomous predictor variable that
varies within-subjects (prestige). The term “Im” stands for “linear model”.
Here the difference score (liking for high-prestige classes minus liking for
low-prestige classes) is regressed on the intercept b, (labeled “1” in R). In
other words, the model tests whether the difference scores are on average
reliably different from zero.

liking for the high-prestige classes is reliably different from that
for the low-prestige classes.

Table 3 shows the R script when the data are in long format. As
it turns out, the script is rather similar to the one we would have
used if the predictor (“prestige”) had varied between-subjects: An
outcome variable is regressed on (the intercept and) a dichotomous
predictor. The only difference is that the model statement now
contains an additional element (1 + prestigeC|subject.ID).
Expressed in a very simplified way, the additional element tells the
data analysis software that the predictor “prestige” varies within-
subjects.

As already mentioned, the two analyses reported in Table 2 and
3 yield identical results for the parameter estimates and their
standard errors, the dfs, the F- and p values.? For ease of interpre-
tation we have recoded the dichotomous prestige variable into —.5

! Although we will be providing only R script throughout this article,
most of the described analyses can be performed with other major data
analysis programs (e.g., SAS, SPSS).

2 The two analyses yield identical results only if the LMEM uses the
Kenward-Roger method to compute the degrees of freedom and no con-
straints are imposed on the covariance matrix of the LMEM (both are the
default in R). We will present different methods to compute the degrees of
freedom in LMEMs in the section on Restricted Maximum Likelihood.
Throughout the article, we will present LMEMs with an “unstructured
covariance matrix,” that is, a covariance matrix upon which no constraints
have been imposed.
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Table 3
R Script for Hypothetical Study 1 With Data in Long Format

library (lme4)

library (car)

d <- dfReadDat ("data_ Studyl long.dat")

dSprestigeC <- dSprestige - 1.5

model 1b <- lmer(like ~ 1 + prestigeC + (1 +
prestigeC|subject.ID), data = d)

summary (model_1b)

Anova (model_1b, type = 3, test = “F”)

Note. The library statements load the packages needed to perform the
analyses. The package “Ime4” was written by Bates, Michler, Bolker, and
Walker (2015b). The package “car” was written by Fox and Weisberg
(2011). The term “Imer” stands for “linear mixed-effects in R”. The
summary statement produces the parameter estimates, the ANOVA state-
ment the inferential statistics.

and +.5 so that it is centered around zero. Such recoding is not
necessary, as it will not affect the parameter estimate for the
prestige effect. It simplifies, however, some explanations given
below.

The LMEM approach in Table 3 helps us think about within-
unit analyses in a different way than the one that is taught in
many traditional statistics textbooks. As it turns out, there are
numerous similarities and only a few differences between a
purely between-subjects analysis and a within-subjects analysis
that takes the form of a LMEM (assuming the only difference
between the designs is whether the predictor of interest varies
between-subjects or within-subjects). We will discuss the sim-
ilarities and differences in turn.

Fixed Variables and Random Variables

In both types of analyses, the relevant variables are consid-
ered to be either “fixed” or “random” (Kreft & DelLeeuw,
1998). In the example above, prestige is a fixed variable
(with two levels), whereas subject.ID is a random variable
(with 100 levels). A variable is considered fixed when data have
been gathered from all the levels of the variable that are of
interest. It is also assumed that the values of a fixed variable in
one study are the same as the values of the fixed variable in
another study. The variables that are (or might be) implicated
by theoretical predictions tend to be fixed, which is why pre-
dictor variables are nearly always fixed.

A variable is considered random when it has many possible
levels and when the researchers’ interest is in all possible
levels, but only a random sample of levels is included in the
data. Subjects that are randomly selected from a larger pool of
possible subjects and items that are randomly selected from a
larger pool of possible items are nearly always random vari-
ables. Other typical random variables are individuals who work
with multiple subjects (e.g., managers, teachers, therapists,
social workers), higher-order units that subjects are nested in
(e.g., families, work teams, classrooms, counties), and settings
(e.g., locations on campus or in town, different situations in
which a behavior may occur).

The levels of random variables are usually nominal in nature,
that is, the numbers assigned to them have no meaning except
that they allow us to distinguish the different exemplars. A

variable that assigns each “unit” (i.e., subject, item, manager,
classroom, setting) a different identification number is usually
random (see subject.ID and item. ID in Table 1), whereas
variables that describe characteristics of these units are usually
fixed. In Table 1 for example, the fixed variable age describes
a characteristic of the units identified by the random variable
subject.ID, and the fixed variable prestige describes a
characteristic of the units identified by the random variable
item.ID. This is why measured predictors, covariates, and
demographics are generally fixed variables: They might be
implicated by theoretical predictions, they describe character-
istics of the subjects, and it generally assumed that the study
includes a large enough sample so that data have been collected
from all the levels of the variable that are of interest.
Random variables are explicitly included in the data analyses
only if there is more than one observation per level of the
variable. This is why subject.ID is not included as a pre-
dictor in the analyses of purely between-subjects designs (e.g.,
independent-samples ¢ test, standard ANOVA, multiple regres-
sion). In Study 1, however, each subject made four ratings, two
for the high-prestige classes and two for the low-prestige
classes. As a consequence, the variable subject. ID hasto be
explicitly included in the data analyses. Said differently, ran-
dom variables are included in the analyses only if they create
nonindependence in the data. In Study 1, the four ratings from
the same subject are clearly not independent from each other,
and this is why subject. ID is part of the R script in Table 3.

Simple Versus Complex Error Terms

Statistical analyses all have the same basic structure: DATA =
MODEL + ERROR (see Table 4). Every statistical model makes
predictions based the (weighted) mean of the outcome variable
(By) and one or more predictors (here: (3,X). The major difference
between the analyses of independent data (e.g., between-subjects
analyses) and nonindependent data (e.g., within-subject analyses)
is the complexity of the error term.

