
Linear Mixed-Effects Models and the Analysis of Nonindependent Data:
A Unified Framework to Analyze Categorical and Continuous Independent

Variables that Vary Within-Subjects and/or Within-Items

Markus Brauer and John J. Curtin
University of Wisconsin-Madison

Abstract
In this article we address a number of important issues that arise in the analysis of nonindependent data.
Such data are common in studies in which predictors vary within “units” (e.g., within-subjects,
within-classrooms). Most researchers analyze categorical within-unit predictors with repeated-measures
ANOVAs, but continuous within-unit predictors with linear mixed-effects models (LMEMs). We show
that both types of predictor variables can be analyzed within the LMEM framework. We discuss designs
with multiple sources of nonindependence, for example, studies in which the same subjects rate the same
set of items or in which students nested in classrooms provide multiple answers. We provide clear
guidelines about the types of random effects that should be included in the analysis of such designs. We
also present a number of corrective steps that researchers can take when convergence fails in LMEM
models with too many parameters. We end with a brief discussion on the trade-off between power and
generalizability in designs with “within-unit” predictors.

Translational Abstract
Researchers and practitioners sometimes want to analyze data that are “nonindependent.” Data are said
to be nonindependent when the study is designed such that certain data points can be expected to be on
average more similar to each other than other data points. This is usually the case when each subject
provides multiple data points (so-called within-subject designs), when subjects belonging to higher-order
units influence each other (e.g., students clustered in classrooms, employees clustered in teams), or when
subjects react to or evaluate the same set of items (e.g., pictures, words, sentences, products, art works,
target individuals). In the present article, we propose that all types of nonindependent data can be
analyzed with the same statistical technique called “linear mixed-effects models.” Compared to standard
statistical tests belonging to the family of “General Linear Models” (e.g., ANOVA, regression), linear
mixed-effects models have a “complex error term,” i.e., the data analyst has to explicitly include all
possible reasons for why the predictions of the statistical model may be wrong (these possible reasons
are called “random effects”). It is not always obvious how to identify all possible sources of error. In this
article, we provide clear guidelines on the type of random effects that researchers and practitioners should
include when estimating linear mixed-effects models. Failure to include the appropriate random effects
leads to an unacceptable false positive rate (or “type I error rate”), i.e., a high proportion of statistically
significant results for effects that do not exist in reality.

Keywords: The analysis of nonindependent data, within-subjects designs, linear mixed-effects models,
fixed and random effects, convergence problems

In recent years, interest in “linear mixed-effects models”
(LMEMs) has increased drastically. Influential articles by Judd,
Westfall, and Kenny (2012) and Barr, Levy, Scheepers, and Tily
(2013) have made clear that many psychological studies require
these types of models. The traditional ANOVA/regression ap-

proach is limited in that it poorly handles missing data and cannot
handle continuous predictors that vary within “units” (e.g., within-
subjects, within-groups, within-classrooms). More importantly,
this approach yields biased inferential statistics when the same
subjects are exposed to the same set of items (or stimuli or targets).
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Only mixed models yield unbiased parameter estimates with ac-
ceptable type-I and type-II error rates.

The increased use of LMEMs will shape the types of studies that
psychologists will conduct in the future. We now know that we
should think about items the same way we have always thought
about subjects: Ideally, both should be sampled from a larger pool
of possible exemplars, and we typically want to generalize our
findings from the sample to the entire population (Clark, 1973). In
order to do so, it is necessary to randomly select a sufficiently large
sample of subjects and a sufficiently large sample of items (Bahník
& Vranka, 2017). Studies with only one observation per level of
the within-subject design suffer from limited generalizability. The
same is true for other elements of our studies: We probably will
want to generalize our findings beyond the specific groups, class-
rooms, confederates, tasks, and locations that we included in our
study. As such, the role of LMEMs in data analysis will likely
increase in the future: Most published studies will require LMEMs,
and a solid mastery of LMEMs will be crucial for designing and
analyzing impactful research.

Although many researchers have recognized the need to analyze
their data with LMEMs, not all of them know how to correctly
specify these models for a variety of designs. The purpose of this
article is to provide clear guidance on the analysis of data with one
or more sources of nonindependence. Specifically, we will de-
scribe, in a user-friendly and pragmatic way (a) the type of effects
that should be included in models examining data from different
designs, and (b) how to address a variety of problems that one
might run into when estimating LMEMs.

The article addresses itself to a variety of audiences. The
initial sections target LMEM novices. We start out with an
introduction to linear mixed-effects models and the analysis of
dichotomous predictor variables that vary within units. We also
define fixed effects and random effects. Advanced LMEM
beginners may want to skip to the section on the analysis of
continuous within-subjects predictors. We show that dichoto-
mous and continuous within-subjects predictors can be ana-
lyzed using the same conceptual framework and with virtually
identical commands in most data analysis programs. We extend
the framework to multilevel models. The experienced LMEM
user may be most interested in the section on “Multiple Sources
of Nonindependence” and the remainder of the article. These
sections contain guidance on the types of random effects that
should be included depending on whether each predictor in the
model varies either within-units or between-units (e.g., sub-
jects, items, classrooms). We also propose corrective steps that
researchers can take to simplify their models when they run into
convergence problems. The article ends with a brief discussion
on statistical power and generalizability.

Terminology and Data Formats

In this article, we will use the term “linear mixed-effects
models” (LMEMs) to refer to models with one or more random
effects. These models include data analytic techniques like
hierarchical regression, hierarchical linear modeling (HLM),
multilevel regression, multilevel linear modeling, linear mixed
models, and random coefficient models. The common charac-
teristic of these models is that they allow researchers to analyze
data with one or more sources of nonindependence. Data are

nonindependent when multiple data points are collected from
each subject (e.g., within-subject design, longitudinal research)
or when subjects belong to groups and group members influ-
ence each other (e.g., subjects belong to the same family or
discussion group, students are nested in classrooms). The data
are also nonindependent when subjects are exposed to the same
set of items (e.g., subjects react to pictures, judge words, or
evaluate target individuals). Among the five assumptions of
ANOVA and regression— exact X, independence, normality,
constant variance, and linearity—a violation of the indepen-
dence assumption is generally considered the most serious one
in that it produces the most incorrect inferential statistics (Judd,
McClelland, & Ryan, 2009). In this article, we will frequently
use examples in which the predictor variable varies within-
subjects, but readers should be aware that the presented data-
analytic techniques can also be used when the predictor varies
within higher-order “units,” such as groups or classrooms.

In order to adopt the “LMEM way of thinking,” an increasing
number of researchers now analyze their data in “long format”
rather than “wide format” when there are multiple observations per
subject. When data are presented in wide format, there is one row
per subject and the multiple observations appear in different col-
umns. In long format, there is one row per observation and thus
multiple lines per subject. Imagine a hypothetical experiment
(which we will refer to as “Study 1” throughout the article) in
which researchers recruit 100 undergraduates and ask them to list
two high-prestige classes and two low-prestige classes they took in
college. Prestige is defined as the extent to which a class “looks
good” on the students’ transcript (e.g., difficult science classes,
honors classes, graduate level classes). Students are then asked to
indicate, on a 9-point scale, their liking for each of the four classes.
Let’s further assume that the study takes place at a large public
university so that each student evaluates a different set of four
classes. The experiment has a single dichotomous within-subjects
predictor, which we will call “prestige.” The outcome variable is
“liking.” The data in wide format would contain 100 rows (and,
among other variables, four columns corresponding to the liking
for each of the four classes), whereas the data in long format would
contain 400 rows (and all four liking ratings from the same subject
would appear in the same column; see Table 1 for an example.).

LMEMs require data to be in long format. In addition, many
researchers argue that data files in long format are more “tidy”
in that they resemble those of between-subjects designs: There
is one column that represents the dependent variable and one or
more columns that correspond to the predictor variable(s), and
one observation is associated with one row (Wickham, 2014).
The reshape function in R allows researchers to transform
data files from wide format into long format, and vice versa (see
Appendix A).