In the analyses of independent data, the error term is rela-
tively simple: It only has one element, the random error. When
data are nonindependent and analyzed via a LMEM, the error
term usually consists of multiple components. This is because
there are multiple reasons the model predictions may be incor-
rect in these models. One source of error, like in any model, is
differences between subjects in general. For example, subjects
in Study 1 may differ in how they use the rating scale or the
extent to which they enjoy university classes in general. This
source of error is often referred to as “random intercept” or, to
make explicit that the source of error is caused by subjects,
“by-subject random intercept” (labeled “eg,” and “u,;” in Table
4). A second source of error stems from differences between
subjects in how they are affected by the predictor variable(s). In
Study 1, subjects may differ in the extent to which they prefer
high-prestige classes over low-prestige classes. This source of
error is often referred to as “by-subject random slope” or simply
“random slope” (labeled “exs” and “u;X;;” in Table 4). A third
source of error is random error (labeled “e” and “e;;” in Table
4). Just like in the between-subjects case, this element captures
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Table 4
Comparison Between the Analyses of Independent and Nonindependent Data
Independent data Nonindependent data
(e.g., between-subjects designs) (e.g., within-subjects designs)
DATA = MODEL + ERROR DATA = MODEL + ERROR
SIMPLE COMPLEX
DATA = MODEL + ERROR DATA =  MODEL + ERROR
TERM TERM
Y = Bot+pX + e Y = Byt pBX +  ex T oegs + e
Y; = BotBXi + € Yij = Bo Tt BIXij + Uyt ul,inj + e ®
Fixed Random Fixed Random Random
effects error effects effects error
Note. The most important difference is the complexity of the error term. In both types of analyses, the

hypothesis focuses on the fixed effects, most likely 3,. The table contains two equations per type of analysis,
one simplified version without subscripts and one complete version (with subscripts) that can be found in
numerous texts on LMEMs. If X is dichotomous, the model on the left is equivalent to an independent-samples
t-test, whereas the model on the right is equivalent to a paired-samples #-test (after averaging across multiple
observations in the same cell of the within-subject design).

" eg = Up; = random intercept; egg =

all other sources of error, such as unreliable measurement and
random fluctuations in ratings from one class to the next.?

ANOVA, 1 tests, and multiple regression are all special cases of
the general linear model (GLM), which in turn is a special case of
a LMEM: A GLM is a LMEM without random effects. Despite the
differences in error terms, our focus in both GLMs and LMEMs is
the interpretation of the regression coefficient associated with the
predictor variable(s). In both columns of Table 4, 3, represents the
model’s estimate of the effect of “prestige” on liking. If B3, is
statistically significant, we conclude that there is an effect of the
predictor on the outcome variable.*

Interpretation of Fixed Effects and Random Effects

In both models in Table 4, the coefficients 3, and 3, are called
“fixed effects.” The interpretation of the fixed effects in a LMEM
is straightforward, as it closely follows the interpretation of fixed
effects in a standard GLM. The coefficients 3, and 3, test whether
there is an effect of prestige on liking (3,, the so-called “fixed
slope”) and whether subjects’ predicted liking scores for classes
with a score of zero on prestige (centered) are reliably different
from zero (B3, the so-called “fixed intercept”). These effects are
called “fixed” because they apply to the entire sample. Like regular
regression analysis, the test of the fixed intercept in a LMEM is
conceptually relevant only if a score of zero on the predictor
variable is a meaningful value (which often is only the case if the
predictor has been centered around zero).

The random intercept (u;) and the random slope (u,;X;;) in the
LMEM are called random effects because they represent the extent
to which the coefficients 3, and B, (randomly) vary from one
subject to the next. This point can easily be understood by rear-
ranging the LMEM equation as follows:

(€))

This version of the equation illustrates that the LMEM estimates
multiple components. Applied to Study 1, the first parenthesis (3, +
ug;) refers to the average like ratings, that is, the averages of the four

Yi; = (Bo + ugp) + By + upX + e

u;X;; = random slope.

like ratings per subject. The model estimates two entities, the mean of
the average like ratings ([3,) and the extent to which subjects’ average
like ratings vary around this mean (u;). Although the model predicts
one average like rating for the entire sample (the fixed intercept), it
also allows for the 100 individual average like ratings to vary around
this prediction. Each subject’s average like rating will deviate to some
extent from the fixed intercept. In other words, there are 100 u,’s in
Study 1, one for each subject.

The second parenthesis in the equation (8, + u,;) describes the
effect of prestige on liking. The model estimates two entities, the
mean of the preferences for one type of class over the other (3,) and
the extent to which subjects’ preferences vary around this mean (u,;).
As with the average ratings, the model predicts one mean “prestige
effect” for the entire sample (the fixed slope), but it also allows for the
100 individual preferences to vary around this prediction. Each sub-
ject’s prestige effect (the extent to which s/he prefers high-prestige
classes over low-prestige classes) will vary somewhat from the fixed
slope, which is why there are 100 u,’s in Study 1.

A Linear Mixed-Effects Model Estimates Variances

It turns out that the LMEM does not estimate each of the 100
uy’s and each of the 100 u,’s. Instead, it estimates their variances.
In other words, the computer estimates one parameter that repre-

3 There are several other minor differences between the two types of
models with regard to the notation that is used in most texts on data
analysis. The variables and the error term in the between-subjects case have
one subscript (i for subject), whereas they have two subscripts in the
within-subjects case (usually j for subject and i for item). In our hypothet-
ical Study 1, j varies between 1 and 100 (there are 100 subjects) and i varies
between one and four (each subject rates four classes), so that there are in
total 400 Y-values, 400 X-values, and 400 e-values.