Although the data format has no impact on the conclusions—
both formats yield statistically identical results when analyzed
with the appropriate models—a long data format helps researchers
understand the underlying logic of LMEM, which can then easily
be generalized to more complex designs, such as studies with a
continuous within-unit predictors or studies in which there are
multiple sources of nonindependence. Data files in long format,
however, require a different syntax in most data analysis programs.
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As we will see, this syntax is often shorter and more intuitive than
the one we use when data are in wide format.1

Introduction to Linear Mixed-Effects Models

Consider the hypothetical experiment presented above (Study
1): One hundred subjects rate the extent to which they liked two
high-prestige classes and two low-prestige classes. Table 2 pres-
ents the R script for the data in the traditional wide format. If the
difference score is statistically different from zero, then subjects’

liking for the high-prestige classes is reliably different from that
for the low-prestige classes.

Table 3 shows the R script when the data are in long format. As
it turns out, the script is rather similar to the one we would have
used if the predictor (“prestige”) had varied between-subjects: An
outcome variable is regressed on (the intercept and) a dichotomous
predictor. The only difference is that the model statement now
contains an additional element (1 � prestigeC|subject.ID).
Expressed in a very simplified way, the additional element tells the
data analysis software that the predictor “prestige” varies within-
subjects.

As already mentioned, the two analyses reported in Table 2 and
3 yield identical results for the parameter estimates and their
standard errors, the dfs, the F- and p values.2 For ease of interpre-
tation we have recoded the dichotomous prestige variable into �.5

1 Although we will be providing only R script throughout this article,
most of the described analyses can be performed with other major data
analysis programs (e.g., SAS, SPSS).

2 The two analyses yield identical results only if the LMEM uses the
Kenward-Roger method to compute the degrees of freedom and no con-
straints are imposed on the covariance matrix of the LMEM (both are the
default in R). We will present different methods to compute the degrees of
freedom in LMEMs in the section on Restricted Maximum Likelihood.
Throughout the article, we will present LMEMs with an “unstructured
covariance matrix,” that is, a covariance matrix upon which no constraints
have been imposed.

Table 1
The Same Data in Wide Format (Top) and Long Format (Bottom)

Row subject.ID like.lo1 like.lo2 like.hi1 like.hi2 gender age

1 1 6 5 7 8 1 20
2 2 1 4 3 3 2 18
3 3 7 6 7 5 2 21
4 4 7 8 9 9 1 19

. . . . . . . . . . . . . . . . . . . . . . . .
100 100 4 5 7 5 2 20

Row subject.ID like prestige gender age item.ID

1 1 6 1 1 20 1
2 1 5 1 1 20 2
3 1 7 2 1 20 3
4 1 8 2 1 20 4
5 2 1 1 2 18 5
6 2 4 1 2 18 6
7 2 3 2 2 18 7
8 2 3 2 2 18 8
9 3 7 1 2 21 9

10 3 6 1 2 21 10
11 3 7 2 2 21 11
12 3 5 2 2 21 12
13 4 7 1 1 19 13
14 4 8 1 1 19 14
15 4 9 2 1 19 15
16 4 9 2 1 19 16

. . . . . . . . . . . . . . . . . . . . .
400 100 5 2 2 20 400

Note. Only the data from the first four subjects and the last row in the data file are shown. Low-prestige classes
are referred to with “lo” (top panel) or “1” (bottom panel), whereas high-prestige classes are referred to with “hi”
(top panel) or “2” (bottom Panel). Although not necessary, we added a variable called “item.id” to the data file
in long format to make explicit that each subject evaluated his/her own set of four classes.

Table 2
R Script for Hypothetical Study 1, When the Data are in
Wide Format

d <- dfReadDat ("data_Study1_wide.dat")
d$ave_like_lo <- (d$like_lo1 + d$like_lo2)/2
d$ave_like_hi <- (d$like_hi1 + d$like_hi2)/2
d$difference <- d$ave_like_hi — d$ave_like_lo
model_1a <- lm(difference � 1, data = d)
summary(model_1a)

Note. The Study contains a single dichotomous predictor variable that
varies within-subjects (prestige). The term “lm” stands for “linear model”.
Here the difference score (liking for high-prestige classes minus liking for
low-prestige classes) is regressed on the intercept b0 (labeled “1” in R). In
other words, the model tests whether the difference scores are on average
reliably different from zero.
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and �.5 so that it is centered around zero. Such recoding is not
necessary, as it will not affect the parameter estimate for the
prestige effect. It simplifies, however, some explanations given
below.

The LMEM approach in Table 3 helps us think about within-
unit analyses in a different way than the one that is taught in
many traditional statistics textbooks. As it turns out, there are
numerous similarities and only a few differences between a
purely between-subjects analysis and a within-subjects analysis
that takes the form of a LMEM (assuming the only difference
between the designs is whether the predictor of interest varies
between-subjects or within-subjects). We will discuss the sim-
ilarities and differences in turn.

Fixed Variables and Random Variables

In both types of analyses, the relevant variables are consid-
ered to be either “fixed” or “random” (Kreft & DeLeeuw,
1998). In the example above, prestige is a fixed variable
(with two levels), whereas subject.ID is a random variable
(with 100 levels). A variable is considered fixed when data have
been gathered from all the levels of the variable that are of
interest. It is also assumed that the values of a fixed variable in
one study are the same as the values of the fixed variable in
another study. The variables that are (or might be) implicated
by theoretical predictions tend to be fixed, which is why pre-
dictor variables are nearly always fixed.

A variable is considered random when it has many possible
levels and when the researchers’ interest is in all possible
levels, but only a random sample of levels is included in the
data. Subjects that are randomly selected from a larger pool of
possible subjects and items that are randomly selected from a
larger pool of possible items are nearly always random vari-
ables. Other typical random variables are individuals who work
with multiple subjects (e.g., managers, teachers, therapists,
social workers), higher-order units that subjects are nested in
(e.g., families, work teams, classrooms, counties), and settings
(e.g., locations on campus or in town, different situations in
which a behavior may occur).

The levels of random variables are usually nominal in nature,
that is, the numbers assigned to them have no meaning except
that they allow us to distinguish the different exemplars. A

variable that assigns each “unit” (i.e., subject, item, manager,
classroom, setting) a different identification number is usually
random (see subject.ID and item.ID in Table 1), whereas
variables that describe characteristics of these units are usually
fixed. In Table 1 for example, the fixed variable age describes
a characteristic of the units identified by the random variable
subject.ID, and the fixed variable prestige describes a
characteristic of the units identified by the random variable
item.ID. This is why measured predictors, covariates, and
demographics are generally fixed variables: They might be
implicated by theoretical predictions, they describe character-
istics of the subjects, and it generally assumed that the study
includes a large enough sample so that data have been collected
from all the levels of the variable that are of interest.

Random variables are explicitly included in the data analyses
only if there is more than one observation per level of the
variable. This is why subject.ID is not included as a pre-
dictor in the analyses of purely between-subjects designs (e.g.,
independent-samples t test, standard ANOVA, multiple regres-
sion). In Study 1, however, each subject made four ratings, two
for the high-prestige classes and two for the low-prestige
classes. As a consequence, the variable subject.ID has to be
explicitly included in the data analyses. Said differently, ran-
dom variables are included in the analyses only if they create
nonindependence in the data. In Study 1, the four ratings from
the same subject are clearly not independent from each other,
and this is why subject.ID is part of the R script in Table 3.

Simple Versus Complex Error Terms

Statistical analyses all have the same basic structure: DATA �
MODEL � ERROR (see Table 4). Every statistical model makes
predictions based the (weighted) mean of the outcome variable
(�0) and one or more predictors (here: �1X). The major difference
between the analyses of independent data (e.g., between-subjects
analyses) and nonindependent data (e.g., within-subject analyses)
is the complexity of the error term.

In the analyses of independent data, the error term is rela-
tively simple: It only has one element, the random error. When
data are nonindependent and analyzed via a LMEM, the error
term usually consists of multiple components. This is because
there are multiple reasons the model predictions may be incor-
rect in these models. One source of error, like in any model, is
differences between subjects in general. For example, subjects
in Study 1 may differ in how they use the rating scale or the
extent to which they enjoy university classes in general. This
source of error is often referred to as “random intercept” or, to
make explicit that the source of error is caused by subjects,
“by-subject random intercept” (labeled “eRI” and “u0j” in Table
4). A second source of error stems from differences between
subjects in how they are affected by the predictor variable(s). In
Study 1, subjects may differ in the extent to which they prefer
high-prestige classes over low-prestige classes. This source of
error is often referred to as “by-subject random slope” or simply
“random slope” (labeled “eRS” and “u1jXij” in Table 4). A third
source of error is random error (labeled “e” and “eij” in Table
4). Just like in the between-subjects case, this element captures

Table 3
R Script for Hypothetical Study 1 With Data in Long Format

library (lme4)
library (car)
d <- dfReadDat ("data_Study1_long.dat")
d$prestigeC <- d$prestige – 1.5
model_1b <- lmer(like � 1 + prestigeC + (1 +
prestigeC|subject.ID), data = d)

summary(model_1b)
Anova(model_1b, type = 3, test = “F”)

Note. The library statements load the packages needed to perform the
analyses. The package “lme4” was written by Bates, Mächler, Bolker, and
Walker (2015b). The package “car” was written by Fox and Weisberg
(2011). The term “lmer” stands for “linear mixed-effects in R”. The
summary statement produces the parameter estimates, the ANOVA state-
ment the inferential statistics.
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all other sources of error, such as unreliable measurement and
random fluctuations in ratings from one class to the next.3

ANOVA, t tests, and multiple regression are all special cases of
the general linear model (GLM), which in turn is a special case of
a LMEM: A GLM is a LMEM without random effects. Despite the
differences in error terms, our focus in both GLMs and LMEMs is
the interpretation of the regression coefficient associated with the
predictor variable(s). In both columns of Table 4, �1 represents the
model’s estimate of the effect of “prestige” on liking. If �1 is
statistically significant, we conclude that there is an effect of the
predictor on the outcome variable.4

Interpretation of Fixed Effects and Random Effects

In both models in Table 4, the coefficients �0 and �1 are called
“fixed effects.” The interpretation of the fixed effects in a LMEM
is straightforward, as it closely follows the interpretation of fixed
effects in a standard GLM. The coefficients �0 and �1 test whether
there is an effect of prestige on liking (�1, the so-called “fixed
slope”) and whether subjects’ predicted liking scores for classes
with a score of zero on prestige (centered) are reliably different
from zero (�0, the so-called “fixed intercept”). These effects are
called “fixed” because they apply to the entire sample. Like regular
regression analysis, the test of the fixed intercept in a LMEM is
conceptually relevant only if a score of zero on the predictor
variable is a meaningful value (which often is only the case if the
predictor has been centered around zero).

The random intercept (u0j) and the random slope (u1jXij) in the
LMEM are called random effects because they represent the extent
to which the coefficients �0 and �1 (randomly) vary from one
subject to the next. This point can easily be understood by rear-
ranging the LMEM equation as follows:

Yij � (�0 � u0j) � (�1 � u1j)Xij � eij (1)

This version of the equation illustrates that the LMEM estimates
multiple components. Applied to Study 1, the first parenthesis (�0 �
u0j) refers to the average like ratings, that is, the averages of the four

like ratings per subject. The model estimates two entities, the mean of
the average like ratings (�0) and the extent to which subjects’ average
like ratings vary around this mean (u0j). Although the model predicts
one average like rating for the entire sample (the fixed intercept), it
also allows for the 100 individual average like ratings to vary around
this prediction. Each subject’s average like rating will deviate to some
extent from the fixed intercept. In other words, there are 100 u0’s in
Study 1, one for each subject.

The second parenthesis in the equation (�1 � u1j) describes the
effect of prestige on liking. The model estimates two entities, the
mean of the preferences for one type of class over the other (�1) and
the extent to which subjects’ preferences vary around this mean (u1j).
As with the average ratings, the model predicts one mean “prestige
effect” for the entire sample (the fixed slope), but it also allows for the
100 individual preferences to vary around this prediction. Each sub-
ject’s prestige effect (the extent to which s/he prefers high-prestige
classes over low-prestige classes) will vary somewhat from the fixed
slope, which is why there are 100 u1’s in Study 1.

A Linear Mixed-Effects Model Estimates Variances

It turns out that the LMEM does not estimate each of the 100
u0’s and each of the 100 u1’s. Instead, it estimates their variances.
In other words, the computer estimates one parameter that repre-

3 There are several other minor differences between the two types of
models with regard to the notation that is used in most texts on data
analysis. The variables and the error term in the between-subjects case have
one subscript (i for subject), whereas they have two subscripts in the
within-subjects case (usually j for subject and i for item). In our hypothet-
ical Study 1, j varies between 1 and 100 (there are 100 subjects) and i varies
between one and four (each subject rates four classes), so that there are in
total 400 Y-values, 400 X-values, and 400 e-values.

4 Some data analysts argue that ratings on Likert scales should be
analyzed with ordered logit regression (and generalized linear mixed-
effects models; see Fullerton & Xu, 2016) rather than repeated measures
ANOVA or LMEMs. Strictly speaking, ratings on Likert scales are ordinal
outcomes. To keep the explanations in this article simple, we are assuming
throughout the article that outcomes are continuous.

Table 4
Comparison Between the Analyses of Independent and Nonindependent Data

Independent data
(e.g., between-subjects designs)

Nonindependent data
(e.g., within-subjects designs)

DATA � MODEL � ERROR DATA � MODEL � ERROR

DATA � MODEL �
SIMPLE
ERROR
TERM

DATA � MODEL �
COMPLEX

ERROR
TERM

È È È

Y � �0 � �1X � e Y � �0 � �1X � eRI � eRS � e �
Yi � �0 � �1Xi � ei Yij � �0 � �1Xij � u0j � u1jXij � eij �
Ç Ç Ç

Fixed
effects

Random
error

Fixed
effects

Random
effects

Random
error

Note. The most important difference is the complexity of the error term. In both types of analyses, the
hypothesis focuses on the fixed effects, most likely �1. The table contains two equations per type of analysis,
one simplified version without subscripts and one complete version (with subscripts) that can be found in
numerous texts on LMEMs. If X is dichotomous, the model on the left is equivalent to an independent-samples
t-test, whereas the model on the right is equivalent to a paired-samples t-test (after averaging across multiple
observations in the same cell of the within-subject design).
� eRI � u0j � random intercept; eRS � u1jXij � random slope.
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sents the variance of the 100 individual average like ratings and
one parameter that represents the variance of the 100 individual
prestige effects. The model can thus account for the between-unit
variability in the intercept or slopes without having a large number
of parameters. It also estimates the variance of the random errors,
the eij’s. This is why the random effects and the random error are
sometimes referred to as “variance components” in a LMEM.5

Although the classic F test is usually framed in terms of Sum of
Squared Errors (SSE), it can easily be shown that the variance of
the residuals (the ei’s in the left panel of Table 4) is equivalent to
the SSE divided by N-1. Thus, the classic F test can be seen as a
comparison between models having different variance compo-
nents.

Using the variable names from hypothetical Study 1, the equa-
tion for the LMEM is as follows (see also right panel of Table 4):

like � �0 � �1prestigeC � u0 � u1prestigeC � e (2)

By including a random intercept in the model (i.e., by estimating
the variance of the u0j’s), we are allowing for the possibility that
subjects differ in their average liking for the four classes. It is
theoretically possible to specify a model without a random inter-
cept (which is equivalent to fixing the variance of the u0j’s to zero).
Such a model would make the assumption that subjects’ predicted
like ratings for classes with a score of zero on the centered prestige
variable are all the same. This assumption is likely to be incorrect.

The same reasoning can be applied to the random slope: By
including a random slope in the model (by estimating the variance
of the u1j’s), we are allowing for the possibility that subjects differ
in the extent to which they prefer one type of class over the other.
As with the random intercept, it is theoretically possible to fix the
variance of the u1j’s to zero (i.e., to estimate a model without a
random slope). Such a model would make the (probably incorrect)
assumption that subjects all have the same relative preference for
high-prestige classes, that is, that the difference between liking for
the high-prestige classes and liking for the low-prestige classes is
the same for all subjects.