*Some data analysts argue that ratings on Likert scales should be
analyzed with ordered logit regression (and generalized linear mixed-
effects models; see Fullerton & Xu, 2016) rather than repeated measures
ANOVA or LMEMs. Strictly speaking, ratings on Likert scales are ordinal
outcomes. To keep the explanations in this article simple, we are assuming
throughout the article that outcomes are continuous.
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sents the variance of the 100 individual average like ratings and
one parameter that represents the variance of the 100 individual
prestige effects. The model can thus account for the between-unit
variability in the intercept or slopes without having a large number
of parameters. It also estimates the variance of the random errors,
the e;;’s. This is why the random effects and the random error are
sometimes referred to as “variance components” in a LMEM.’
Although the classic F test is usually framed in terms of Sum of
Squared Errors (SSE), it can easily be shown that the variance of
the residuals (the ¢;’s in the left panel of Table 4) is equivalent to
the SSE divided by N-1. Thus, the classic F' test can be seen as a
comparison between models having different variance compo-
nents.

Using the variable names from hypothetical Study 1, the equa-
tion for the LMEM is as follows (see also right panel of Table 4):

like = B, + B;prestigeC + u, + u prestigeC + e (2)

By including a random intercept in the model (i.e., by estimating
the variance of the u;’s), we are allowing for the possibility that
subjects differ in their average liking for the four classes. It is
theoretically possible to specify a model without a random inter-
cept (which is equivalent to fixing the variance of the u,;’s to zero).
Such a model would make the assumption that subjects’ predicted
like ratings for classes with a score of zero on the centered prestige
variable are all the same. This assumption is likely to be incorrect.

The same reasoning can be applied to the random slope: By
including a random slope in the model (by estimating the variance
of the u,;’s), we are allowing for the possibility that subjects differ
in the extent to which they prefer one type of class over the other.
As with the random intercept, it is theoretically possible to fix the
variance of the u,;’s to zero (i.e., to estimate a model without a
random slope). Such a model would make the (probably incorrect)
assumption that subjects all have the same relative preference for
high-prestige classes, that is, that the difference between liking for
the high-prestige classes and liking for the low-prestige classes is
the same for all subjects.

Remember that a repeated-measures ANOVA with the data in
wide format and a LMEM with the data in long format yield
identical results.® This is because the repeated-measures ANOVA
allowed subjects to vary in their average like scores and in their
relative preference of one type of class over the other, just like the
LMEM. In both models, a greater variability around the average
effect translates into larger standard errors and larger p values.
Note that including a random effect does not necessarily mean that
a degree of freedom is used up. It simply means that certain entities
are allowed to vary from one subject to the next.

Most importantly, the inferential statistics for a given fixed
effect will maintain a type-I error rate of 5% only if the model also
includes its corresponding random effect (Barr et al., 2013). Ap-
plied to Equation 2, this means that the test of 3, will have an
acceptable type-1 error rate only if u,; (the random slope) is
included in the model, and the test of 3, will have an acceptable
type-I error rate only if u; (the random intercept) in included in the
model. We will come back to this important point later.

Random Variables Versus Random Effects

It is essential to distinguish between random variables and
random effects. Technically speaking, the data file in long format

for our hypothetical Study 1 contains two random variables, sub -
ject.ID (with 100 levels) and item.ID (with 400 levels, see
last column of bottom panel in Table 1). Each class (item) that is
being evaluated in the study has its own identification number.
Given that each student evaluates a different set of four classes,
there are in total 400 classes (items) being evaluated in the study.
Both subjects and items are random variables. Both have been
selected from a larger pool of possible exemplars, and the re-
searchers would like to generalize their results to all subjects
(students) and all classes (items).

And yet, only one of these random variables, subject.ID,is
explicitly included in the analyses: The LMEM includes two
effects related to subjects, a by-subject random intercept and a
by-subject random slope. However, the LMEM includes no effects
related to items. This is because there is only one observation for
each level of the (random) variable i tem. ID. Each class is being
evaluated only once. This is an important take-home message: Not
every random variable requires a random effect, and certain ran-
dom variables may require more than one random effect. There is
no one-to-one correspondence between random variables and ran-
dom effects. In later sections of this article we will discuss what
types of random effects, if any, should be included for each of the
random variables in the data file.

Extension to Designs With Multiple
Dichotomous Predictors

The LMEM approach described above can easily be extended to
more complex designs. For example, imagine a 2 X 2 mixed-
model ANOVA with one within-subject factor (e.g., prestige) and
one between-subjects factor (e.g., gender). Like before, each sub-
ject rates four classes. It can be shown that this 2 X 2 mixed-model
ANOVA is mathematically equivalent to a LMEM with one fixed
intercept (3,), one fixed effect for the within-subjects factor (3,),
one fixed effect for between-subjects factor (3,), one fixed inter-
action effect (35), one by-subject random intercept (u,), and one
by-subject random slope for the within-subject factor (u,). The
equation and the R script for such a model are shown in Table 5.

Note that, like before, the “complex error term” contains three
elements, between-subjects variation in the average ratings (i),
between-subjects variation in how they are affected by the prestige
manipulation (u,), and random error. There is no between-subjects
variation in how subjects are affected by gender, because each
subject is either male or female. For the same reason, there is no

5 The data analysis program also estimates the covariance between the
random effects. We will come back to this point in the section on the
number of parameters being estimated.

¢ Westfall has demonstrated that there are rare cases in which the two
types of analyses yield slightly different results (http:/stats.stackexchange
.com/questions/117660/what-is-the-lme4lmer-equivalent-of-a-three-way-
repeated-measures-anova). The reason for this is that for data sets with
a negative intraclass correlation, the best-fitting repeated-measures
model implies that some of the variance components underlying the
data must be negative. But most mixed model programs have built-in
constraints that require the variance component estimates to be non-
negative. So the mixed model will do the best that it can within its
constraints, but it will never reach the repeated-measures ANOVA
solution. According to our own simulations, such discrepancies are very
rare and extremely minor in that they are visible only in the third or
fourth decimal of the F value.


http://stats.stackexchange.com/questions/117660/what-is-the-lme4lmer-equivalent-of-a-three-way-repeated-measures-anova
http://stats.stackexchange.com/questions/117660/what-is-the-lme4lmer-equivalent-of-a-three-way-repeated-measures-anova
http://stats.stackexchange.com/questions/117660/what-is-the-lme4lmer-equivalent-of-a-three-way-repeated-measures-anova
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between-subjects variation in how subjects are affected by the
gender by prestige interaction. Gender varies between subjects,
and between-subjects variables cannot be an additional source of
error.