Remember that a repeated-measures ANOVA with the data in
wide format and a LMEM with the data in long format yield
identical results.6 This is because the repeated-measures ANOVA
allowed subjects to vary in their average like scores and in their
relative preference of one type of class over the other, just like the
LMEM. In both models, a greater variability around the average
effect translates into larger standard errors and larger p values.
Note that including a random effect does not necessarily mean that
a degree of freedom is used up. It simply means that certain entities
are allowed to vary from one subject to the next.

Most importantly, the inferential statistics for a given fixed
effect will maintain a type-I error rate of 5% only if the model also
includes its corresponding random effect (Barr et al., 2013). Ap-
plied to Equation 2, this means that the test of �1 will have an
acceptable type-I error rate only if u1j (the random slope) is
included in the model, and the test of �0 will have an acceptable
type-I error rate only if u0j (the random intercept) in included in the
model. We will come back to this important point later.

Random Variables Versus Random Effects

It is essential to distinguish between random variables and
random effects. Technically speaking, the data file in long format

for our hypothetical Study 1 contains two random variables, sub-
ject.ID (with 100 levels) and item.ID (with 400 levels, see
last column of bottom panel in Table 1). Each class (item) that is
being evaluated in the study has its own identification number.
Given that each student evaluates a different set of four classes,
there are in total 400 classes (items) being evaluated in the study.
Both subjects and items are random variables. Both have been
selected from a larger pool of possible exemplars, and the re-
searchers would like to generalize their results to all subjects
(students) and all classes (items).

And yet, only one of these random variables, subject.ID, is
explicitly included in the analyses: The LMEM includes two
effects related to subjects, a by-subject random intercept and a
by-subject random slope. However, the LMEM includes no effects
related to items. This is because there is only one observation for
each level of the (random) variable item.ID. Each class is being
evaluated only once. This is an important take-home message: Not
every random variable requires a random effect, and certain ran-
dom variables may require more than one random effect. There is
no one-to-one correspondence between random variables and ran-
dom effects. In later sections of this article we will discuss what
types of random effects, if any, should be included for each of the
random variables in the data file.

Extension to Designs With Multiple
Dichotomous Predictors

The LMEM approach described above can easily be extended to
more complex designs. For example, imagine a 2 � 2 mixed-
model ANOVA with one within-subject factor (e.g., prestige) and
one between-subjects factor (e.g., gender). Like before, each sub-
ject rates four classes. It can be shown that this 2 � 2 mixed-model
ANOVA is mathematically equivalent to a LMEM with one fixed
intercept (�0), one fixed effect for the within-subjects factor (�1),
one fixed effect for between-subjects factor (�2), one fixed inter-
action effect (�3), one by-subject random intercept (u0), and one
by-subject random slope for the within-subject factor (u1). The
equation and the R script for such a model are shown in Table 5.

Note that, like before, the “complex error term” contains three
elements, between-subjects variation in the average ratings (u0),
between-subjects variation in how they are affected by the prestige
manipulation (u1), and random error. There is no between-subjects
variation in how subjects are affected by gender, because each
subject is either male or female. For the same reason, there is no

5 The data analysis program also estimates the covariance between the
random effects. We will come back to this point in the section on the
number of parameters being estimated.

6 Westfall has demonstrated that there are rare cases in which the two
types of analyses yield slightly different results (http://stats.stackexchange
.com/questions/117660/what-is-the-lme4lmer-equivalent-of-a-three-way-
repeated-measures-anova). The reason for this is that for data sets with
a negative intraclass correlation, the best-fitting repeated-measures
model implies that some of the variance components underlying the
data must be negative. But most mixed model programs have built-in
constraints that require the variance component estimates to be non-
negative. So the mixed model will do the best that it can within its
constraints, but it will never reach the repeated-measures ANOVA
solution. According to our own simulations, such discrepancies are very
rare and extremely minor in that they are visible only in the third or
fourth decimal of the F value.
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between-subjects variation in how subjects are affected by the
gender by prestige interaction. Gender varies between subjects,
and between-subjects variables cannot be an additional source of
error.

Let’s next consider a 2 � 2 fully within-subjects ANOVA. One
might imagine a study in which students are asked to list eight
classes, four highly prestigious ones and four less prestigious ones.
Within each group, two are science classes and two are nonscience
classes. The study has a 2 � 2 design with two within-subjects
factors, prestige and science. There are two observations per cell of
the design. The data from such a study can be analyzed with a
repeated-measures ANOVA with data in wide format. An equiv-
alent approach would be to enter the data in long format (eight
lines per subject) and to specify a LMEM with one fixed intercept
(�0), one fixed effect for the first within-subjects factor (�1), one
fixed effect for the second within-subjects factor (�2), one fixed
interaction effect (�3), one by-subject random intercept (u0j), one
by-subject random slope for the first within-subject factor (u1), one
by-subject random slope for the second within-subject factor (u2)
and one by-subject random slope for the interaction (u3). The
equation and the R script for such a model can be seen in Table 6.

The “complex error term” now contains five elements because
there are five different reasons for why the model predictions may
be “off:” the by-subject random intercept (u0; to account for
differences in scale usage and general liking of university classes),
three by-subject random slopes (u1, u2, and u3; to account for
variation in how subjects are affected by the two within-subject
factors and their interaction), and the random error (e).

More complex designs—for example, a 2 � 2 � 2 � 2 ANOVA
with two between- and two within-subjects factors, or a mixed
model with one dichotomous within-subject predictor and one
continuous between-subjects predictor—can easily be analyzed
within the LMEM framework. It is easy to include continuous
between-subjects predictors (e.g., a score on an individual differ-
ence measure). Given that between-subjects predictors require no
by-subject random slope, such predictors can simply be added to
the fixed part of the model. As we will see in the next section, the
LMEM framework can also accommodate continuous predictors
that vary within subjects, which cannot be appropriately handled
by a repeated-measures ANOVA.

Like in ANOVA and regression analysis, LMEMs usually re-
quire us to center the predictors prior to the analysis when the

model contains an interaction term. More precisely, the tests of the
lower-order effects typically answer theoretically meaningful
questions only if the dichotomous variables have been recoded
into �.5 and �.5 (or any other two values centered around zero)
and continuous variables have been “mean-centered” (by subtract-
ing the mean from each score; see Schielzeth, 2010). Consider the
model in Table 6. Given that “scienceC” is coded �.5 and �.5, �1

tests the effect of prestige on liking for classes that are conceptu-
ally half-way between the science classes and nonscience classes,
that is, the main effect of prestige in the 2 � 2 ANOVA. If the
predictor had been coded 1 and 2 (“science”), then the coefficient
�1 would test the effect of prestige on liking for classes that have
a score of 0 on science, a conceptually meaningless test.8

It is generally advised to include one random slope for each
within-subjects predictor, in addition to the random intercept. Note
that lower- and higher-order interactions among within-subject
predictors are themselves considered within-subject predictors.
Thus, a study with three within-subject predictors and their inter-
actions requires one random effect for each of the eight fixed
effects (one random intercept, three random slopes for the main
effects of the predictors, three random slopes for the two-way
interactions, and one random slope for the three-way interaction).
However, a study with two between-subjects predictors and two
within-subjects predictors has 16 fixed effects (the intercept and all
possible two-, three-, and four-way interactions), but requires only
four random effects: the random intercept, the random slope for the
first within-subjects predictor, the random slope for the second
within-subjects predictor, and the random slope for the interaction
among the two within-subjects predictors.

7 It is not necessary to specifically mention the fixed and random
intercepts in the R script because R assumes that you want to include these
intercepts. The following R script produces the same output as the R script
presented in Table 5: model_1c <- lmer(like � prestigeC *
genderC + (prestigeC|subject.ID), data = d). For peda-
gogical purposes, we decided to specifically mention all intercepts in the R
scripts presented in this article.

8 This will be true in R only if the predictors are coded as numeric
variables. Although R users have the possibility to code their variables as
factors, this practice should be avoided when estimating LMEMs as lme4
has problems analyzing predictor variables that are coded as factors.