Let’s next consider a 2 X 2 fully within-subjects ANOVA. One
might imagine a study in which students are asked to list eight
classes, four highly prestigious ones and four less prestigious ones.
Within each group, two are science classes and two are nonscience
classes. The study has a 2 X 2 design with two within-subjects
factors, prestige and science. There are two observations per cell of
the design. The data from such a study can be analyzed with a
repeated-measures ANOVA with data in wide format. An equiv-
alent approach would be to enter the data in long format (eight
lines per subject) and to specify a LMEM with one fixed intercept
(By), one fixed effect for the first within-subjects factor (3,), one
fixed effect for the second within-subjects factor (§3,), one fixed
interaction effect (35), one by-subject random intercept (u;), one
by-subject random slope for the first within-subject factor (u,), one
by-subject random slope for the second within-subject factor (u,)
and one by-subject random slope for the interaction (). The
equation and the R script for such a model can be seen in Table 6.

The “complex error term” now contains five elements because
there are five different reasons for why the model predictions may
be “off:” the by-subject random intercept (u,; to account for
differences in scale usage and general liking of university classes),
three by-subject random slopes (u,, u,, and u5; to account for
variation in how subjects are affected by the two within-subject
factors and their interaction), and the random error (e).

More complex designs—for example, a2 X 2 X 2 X 2 ANOVA
with two between- and two within-subjects factors, or a mixed
model with one dichotomous within-subject predictor and one
continuous between-subjects predictor—can easily be analyzed
within the LMEM framework. It is easy to include continuous
between-subjects predictors (e.g., a score on an individual differ-
ence measure). Given that between-subjects predictors require no
by-subject random slope, such predictors can simply be added to
the fixed part of the model. As we will see in the next section, the
LMEM framework can also accommodate continuous predictors
that vary within subjects, which cannot be appropriately handled
by a repeated-measures ANOVA.

Like in ANOVA and regression analysis, LMEMs usually re-
quire us to center the predictors prior to the analysis when the

Table 5

The LMEM and the R Script for a Study With One Dichotomous
Within-Subject Variable (“Prestige”) and One Dichotomous
Between-Subject Variable (“Gender”)

like = B, + B,prestigeC + B,genderC + B;prestigeC * genderC
+ ug + uprestigeC + e 3)

dSprestigeC <- dSprestige - 1.5

d$genderC <- d$gender - 1.5

model_lc <- lmer(like ~ 1 + prestigeC * genderC +
(1 + prestigeC|subject.ID), data = d)

summary (model_1lc)

Anova(model_lc, type = 3, test = "F")

Note. Both independent variables are being centered in order to be able
to interpret the lower-order effects (the “main effects™).”

Table 6
The LMEM and the R Script for a Study With Two Dichotomous
Within-Subject Variables (“Prestige” and “Science”)

like = B + B prestigeC + B,scienceC + BsprestigeC * scienceC
+ ug + uyprestigeC + u,scienceC + wusprestigeC * scienceC
+e )

dSprestigeC <- dSprestige - 1.5

d$scienceC <- d$science - 1.5

model 1d <- Imer(like ~ 1 + prestigeC * scienceC +
(1 + prestigeC * scienceC|subject.ID), data = d)

summary (model_1d)

Anova (model 1d, type = 3, test = "F")

Note. Both independent variables are being centered in order to be able
to interpret the lower-order effects (the “main effects”).

model contains an interaction term. More precisely, the tests of the
lower-order effects typically answer theoretically meaningful
questions only if the dichotomous variables have been recoded
into —.5 and +.5 (or any other two values centered around zero)
and continuous variables have been “mean-centered” (by subtract-
ing the mean from each score; see Schielzeth, 2010). Consider the
model in Table 6. Given that “scienceC” is coded —.5 and +.5, 3,
tests the effect of prestige on liking for classes that are conceptu-
ally half-way between the science classes and nonscience classes,
that is, the main effect of prestige in the 2 X 2 ANOVA. If the
predictor had been coded 1 and 2 (“science”), then the coefficient
3, would test the effect of prestige on liking for classes that have
a score of 0 on science, a conceptually meaningless test.®

It is generally advised to include one random slope for each
within-subjects predictor, in addition to the random intercept. Note
that lower- and higher-order interactions among within-subject
predictors are themselves considered within-subject predictors.
Thus, a study with three within-subject predictors and their inter-
actions requires one random effect for each of the eight fixed
effects (one random intercept, three random slopes for the main
effects of the predictors, three random slopes for the two-way
interactions, and one random slope for the three-way interaction).
However, a study with two between-subjects predictors and two
within-subjects predictors has 16 fixed effects (the intercept and all
possible two-, three-, and four-way interactions), but requires only
four random effects: the random intercept, the random slope for the
first within-subjects predictor, the random slope for the second
within-subjects predictor, and the random slope for the interaction
among the two within-subjects predictors.

71t is not necessary to specifically mention the fixed and random
intercepts in the R script because R assumes that you want to include these
intercepts. The following R script produces the same output as the R script
presented in Table 5: model lc <- lmer(like ~ prestigeC *
genderC + (prestigeC|subject.ID), data = d). For peda-
gogical purposes, we decided to specifically mention all intercepts in the R
scripts presented in this article.