Table 5
The LMEM and the R Script for a Study With One Dichotomous
Within-Subject Variable (“Prestige”) and One Dichotomous
Between-Subject Variable (“Gender”)

like � �0 � �1prestigeC � �2genderC � �3prestigeC � genderC

� u0 � u1prestigeC � e (3)

d$prestigeC <- d$prestige – 1.5
d$genderC <- d$gender – 1.5
model_1c <- lmer(like � 1 + prestigeC * genderC +
(1 + prestigeC|subject.ID), data = d)

summary(model_1c)
Anova(model_1c, type = 3, test = "F")

Note. Both independent variables are being centered in order to be able
to interpret the lower-order effects (the “main effects”).7

Table 6
The LMEM and the R Script for a Study With Two Dichotomous
Within-Subject Variables (“Prestige” and “Science”)

like � �0 � �1prestigeC � �2scienceC � �3prestigeC � scienceC

� u0 � u1prestigeC � u2scienceC � u3prestigeC � scienceC

� e (4)

d$prestigeC <- d$prestige – 1.5
d$scienceC <- d$science – 1.5
model_1d <- lmer(like � 1 + prestigeC * scienceC +
(1 + prestigeC * scienceC|subject.ID), data = d)

summary(model_1d)
Anova(model_1d, type = 3, test = "F")

Note. Both independent variables are being centered in order to be able
to interpret the lower-order effects (the “main effects”).
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The Analysis of Continuous Within-Subject Predictors

The LMEM approach can easily be extended to the analyses of
continuous within-unit variables (e.g., within-subjects, within-
classrooms). To illustrate this type of analysis imagine a study
(hypothetical Study 2) in which the experimenter asks 50 students
to list eight classes they took in college and to rate both the
perceived prestige of each class (the predictor variable; from 1 �
not prestigious at all to 9 � highly prestigious) and their liking of
it (the outcome variable; from 1 � don’t like at all to 9 � like a
lot; see Table 7 for an example data file). These data cannot be
analyzed via a standard ANOVA or any other statistical procedure
belonging to the general linear model, but require a LMEM (Hox,
2010).

The LMEM used to analyze the data from this study contains
two fixed effects (the intercept and the effect of prestige), one
random intercept, one random slope, and the residuals. The model
equation and the R script to analyze the data are shown in Table 8.
Note that the equation for the LMEM and the model statement in
the R script are identical to those for Study 1 (see Equation 2 and
Table 3). In the general linear model, dichotomous between-
subjects predictors are analyzed the same way as continuous
between-subjects predictors, in that they are entered as predictor
variables in the equation. The same is true with LMEMs: contin-
uous and dichotomous within- subject predictors are analyzed with
same conceptual framework and using the same script to describe
the model to be estimated.

Different Forms of Mean-Centering

Although the predictor variable is centered around zero in both
Studies 1 and 2, there is an important difference between the two:
In Study 1, the dichotomous predictor is recoded into �.5 and �.5,
and this recoding is not necessary, because it will not affect the
parameter estimate of the fixed effect associated with the predictor.
In Study 2, however, the continuous predictor is centered around

each subject’s own mean (sometimes referred to as “cluster-mean
centering” or “group-mean centering”). This manipulation is nec-
essary to obtain an unbiased estimate of the within-subject asso-
ciation between the predictor and the outcome. Failure to center
the continuous within-subject predictor or other types of mean-
centering—for example, centering the predictor around its grand
mean, that is, the mean of all 400 prestige ratings in Study 2—will
produce estimates that are “uninterpretable” in most cases
(Raudenbush & Bryk, 2002). This is because the estimates will
confound within-subject and between-subjects associations.

In hypothetical Study 2, a within-subject association exists when
subjects give higher ratings of liking to individual classes that they
consider more prestigious. A between-subjects association exists
when subjects who consider the eight classes, on average, to be
rather prestigious also tend to like the eight classes more on
average. The between-subjects association could be a real psycho-
logical effect—the more individuals think that the classes they
took will look good on their transcripts the more they like classes
in general—or it could be a scale usage effect, a mood effect, or
a spurious relationship caused by a third individual difference
variable (e.g., desire to be challenged). Regardless of the origin of
the between-subjects association, it is theoretically distinct from
the within-subject association.

The importance of the distinction between within- and between-
unit associations should not be underestimated. Numerous articles
have been written about the “ecological fallacy,” the false assump-
tion that a relationship between two variables at one level (e.g.,
within units) is necessarily the same at a different level (e.g.,
between units; Brewer & Venaik, 2014). Given that the parameter
estimate for the predictor is an amalgam of the two relationships
when the predictor is uncentered or centered around its grand
mean, researchers unknowingly commit the ecological fallacy
when interpreting coefficients from models that do not use cluster-
mean centering.9

9 Enders and Tofighi (2007) discuss one situation in which it makes
more sense to center the continuous within-subject predictor around its
grand mean: when the goal is to examine the effect of a between-
subjects variable while statistically controlling for the effects of a
continuous within-subject variable. Note that in this situation, however,
the within-subject variable is not the focus of the researchers’ hypoth-
esis. Additional information on within- versus between-unit associa-
tions can be found in Appendix B.

Table 7
The Data From Hypothetical Study 2 in Long Format

Row subject.ID like prestige gender age item.ID

1 1 4 3 2 18 1
2 1 7 2 2 18 2
3 1 4 4 2 18 3
4 1 6 5 2 18 4
5 1 4 6 2 18 5
6 1 1 1 2 18 6
7 1 2 8 2 18 7
8 1 6 9 2 18 8
9 2 5 6 1 21 9

10 2 7 9 1 21 10
11 2 4 3 1 21 11
12 2 4 7 1 21 12
13 2 1 1 1 21 13
14 2 3 5 1 21 14
15 2 2 2 1 21 15
16 2 9 8 1 21 16

. . . . . . . . . . . . . . . . . . . . .
400 50 7 6 2 20 400

Note. Only the data from the first two subjects and the last row of the data
file are shown. The full data file contains 400 lines.

Table 8
The LMEM and the R Script for Hypothetical Study 2 With One
Continuous Within-Subject Variable (“Prestige”)

like � �0 � �1prestigeC � u0 � u1prestigeC � e (5)

d$prestigeC <- d$prestige -
ave(d$prestige,d$subject.ID)

model_2 <- lmer(like � 1 + prestigeC +
(1 + prestigeC|subject.ID), data = d)

summary(model_2)
Anova(model_2, type = 3, test = “F”)

Note. The predictor variable is being centered around each subject’s own
mean in order to avoid the confounding of between- and within-subjects
effects.
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Related Analyses

The LMEM framework can also be used to examine the inter-
action of a continuous within-subject predictor with one or more
other predictors. Tables 9 and 10 contain examples testing the
interaction of a continuous within-subject predictor with one other
predictor. In both examples, the other predictor is a dichotomous
variable that varies either between (see Table 9) or within (see
Table 10) subjects. Similar models can be estimated when the
other predictor is continuous. In these cases, the other predictor
should be cluster-mean centered if it varies within subjects, and
grand-mean centered if it varies between subjects.

Note that the continuous within-subject predictor can be time, so
that the model examines subjects’ change over time. LMEMs are
thus ideally suited to conduct growth-curve analysis (Liu, Rovine,
& Molenaar, 2012), although readers should be aware that other
data-analytic strategies exist (Kline, 2015). LMEMs can easily
handle unequal time intervals between measurement moments and
time intervals that differ from one subject to the next.

Extension to Multilevel Models

In all of the examples discussed so far, the predictor varied
within subjects. Readers should be aware that everything said
above (and in the rest of the article) also applies to studies in which
a predictor varies within a higher-order unit or “cluster.” This is
the case, for example, when subjects are nested in groups, families,
or classrooms. The so-called “multilevel models” are thus a spe-
cific case of LMEMs. Researchers working in the multilevel
tradition sometimes use different terminology (e.g., level-1 and
level-2 models), but statistically speaking, there are no differences
between multilevel models and LMEMs (Gelman & Hill, 2006).