8 This will be true in R only if the predictors are coded as numeric
variables. Although R users have the possibility to code their variables as
factors, this practice should be avoided when estimating LMEMs as Ime4
has problems analyzing predictor variables that are coded as factors.
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The Analysis of Continuous Within-Subject Predictors

The LMEM approach can easily be extended to the analyses of
continuous within-unit variables (e.g., within-subjects, within-
classrooms). To illustrate this type of analysis imagine a study
(hypothetical Study 2) in which the experimenter asks 50 students
to list eight classes they took in college and to rate both the
perceived prestige of each class (the predictor variable; from 1 =
not prestigious at all to 9 = highly prestigious) and their liking of
it (the outcome variable; from 1 = don’t like at all to 9 = like a
lot; see Table 7 for an example data file). These data cannot be
analyzed via a standard ANOVA or any other statistical procedure
belonging to the general linear model, but require a LMEM (Hox,
2010).

The LMEM used to analyze the data from this study contains
two fixed effects (the intercept and the effect of prestige), one
random intercept, one random slope, and the residuals. The model
equation and the R script to analyze the data are shown in Table 8.
Note that the equation for the LMEM and the model statement in
the R script are identical to those for Study 1 (see Equation 2 and
Table 3). In the general linear model, dichotomous between-
subjects predictors are analyzed the same way as continuous
between-subjects predictors, in that they are entered as predictor
variables in the equation. The same is true with LMEMs: contin-
uous and dichotomous within- subject predictors are analyzed with
same conceptual framework and using the same script to describe
the model to be estimated.

Different Forms of Mean-Centering

Although the predictor variable is centered around zero in both
Studies 1 and 2, there is an important difference between the two:
In Study 1, the dichotomous predictor is recoded into —.5 and +.5,
and this recoding is not necessary, because it will not affect the
parameter estimate of the fixed effect associated with the predictor.
In Study 2, however, the continuous predictor is centered around

Table 7
The Data From Hypothetical Study 2 in Long Format
Row subject.ID like prestige gender age item.ID
1 1 4 3 2 18 1
2 1 7 2 2 18 2
3 1 4 4 2 18 3
4 1 6 5 2 18 4
5 1 4 6 2 18 5
6 1 1 1 2 18 6
7 1 2 8 2 18 7
8 1 6 9 2 18 8
9 2 5 6 1 21 9
10 2 7 9 1 21 10
11 2 4 3 1 21 11
12 2 4 7 1 21 12
13 2 1 1 1 21 13
14 2 3 5 1 21 14
15 2 2 2 1 21 15
16 2 9 8 1 21 16
400 50 7 6 2 20 400
Note. Only the data from the first two subjects and the last row of the data

file are shown. The full data file contains 400 lines.

Table 8
The LMEM and the R Script for Hypothetical Study 2 With One
Continuous Within-Subject Variable (“Prestige”)

like = B, + B prestigeC + u, + u;prestigeC + e 3

dSprestigeC <- dSprestige -
ave(dSprestige,d$subject.ID)

model 2 <- Imer(like ~ 1 + prestigeC +
(1 + prestigeC|subject.ID), data = d)

summary (model_2)

Anova(model_ 2, type = 3, test = “F”)

Note. The predictor variable is being centered around each subject’s own
mean in order to avoid the confounding of between- and within-subjects
effects.

each subject’s own mean (sometimes referred to as “cluster-mean
centering” or “group-mean centering”). This manipulation is nec-
essary to obtain an unbiased estimate of the within-subject asso-
ciation between the predictor and the outcome. Failure to center
the continuous within-subject predictor or other types of mean-
centering—for example, centering the predictor around its grand
mean, that is, the mean of all 400 prestige ratings in Study 2—will
produce estimates that are ‘“uninterpretable” in most cases
(Raudenbush & Bryk, 2002). This is because the estimates will
confound within-subject and between-subjects associations.

In hypothetical Study 2, a within-subject association exists when
subjects give higher ratings of liking to individual classes that they
consider more prestigious. A between-subjects association exists
when subjects who consider the eight classes, on average, to be
rather prestigious also tend to like the eight classes more on
average. The between-subjects association could be a real psycho-
logical effect—the more individuals think that the classes they
took will look good on their transcripts the more they like classes
in general—or it could be a scale usage effect, a mood effect, or
a spurious relationship caused by a third individual difference
variable (e.g., desire to be challenged). Regardless of the origin of
the between-subjects association, it is theoretically distinct from
the within-subject association.

The importance of the distinction between within- and between-
unit associations should not be underestimated. Numerous articles
have been written about the “ecological fallacy,” the false assump-
tion that a relationship between two variables at one level (e.g.,
within units) is necessarily the same at a different level (e.g.,
between units; Brewer & Venaik, 2014). Given that the parameter
estimate for the predictor is an amalgam of the two relationships
when the predictor is uncentered or centered around its grand
mean, researchers unknowingly commit the ecological fallacy
when interpreting coefficients from models that do not use cluster-
mean centering.’

 Enders and Tofighi (2007) discuss one situation in which it makes
more sense to center the continuous within-subject predictor around its
grand mean: when the goal is to examine the effect of a between-
subjects variable while statistically controlling for the effects of a
continuous within-subject variable. Note that in this situation, however,
the within-subject variable is not the focus of the researchers’ hypoth-
esis. Additional information on within- versus between-unit associa-
tions can be found in Appendix B.
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Related Analyses

The LMEM framework can also be used to examine the inter-
action of a continuous within-subject predictor with one or more
other predictors. Tables 9 and 10 contain examples testing the
interaction of a continuous within-subject predictor with one other
predictor. In both examples, the other predictor is a dichotomous
variable that varies either between (see Table 9) or within (see
Table 10) subjects. Similar models can be estimated when the
other predictor is continuous. In these cases, the other predictor
should be cluster-mean centered if it varies within subjects, and
grand-mean centered if it varies between subjects.

Note that the continuous within-subject predictor can be time, so
that the model examines subjects’ change over time. LMEMs are
thus ideally suited to conduct growth-curve analysis (Liu, Rovine,
& Molenaar, 2012), although readers should be aware that other
data-analytic strategies exist (Kline, 2015). LMEMs can easily
handle unequal time intervals between measurement moments and
time intervals that differ from one subject to the next.