Examples of Multilevel Models

Consider a study in which researchers form discussion groups of
four individuals and assign two of the individuals a high status
(high prestige) and two of them a low status (low prestige).
Afterward, all group members evaluate the extent to which they
enjoyed the group discussion. The data file in long format will
have one row per subject. The data can be analyzed with the
LMEM described in Equation 2 and the R-script in Table 3 (with
one minor change: subject.ID is replaced by group.ID).
Subjects and groups are both random variables. Given that there is

only one observation per subject, the LMEM contains no by-
subject random effects. It does contain two random effects for
group: One by-group random intercept (because the four data
points from the same group are dependent) and one by-group
random slope (because the predictor “prestige” varies within
groups).

Consider another study in which students nested in classrooms
rate the extent to which they like school-related activities. In
addition, the researchers assign each student a prestige score based
on the socioeconomic status (SES) of his or her parents. The data
from this study can be analyzed with the LMEM and the R script
shown in Table 8, with one minor change: all instances of sub-
ject.ID are replaced by classroom.ID. The LMEM con-
tains two by-classroom random effects, the random intercept and
the random slope for prestige.

Like before, the coefficient associated with the predictor (pres-
tige) describes the within-classroom association between the pre-
dictor and the outcome variable only if the predictor is centered
around each classroom’s own mean. Here, the coefficient tells us
whether higher SES students enjoy school-related activities more
(or less). This within-classroom association is likely to differ from
the between-classroom association, that is, the extent to which
classrooms with a high percentage of high SES kids also tend to
have a high percentage of kids who enjoy school-related activities.
If the predictor is uncentered or centered around the grand mean,
its coefficient is an uninterpretable amalgam of both types of
associations (Raudenbush & Bryk, 2002). Researchers would com-
mit the ecological fallacy if they attempted to interpret this coef-
ficient. See Appendix B for additional information on this topic.

Should Higher-Order Units in Nested Designs be
Treated as Fixed Variables?

In certain disciplines (e.g., economics), researchers often treat
the higher-order unit as a fixed rather than a random variable. In
the study mentioned above—researchers examine the association
between prestige (SES) and liking for school activities among
students who are nested in classrooms—this approach would con-
sist of running a standard GLM in which students is the unit of
analysis and in which the outcome variable is regressed on the
predictor and M-1 contrast codes (M being the number of class-

Table 9
The LMEM and the R Script for a Study With One Continuous
Within-Subjects Predictor (Prestige) and One Dichotomous
Between-Subjects Predictor (Gender)

like � �0 � �1prestigeC � �2genderC � �3prestigeC � genderC

� u0 � u1prestigeC � e (6)

d$prestigeC <- d$prestige -
ave(d$prestige,d$subject.ID)

d$genderC <- d$gender – 1.5
model_2b <- lmer(like � 1 + prestigeC * genderC +
(1 + prestigeC|subject.ID), data = d)

summary(model_2b)
Anova(model_2b, type = 3, test = “F”)

Table 10
The LMEM and the R Script for a Study With One Continuous
Within-Subjects Predictor (Prestige) and One Dichotomous
Within-Subjects Predictor (Science)

like � �0 � �1prestigeC � �2scienceC

� �3prestigeC � scienceC � u0 � u1prestigeC

� u2scienceC � u3prestigeC � scienceC � e (7)

d$prestigeC <- d$prestige -
ave(d$prestige,d$subject.ID)

d$scienceC <- d$science – 1.5
model_2c <- lmer(like � 1 + prestigeC * scienceC
+ (1 + prestigeC * scienceC|subject.ID), data = d)

summary(model_2c)
Anova(model_2c, type = 3, test = “F”)
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rooms included in the study).10 In a recent article, McNeish and
Kelley (2017) compare the two data-analytic approaches and draw
some general conclusions.

First, both approaches are clearly better than ignoring the non-
independence caused by the higher-order unit, which leads to an
increased type-I error rate.

Second, the “fixed effects model” approach treats the higher-
order unit as a fixed variable. By using this approach, the research-
ers are thus assuming that data have been gathered from all the
levels of the higher-order unit that are of interest. They also accept
the premise that the results of their study do not necessarily
generalize to other higher-order units that were not included in the
study. Such an approach may be acceptable when the goal is to
solve a company-specific problem by measuring employees nested
in departments, when all departments of the company have been
included in the study, and when the researchers do not want to
generalize their findings to other departments (e.g., departments in
other companies). It may also be acceptable if there are only a few
higher-order units and the statistical power of the LMEM would be
unreasonably low. Such an approach is questionable, however,
when researchers form discussion groups in the lab and want to
generalize their results to discussion groups in general.

Third, most multilevel experts seem prefer the LMEM ap-
proach, for the reasons outlined above (Gelman & Hill, 2006;
personal communications from Bates, 2016; Snijders, 2015). The
“fixed effect model” approach may be a defensible data-analytic
strategy when the number of higher-order units is small (Snijders
& Bosker, 2012, mention “less than 20”) and when the number of
lower-order units is large (i.e., when there are many observations
per higher-order unit; see McNeish & Stapleton, 2016).

Special Case—Only One Observation per Cell

In all of the examples above involving a dichotomous predictor,
there were multiple data points per higher-order unit and per level
of the predictor. For example, in the study described in Table 1,
each subjects judged two classes per prestige level, and in the first
example in the previous section, each discussion group contained
two members at each of the two prestige levels. What happens
when the design is such that there is only one observation per cell?
Such studies can easily be analyzed with the LMEM framework,
but some (minor) adjustments are necessary. As a concrete exam-
ple, let’s consider a study in which each subject evaluates his or
her liking for two classes, one high-prestige class and one low-
prestige class. The data from this study can be entered in wide
format and analyzed with a paired-samples t test. Alternatively,
they can be entered in long format and analyzed with a LMEM
(both analyses will yield the same result). The equation for this
LMEM is identical to the one in Equation 2: It contains two fixed
effects and three elements in the “complex error term” (two
random effects and random error).

It turns out, however, that two of the elements in the error term
are confounded with each other in such a study: The by-subject
random slope for prestige and the random error. Although the two
sources of error exist in reality, they cannot be mathematically
separated. If a prank-loving collaborator secretly introduced ran-
dom error into your data file, you wouldn’t know if the observed
deviations from the model predictions are random error or caused
by the fact that subjects vary in their relative preference of one

type of class over the other. Likewise, if you did a replication of
the first study but you inadvertently recruited subjects who vary
more in their relative preference of one type of class over the other
than the subjects in the original study, you wouldn’t know if the
larger error term in the replication study is due to a change in
the random slope of prestige (between-subjects variation in rela-
tive preference) or due to a change in random error. In order to
make the confound explicit we use the bracket notation introduced
by Judd, Westfall, and Kenny (2017). The brackets indicate the
variance components that are confounded with each other.

like � �0 � �1prestigeC � u0 � [u1prestigeC � e] (8)

A similar confound exists in more complex designs. Consider a
slightly modified version of a study presented earlier (see Table 6).
Subjects now rate their liking for four classes: a high-prestige science
classes, a high-prestige nonscience class, a low-prestige science
classes, a low-prestige nonscience class. This study has a 2 � 2 fully
within-subjects design and there is only one observation per subject
and per cell. It can be shown that the by-subject random slopes are
confounded with the random error. The question is, then, how to deal
with this confound.

The best solution is to avoid this situation altogether by having
more than one observation per cell. As data analysts, we want to be
able to model both between-subjects variation (in how subjects are
affected by the within-subjects predictor) and random error (i.e.,
measurement error and other random fluctuations). Once the ran-
dom error is correctly quantified, the statistical model can remove
it from the equation so we can get an accurate assessment of the
extent to which the effect of the within-subjects predictor varies
from one subject to the next. Multiple random errors cancel each
other out, and multiple measurements lead to more reliable assess-
ments of the construct under consideration. As a consequence, we
should include multiple observations per cell of the within-subjects
design whenever possible. This can easily be achieved by includ-
ing more items, measuring each subject more than once per con-
dition, or simply computing two scores from the outcome measure
(e.g., even and odd items, first and second minute).