Extension to Multilevel Models

In all of the examples discussed so far, the predictor varied
within subjects. Readers should be aware that everything said
above (and in the rest of the article) also applies to studies in which
a predictor varies within a higher-order unit or “cluster.” This is
the case, for example, when subjects are nested in groups, families,
or classrooms. The so-called “multilevel models” are thus a spe-
cific case of LMEMs. Researchers working in the multilevel
tradition sometimes use different terminology (e.g., level-1 and
level-2 models), but statistically speaking, there are no differences
between multilevel models and LMEMs (Gelman & Hill, 2006).

Examples of Multilevel Models

Consider a study in which researchers form discussion groups of
four individuals and assign two of the individuals a high status
(high prestige) and two of them a low status (low prestige).
Afterward, all group members evaluate the extent to which they
enjoyed the group discussion. The data file in long format will
have one row per subject. The data can be analyzed with the
LMEM described in Equation 2 and the R-script in Table 3 (with
one minor change: subject.ID is replaced by group.ID).
Subjects and groups are both random variables. Given that there is

Table 9

The LMEM and the R Script for a Study With One Continuous
Within-Subjects Predictor (Prestige) and One Dichotomous
Between-Subjects Predictor (Gender)

like = B + B prestigeC + B,genderC + B;prestigeC * genderC
+ uy + u;prestigeC + e (6)

dSprestigeC <- dSprestige -
ave (d$prestige,dSsubject.ID)

dS$genderC <- dS$gender - 1.5

model 2b <- lmer(like ~ 1 + prestigeC * genderC +
(1 + prestigeC|subject.ID), data = d)

summary (model_2b)

Anova (model_2b, type = 3, test = “F”)

Table 10

The LMEM and the R Script for a Study With One Continuous
Within-Subjects Predictor (Prestige) and One Dichotomous
Within-Subjects Predictor (Science)

like = B, + B prestigeC + B,scienceC
+ BsprestigeC * scienceC + u, + u;prestigeC

+ uyscienceC + usprestigeC * scienceC + e (@]

dSprestigeC <- dSprestige -
ave (d$prestige,dSsubject.ID)
dSscienceC <- d$science - 1.5
model 2c¢ <- lmer(like ~ 1 + prestigeC * scienceC
+ (1 + prestigeC * scienceC|subject.ID), data = d)
summary (model_2c)
Anova(model_ 2c, type = 3, test = “F”)

only one observation per subject, the LMEM contains no by-
subject random effects. It does contain two random effects for
group: One by-group random intercept (because the four data
points from the same group are dependent) and one by-group
random slope (because the predictor “prestige” varies within
groups).

Consider another study in which students nested in classrooms
rate the extent to which they like school-related activities. In
addition, the researchers assign each student a prestige score based
on the socioeconomic status (SES) of his or her parents. The data
from this study can be analyzed with the LMEM and the R script
shown in Table 8, with one minor change: all instances of sub -
ject.ID are replaced by classroom.ID. The LMEM con-
tains two by-classroom random effects, the random intercept and
the random slope for prestige.

Like before, the coefficient associated with the predictor (pres-
tige) describes the within-classroom association between the pre-
dictor and the outcome variable only if the predictor is centered
around each classroom’s own mean. Here, the coefficient tells us
whether higher SES students enjoy school-related activities more
(or less). This within-classroom association is likely to differ from
the between-classroom association, that is, the extent to which
classrooms with a high percentage of high SES kids also tend to
have a high percentage of kids who enjoy school-related activities.
If the predictor is uncentered or centered around the grand mean,
its coefficient is an uninterpretable amalgam of both types of
associations (Raudenbush & Bryk, 2002). Researchers would com-
mit the ecological fallacy if they attempted to interpret this coef-
ficient. See Appendix B for additional information on this topic.

Should Higher-Order Units in Nested Designs be
Treated as Fixed Variables?

In certain disciplines (e.g., economics), researchers often treat
the higher-order unit as a fixed rather than a random variable. In
the study mentioned above—researchers examine the association
between prestige (SES) and liking for school activities among
students who are nested in classrooms—this approach would con-
sist of running a standard GLM in which students is the unit of
analysis and in which the outcome variable is regressed on the
predictor and M-1 contrast codes (M being the number of class-



n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri

°r and is not to be disseminated broadly.

This article is intended solely for the personal use of the individua

398 BRAUER AND CURTIN

rooms included in the study).'® In a recent article, McNeish and
Kelley (2017) compare the two data-analytic approaches and draw
some general conclusions.

First, both approaches are clearly better than ignoring the non-
independence caused by the higher-order unit, which leads to an
increased type-I error rate.

Second, the “fixed effects model” approach treats the higher-
order unit as a fixed variable. By using this approach, the research-
ers are thus assuming that data have been gathered from all the
levels of the higher-order unit that are of interest. They also accept
the premise that the results of their study do not necessarily
generalize to other higher-order units that were not included in the
study. Such an approach may be acceptable when the goal is to
solve a company-specific problem by measuring employees nested
in departments, when all departments of the company have been
included in the study, and when the researchers do not want to
generalize their findings to other departments (e.g., departments in
other companies). It may also be acceptable if there are only a few
higher-order units and the statistical power of the LMEM would be
unreasonably low. Such an approach is questionable, however,
when researchers form discussion groups in the lab and want to
generalize their results to discussion groups in general.

Third, most multilevel experts seem prefer the LMEM ap-
proach, for the reasons outlined above (Gelman & Hill, 2006;
personal communications from Bates, 2016; Snijders, 2015). The
“fixed effect model” approach may be a defensible data-analytic
strategy when the number of higher-order units is small (Snijders
& Bosker, 2012, mention “less than 20””) and when the number of
lower-order units is large (i.e., when there are many observations
per higher-order unit; see McNeish & Stapleton, 2016).

Special Case—Only One Observation per Cell

In all of the examples above involving a dichotomous predictor,
there were multiple data points per higher-order unit and per level
of the predictor. For example, in the study described in Table 1,
each subjects judged two classes per prestige level, and in the first
example in the previous section, each discussion group contained
two members at each of the two prestige levels. What happens
when the design is such that there is only one observation per cell?
Such studies can easily be analyzed with the LMEM framework,
but some (minor) adjustments are necessary. As a concrete exam-
ple, let’s consider a study in which each subject evaluates his or
her liking for two classes, one high-prestige class and one low-
prestige class. The data from this study can be entered in wide
format and analyzed with a paired-samples ¢ test. Alternatively,
they can be entered in long format and analyzed with a LMEM
(both analyses will yield the same result). The equation for this
LMEM is identical to the one in Equation 2: It contains two fixed
effects and three elements in the ‘“complex error term” (two
random effects and random error).

It turns out, however, that two of the elements in the error term
are confounded with each other in such a study: The by-subject
random slope for prestige and the random error. Although the two
sources of error exist in reality, they cannot be mathematically
separated. If a prank-loving collaborator secretly introduced ran-
dom error into your data file, you wouldn’t know if the observed
deviations from the model predictions are random error or caused
by the fact that subjects vary in their relative preference of one

type of class over the other. Likewise, if you did a replication of
the first study but you inadvertently recruited subjects who vary
more in their relative preference of one type of class over the other
than the subjects in the original study, you wouldn’t know if the
larger error term in the replication study is due to a change in
the random slope of prestige (between-subjects variation in rela-
tive preference) or due to a change in random error. In order to
make the confound explicit we use the bracket notation introduced
by Judd, Westfall, and Kenny (2017). The brackets indicate the
variance components that are confounded with each other.

like = B3 + B;prestigeC + 1, + [u;prestigeC + ¢] (8)

A similar confound exists in more complex designs. Consider a
slightly modified version of a study presented earlier (see Table 6).
Subjects now rate their liking for four classes: a high-prestige science
classes, a high-prestige nonscience class, a low-prestige science
classes, a low-prestige nonscience class. This study has a 2 X 2 fully
within-subjects design and there is only one observation per subject
and per cell. It can be shown that the by-subject random slopes are
confounded with the random error. The question is, then, how to deal
with this confound.

The best solution is to avoid this situation altogether by having
more than one observation per cell. As data analysts, we want to be
able to model both between-subjects variation (in how subjects are
affected by the within-subjects predictor) and random error (i.e.,
measurement error and other random fluctuations). Once the ran-
dom error is correctly quantified, the statistical model can remove
it from the equation so we can get an accurate assessment of the
extent to which the effect of the within-subjects predictor varies
from one subject to the next. Multiple random errors cancel each
other out, and multiple measurements lead to more reliable assess-
ments of the construct under consideration. As a consequence, we
should include multiple observations per cell of the within-subjects
design whenever possible. This can easily be achieved by includ-
ing more items, measuring each subject more than once per con-
dition, or simply computing two scores from the outcome measure
(e.g., even and odd items, first and second minute).

When a study does not allow for more than one observation per
cell, researchers have three options to deal with the existing
confound. The first option is to ignore the issue. Some statistics
programs, like R, will estimate a LMEM and produce relevant
output. Although the output for the random effects should not be
interpreted—the software will make an attempt to estimate parame-
ters for all variance components, even the ones that are confounded—
the fixed part of the model can be trusted. The fixed parameters
will provide unbiased estimates of the population effects and will
replicate the results of the repeated measures ANOVA with data in
wide format.''

The second option is to set the variance for the random error to
a very small value, let’s say .00001 (possible with blmer in R and

19 Mathematically equivalent approaches are to regress the outcome
variable (a) on the intercept, the predictor, and M-1 dummy codes; or (b)
on the predictor and M dummy codes (and to remove the intercept).

' The data analysis program will most likely generate an error message
with the output. This error message can be ignored. In R, it is possible to
suppress the error message by adding control = ImerControl-
(check.nobs.vs.nRE = “ignore”) to the model statement as the
last element in the parenthesis.
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the PARMS argument in SAS, e.g.), or to set it to zero. Although
none of the major data analysis programs currently allow users to
set the variance for the random error to zero, such a (highly
desirable) option may become possible in the future. A third option
is to transform the data file to wide format and to analyze the data
with a repeated-measures ANOVA.

A fourth option is available if there is only one within-subject
predictor in the model. In this case, the researchers can simply
delete the by-subject slope for the predictor (Barr et al., 2013, p.
275). The model will correctly estimate the parameter for the fixed
slope, and its inferential test will have a type-I error rate of 5%.
Note that this option is not available when there are two or more
within-subjects predictors. It has been suggested that in such a case
it suffices to delete the random slope for the highest-order inter-
action term in the LMEM. Our simulations show that such a
LMEM will not reproduce the results of the repeated measures
ANOVA with data in wide format.'?

Restricted Maximum Likelihood

It should be noted that LMEMs use an estimation procedure called
“Restricted Maximum Likelihood” (ReML), and not, as the standard
ANOVA and regression analysis, “Ordinary Least Squares” (OLS).
ReML is an iterative process in which the parameter estimates are
progressively modified to maximize the “log likelihood function.”
At each step, the computer program estimates the parameters and
determines the likelihood of having obtained the data at hand if the
population parameters really had those values. In the following
step, it changes the parameter estimates based on certain algo-
rithms and tests if the new values yield an even greater likelihood
(Demidenko, 2013). The iterative process stops when the log
likelihood function can no longer be maximized by further changes
to the parameter estimates. As opposed to Maximum Likelihood,
ReML produces unbiased estimates of variance and covariance
parameters. ReML and OLS yield identical results only in so-
called “simple LMEMs,” in which all within-subject variables are
categorical and subjects are the only source of nonindependence.