When a study does not allow for more than one observation per
cell, researchers have three options to deal with the existing
confound. The first option is to ignore the issue. Some statistics
programs, like R, will estimate a LMEM and produce relevant
output. Although the output for the random effects should not be
interpreted—the software will make an attempt to estimate parame-
ters for all variance components, even the ones that are confounded—
the fixed part of the model can be trusted. The fixed parameters
will provide unbiased estimates of the population effects and will
replicate the results of the repeated measures ANOVA with data in
wide format.11

The second option is to set the variance for the random error to
a very small value, let’s say .00001 (possible with blmer in R and

10 Mathematically equivalent approaches are to regress the outcome
variable (a) on the intercept, the predictor, and M-1 dummy codes; or (b)
on the predictor and M dummy codes (and to remove the intercept).

11 The data analysis program will most likely generate an error message
with the output. This error message can be ignored. In R, it is possible to
suppress the error message by adding control = lmerControl-
(check.nobs.vs.nRE = “ignore”) to the model statement as the
last element in the parenthesis.
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the PARMS argument in SAS, e.g.), or to set it to zero. Although
none of the major data analysis programs currently allow users to
set the variance for the random error to zero, such a (highly
desirable) option may become possible in the future. A third option
is to transform the data file to wide format and to analyze the data
with a repeated-measures ANOVA.

A fourth option is available if there is only one within-subject
predictor in the model. In this case, the researchers can simply
delete the by-subject slope for the predictor (Barr et al., 2013, p.
275). The model will correctly estimate the parameter for the fixed
slope, and its inferential test will have a type-I error rate of 5%.
Note that this option is not available when there are two or more
within-subjects predictors. It has been suggested that in such a case
it suffices to delete the random slope for the highest-order inter-
action term in the LMEM. Our simulations show that such a
LMEM will not reproduce the results of the repeated measures
ANOVA with data in wide format.12

Restricted Maximum Likelihood

It should be noted that LMEMs use an estimation procedure called
“Restricted Maximum Likelihood” (ReML), and not, as the standard
ANOVA and regression analysis, “Ordinary Least Squares” (OLS).
ReML is an iterative process in which the parameter estimates are
progressively modified to maximize the “log likelihood function.”
At each step, the computer program estimates the parameters and
determines the likelihood of having obtained the data at hand if the
population parameters really had those values. In the following
step, it changes the parameter estimates based on certain algo-
rithms and tests if the new values yield an even greater likelihood
(Demidenko, 2013). The iterative process stops when the log
likelihood function can no longer be maximized by further changes
to the parameter estimates. As opposed to Maximum Likelihood,
ReML produces unbiased estimates of variance and covariance
parameters. ReML and OLS yield identical results only in so-
called “simple LMEMs,” in which all within-subject variables are
categorical and subjects are the only source of nonindependence.

The use of ReML as the estimation procedure has a number of
implications that the user of LMEMs should be aware of. Except
in simple LMEMs, the final model will likely have denominator
degrees of freedom with decimals. They should be reported as
such, for example, F(1, 54.17) � 4.86, p � .04. There is no
agreement among statisticians about the best way to compute the
appropriate dfs (Baayen, Davidson, & Bates, 2008). Following the
lead of Judd et al. (2012) we suggest using the Kenward-Roger
approximation to compute the dfs (Kenward & Roger, 1997). This
approach uses the equally acceptable Satterthwaite approximation
(the default in SAS and the only method used in SPSS), but will
rescale the F ratio and compute the degrees of freedom in a way
that results in a better approximation to an appropriate F distribu-
tion. The Kenward-Roger method is available in most standard
data analysis programs. It is the default in R. ReML and the
Kenward-Roger approximation both require large sample sizes to
yield stable estimates. It is generally advised to have at least
200–300 observations (	500 are considered ideal; Raudenbush &
Bryk, 2002).

Throughout this article, we provide the R scripts allowing research-
ers to compute a F-statistic with Kenward-Rogers degrees of freedom.
Some researchers use a likelihood ratio test statistic that yields a

chi-square value (e.g., Bates, Kliegl, Vasishth, & Baayen, 2015a).
Both methods are acceptable and yield comparable results. There are
some studies suggesting that the Kenward-Roger statistic outperforms
the likelihood ratio test (in terms of maintaining the nominal alpha
level), especially in small samples (Kenward & Roger, 1997; Kuz-
netsova, Brockhoff, & Christensen, 2015). Only the results of the
Kenward-Roger F-statistic will exactly reproduce those of the re-
peated measures ANOVA.

One advantage of ReML estimation is that it can easily handle
missing values. Whereas the repeated measures ANOVA will delete
subjects if they have one or more missing values, a LMEM can derive
parameter estimates and compute inferential statistics even when the
data are incomplete (Rasbash et al., 2000). It will simply use the data
that are available and take into account that the fact that the relation-
ship between the predictor and outcome has been estimated more
reliably for certain subjects (with complete data) than for other sub-
jects (with incomplete data). An implication is that LMEMs can
appropriately analyze data from studies in which different subjects
provided a different number of observations for each level of the
predictor variable (so-called “unbalanced repeats”). Whereas repeated
measures ANOVAs limit themselves to computing total scores by
averaging across multiple data points in the same cell of the design,
LMEMs also take into account the reliability of each of the total
scores (which is determined by the number and the variability of the
data points).

Not all experts agree about the minimum number of levels that a
random variable should have before one can include random effects
for it. Does it make sense to include a by-subject random slope in a
study in which six subjects each evaluate 100 stimuli, or a by-school
random slope in a study in data from 1,000 students nested in four
schools are collected? Raudenbush and Bryk (2002) suggest that one
should have at least 10 levels. Stegmueller (2013) argues that fewer
levels are acceptable as long as one is interested only in the fixed
effects and the model does not contain any interactions of variables of
different type (e.g., the interaction between a within- and a between-
subjects variable). According to our understanding it is impossible to
suggest clear guidelines. In order to maintain the type-I error rate at
5%, it is necessary to include by-unit random effects whenever the
unit causes nonindependence in the data, regardless of the number of
levels. It has been shown that the type-I error rate inflation is higher
when the number of levels is small (Judd et al., 2012) and persists
even if the random effect for the predictor under consideration has a
near-zero variance (Barr et al., 2013). The problems of a small
number of levels are low statistical power (type-II errors) and the
instability of the observed effects. These are serious problems that can
be addressed in a variety of ways—for example, include a larger
number of levels (even if this implies a smaller total number of
observations), sacrifice generalizability by treating a random variable
as if it were fixed (see section on Multilevel Models, Appendix C, and
McNeish & Stapleton, 2016)—but simply ignoring a random variable
that causes nonindependence is not a viable option.13

12 The R script for the simulations is available upon request.
13 See the section Deciding on the LMEM to be Estimated for more

information on the inclusion of random effects with a variance component
that is not reliably different from zero.
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Multiple Sources of Nonindependence

In many psychological experiments, subjects are exposed to the
same set of items, that is, they may view the same words, sen-
tences, pictures, or avatars, or they may rate the same products,
faces, art works, or individuals. Alternatively, subjects clustered in
groups, families, classrooms, or counties may each provide mul-
tiple data points. Such studies contain two sources of nonindepen-
dence: Some responses may be more similar because they were
made by the same subject, other responses may be more similar
because they concern the same item (i.e., different subjects rating
the same item), and yet other responses may be more similar
because they were made by subjects in the same group.

Statistical analyses of such data have to take this double source
of nonindependence into account. Judd et al. (2012) have shown
that failure to do so leads to an increased type-I error rate, some-
times as high as 60%. By averaging across items belonging to the
same category, we are not taking into account the nonindepen-
dence due to items. By averaging across subjects belonging to the
same group, we are ignoring the variability between subjects. No
data analysis technique belonging to the general linear model (e.g.,
ANOVA, regression analysis) can effectively deal with multiple
sources of nonindependence. Only LMEMs with the appropriate
random effects can achieve this goal (Baayen et al., 2008).