The use of ReML as the estimation procedure has a number of
implications that the user of LMEMs should be aware of. Except
in simple LMEMs, the final model will likely have denominator
degrees of freedom with decimals. They should be reported as
such, for example, F(1, 54.17) = 4.86, p < .04. There is no
agreement among statisticians about the best way to compute the
appropriate dfs (Baayen, Davidson, & Bates, 2008). Following the
lead of Judd et al. (2012) we suggest using the Kenward-Roger
approximation to compute the dfs (Kenward & Roger, 1997). This
approach uses the equally acceptable Satterthwaite approximation
(the default in SAS and the only method used in SPSS), but will
rescale the F ratio and compute the degrees of freedom in a way
that results in a better approximation to an appropriate F distribu-
tion. The Kenward-Roger method is available in most standard
data analysis programs. It is the default in R. ReML and the
Kenward-Roger approximation both require large sample sizes to
yield stable estimates. It is generally advised to have at least
200-300 observations (>500 are considered ideal; Raudenbush &
Bryk, 2002).

Throughout this article, we provide the R scripts allowing research-
ers to compute a F-statistic with Kenward-Rogers degrees of freedom.
Some researchers use a likelihood ratio test statistic that yields a

chi-square value (e.g., Bates, Kliegl, Vasishth, & Baayen, 2015a).
Both methods are acceptable and yield comparable results. There are
some studies suggesting that the Kenward-Roger statistic outperforms
the likelihood ratio test (in terms of maintaining the nominal alpha
level), especially in small samples (Kenward & Roger, 1997; Kuz-
netsova, Brockhoff, & Christensen, 2015). Only the results of the
Kenward-Roger F-statistic will exactly reproduce those of the re-
peated measures ANOVA.

One advantage of ReML estimation is that it can easily handle
missing values. Whereas the repeated measures ANOVA will delete
subjects if they have one or more missing values, a LMEM can derive
parameter estimates and compute inferential statistics even when the
data are incomplete (Rasbash et al., 2000). It will simply use the data
that are available and take into account that the fact that the relation-
ship between the predictor and outcome has been estimated more
reliably for certain subjects (with complete data) than for other sub-
jects (with incomplete data). An implication is that LMEMs can
appropriately analyze data from studies in which different subjects
provided a different number of observations for each level of the
predictor variable (so-called “unbalanced repeats””). Whereas repeated
measures ANOVAs limit themselves to computing total scores by
averaging across multiple data points in the same cell of the design,
LMEMs also take into account the reliability of each of the total
scores (which is determined by the number and the variability of the
data points).

Not all experts agree about the minimum number of levels that a
random variable should have before one can include random effects
for it. Does it make sense to include a by-subject random slope in a
study in which six subjects each evaluate 100 stimuli, or a by-school
random slope in a study in data from 1,000 students nested in four
schools are collected? Raudenbush and Bryk (2002) suggest that one
should have at least 10 levels. Stegmueller (2013) argues that fewer
levels are acceptable as long as one is interested only in the fixed
effects and the model does not contain any interactions of variables of
different type (e.g., the interaction between a within- and a between-
subjects variable). According to our understanding it is impossible to
suggest clear guidelines. In order to maintain the type-I error rate at
5%, it is necessary to include by-unit random effects whenever the
unit causes nonindependence in the data, regardless of the number of
levels. It has been shown that the type-I error rate inflation is higher
when the number of levels is small (Judd et al., 2012) and persists
even if the random effect for the predictor under consideration has a
near-zero variance (Barr et al., 2013). The problems of a small
number of levels are low statistical power (type-II errors) and the
instability of the observed effects. These are serious problems that can
be addressed in a variety of ways—for example, include a larger
number of levels (even if this implies a smaller total number of
observations), sacrifice generalizability by treating a random variable
as if it were fixed (see section on Multilevel Models, Appendix C, and
McNeish & Stapleton, 2016)—but simply ignoring a random variable
that causes nonindependence is not a viable option."?

2 The R script for the simulations is available upon request.

13 See the section Deciding on the LMEM to be Estimated for more
information on the inclusion of random effects with a variance component
that is not reliably different from zero.
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Multiple Sources of Nonindependence

In many psychological experiments, subjects are exposed to the
same set of items, that is, they may view the same words, sen-
tences, pictures, or avatars, or they may rate the same products,
faces, art works, or individuals. Alternatively, subjects clustered in
groups, families, classrooms, or counties may each provide mul-
tiple data points. Such studies contain two sources of nonindepen-
dence: Some responses may be more similar because they were
made by the same subject, other responses may be more similar
because they concern the same item (i.e., different subjects rating
the same item), and yet other responses may be more similar
because they were made by subjects in the same group.

Statistical analyses of such data have to take this double source
of nonindependence into account. Judd et al. (2012) have shown
that failure to do so leads to an increased type-I error rate, some-
times as high as 60%. By averaging across items belonging to the
same category, we are not taking into account the nonindepen-
dence due to items. By averaging across subjects belonging to the
same group, we are ignoring the variability between subjects. No
data analysis technique belonging to the general linear model (e.g.,
ANOVA, regression analysis) can effectively deal with multiple
sources of nonindependence. Only LMEMs with the appropriate
random effects can achieve this goal (Baayen et al., 2008).

Readers should be aware that “items” and “groups” are not the
only possible second source of nonindependence (subjects is usu-
ally the first source). When subjects interact with one of several
confederates—where half are European American and half are
African American—the design calls for the inclusion of by-
confederate random effects. If a researcher runs a study at multi-
ple, randomly selected locations across the country and wants to
generalize her findings to the entire U.S., then she should include
by-location random effects. In cross-cultural research with respon-
dents from many countries, it not only makes sense to include the
appropriate by-country random effects but also to distinguish the
within-country associations from the between-country associations.
To summarize, researchers should carefully examine whether their
studies contain possible sources of nonindepen