Readers should be aware that “items” and “groups” are not the
only possible second source of nonindependence (subjects is usu-
ally the first source). When subjects interact with one of several
confederates—where half are European American and half are
African American—the design calls for the inclusion of by-
confederate random effects. If a researcher runs a study at multi-
ple, randomly selected locations across the country and wants to
generalize her findings to the entire U.S., then she should include
by-location random effects. In cross-cultural research with respon-
dents from many countries, it not only makes sense to include the
appropriate by-country random effects but also to distinguish the
within-country associations from the between-country associations.
To summarize, researchers should carefully examine whether their
studies contain possible sources of nonindependence and account for
the dependence in the data analyses by specifying the appropriate
LMEM. Failure to do so will lead to increased type-I error rates.

When there are multiple sources of nonindependence, it can
become difficult to decide which random effects should be in-
cluded in the analysis. We will address this issue in the next
sections of this article. Readers should be aware that the inclusion
of random effects is an active area of research, and that new
articles on this issue are published on a regular basis (e.g., Baayen,
Vasishth, Bates, & Kliegl, 2017; Winter & Wieling, 2016). Even
worse, there is some disagreement between experts regarding the
choice of the appropriate random effects structure.

Fortunately, however, all experts agree about the initial steps of
the data analysis. The first step consists of determining the so-
called “maximal random effects structure” that the design of the
study calls for. As we will see, this maximal random effects
structure includes all random effects that we might want to include
based on the characteristics of the design, that is, based on whether
the predictors vary within or between levels of the random vari-
ables that cause nonindependence in the data. The second step
consists of estimating a LMEM with this maximal random effects
structure. As we will see, however, this is not always possible

because some LMEMs are so complex that the iterative estimation
procedure fails to converge. In such a case it is necessary to
progressively simplify the random effects structure until conver-
gence can be achieved.

In the next sections, we will discuss each of these first two steps
in detail. Our discussion, we will focus on two random variables
that cause nonindependence in the data. The first random variable
is always subjects. We will refer to the second random variable as
“items,” but readers should know that this term may refer to any
random variable that is a second source of nonindependence (e.g.,
stimuli, targets, confederates, locations, groups, classrooms). In
the following section, entitled Deciding on the LMEM to be
Estimated, we will come back to the disagreement among experts
regarding the analyses that should be performed after the second
step. We will see that the proposed analyses do not fundamentally
differ from each other.

How to Determine the Maximal Random
Effects Structure

Random Intercepts

Nonindependence is accounted for by including the appropriate
random intercepts in the maximal random effects structure. The
first rule in Table 11 identifies when random intercepts are re-
quired. When the “unit” under consideration is subjects, then this
rule says: If there is nonindependence due to subjects, then the
maximal random effects structure should include a by-subject
random intercept. In other words, whenever a given subject pro-
vides multiple data points, a by-subject random intercept should be
included. When the term “unit” refers to items, then the rule
translates into: If there is nonindependence due to items, the
maximal random effects structure should include a by-item ran-
dom intercept. Said differently, when all (or some of the) subjects
evaluate the same set of items, a by-item random intercept should
be specified. Note that both conditions can be satisfied at the same
time. When the same set of subjects provides responses to the same
set of items, then the maximal random effects structure should
include both a by-subject random intercept and a by-item random
intercept.

Note that the first rule is merely an extension of a topic dis-
cussed earlier. Both subjects and items have been randomly se-

Table 11
A Set of Simple Rules Regarding the Types of By-Subject and
By-Item Random Effects That Should be Included in the
Maximal Random Effects Structure (Adapted from Barr et al.,
2013)

First rule:
If a unit causes nonindependence then a by-unit random intercept is

required.

Second rule:
In general, a within-unit predictor requires a by-unit random slope,

whereas a between-unit predictor does not.

Third rule:
It is advised to include a by-unit random slope for interactions when

all factors comprising the interaction are within-units.
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lected from a larger pool of possible exemplars, so they are both
random variables. In all the examples discussed in earlier sections
of this article, there were multiple data points per subject but only
one data point per item. However, when there are multiple data
points for each subject and multiple data points for each item, these
two sources of nonindependence have to be taken into account by
adding both a by-subject random intercept and a by-item random
intercept.

Imagine a study with 100 subjects, half of whom rate their liking
for a set of 30 low-prestige cars, whereas the other half evaluate a set
of 30 high-prestige cars. In this study, the variable subject.ID has
100 levels, whereas the variable item.ID has 60 levels. The data
contain nonindependence due to subjects because each subject
provides multiple ratings, thus requiring a by-subject random
intercept. But the data also contain nonindependence due to items
because each item is being evaluated by multiple subjects, creating
the need for a by-item random intercept. Table 12 provides the
equation for the LMEM and the R script when all random effects
are included in the analysis. Note that the maximal random effects
structure for the LMEM does not include a by-subject random
slope for prestige because prestige varies between-subjects. We
will provide more details about this point in the following section.

There is one exception to this rule. When the unit under con-
sideration is fully confounded with the predictor, then no by-unit
random intercept is required. Imagine a study in which half of the
subjects evaluate one low-prestige car and the other half of the
subjects evaluate one high-prestige car. Each subject provides only
one rating, so subjects do not create any nonindependence and no
by-subject random effects are included in the LMEM. Although
there is nonindependence due to items—each item is evaluated by
multiple subjects—we still would not include a by-item random
intercept, because the random variable car.ID is fully con-
founded with the fixed manipulated predictor prestigeC. Given
that the resulting LMEM contains no random effects, it is equiv-
alent to an independent-samples t test.

Random Slopes

How do we know which random slopes to include in our
maximal random effects structure? Barr et al. (2013) suggested the
second rule shown in Table 11. We want to include a by-subject
random slope for any predictor that varies within subjects (but not

when it varies between subjects). Likewise, we will want to
include a by-item random slope for any predictor that varies within
items (but not when it varies between items).

In order to illustrate this rule, let’s imagine a study in which
subjects rate their liking for eight low-prestige cars and eight
high-prestige cars. All subjects rate the same set of 16 cars. Before
Judd et al. (2012), some of us may have been tempted to enter the
data in wide format, compute two scores per subject (the average
rating for the eight low-prestige cars and the average rating for
the eight high-prestige cars), and analyze these scores with a
repeated-measures ANOVA or a paired-samples t test. We now
know that such an analysis would produce biased standard errors
and thus an increased type-I error rate. Given that the data are
nonindependent due to multiple ratings per subject and multiple
ratings per item, a LMEM is the appropriate data-analytic strategy.
The maximal random effects structure of the LMEM contains three
random effects (see Table 13). Note that no by-item random slope
for prestige is needed because prestige does not vary within items
(each target car is either low or high in prestige).

The second rule can also be applied to studies in which the
predictor varies between-subjects but within-items. Imagine a
study in which subjects evaluate the same set of 20 cars (of
medium prestige) but they do so in one of two between-subjects
conditions. Half of the subjects rate their liking for the 20 cars after
having seen five highly prestigious cars (high prestige context),
whereas the other half of the subjects were previously exposed to
five cars of very low prestige (low prestige context). Again, this
study contains two sources of nonindependence, subjects and
items, requiring two random intercepts. The predictor “prestige”
varies between-subjects (each subject is in only one prestige con-
text condition), but varies within-items (each of the 20 target cars
is in the high prestige context for certain subjects but in the
low-prestige context for other subjects). The maximal random
effects structure for the appropriate LMEM contains three random
effects (see Table 14). Given that prestige (context) varies
between-subjects, there is no need to include a by-subject random
slope for prestige.

The final case covered by the second rule is where the predictor
varies both within-subjects and within-items. Imagine a study in
which subjects are shown the same set of 20 hybrid cars. For every
subject, 10 cars are shown in a high-prestige context and 10 cars

Table 12
The LMEM and the R Script for a Study With One Dichotomous
Predictor (Prestige) That Varies Between-Subjects and
Between-Items

like � �0 � �1prestigeC � u0 � v0 � e (9)

d$prestigeC <- d$prestige – 1.5
model_3a <- lmer(like � 1 + prestigeC +
(1|subject.ID) + (1|item.ID), data = d)

summary(model_3a)
Anova(model_3a, type = 3, test = “F”)

Note. All the subjects in the same experimental condition rate the same
set of items. The LMEM contains two fixed effects (the fixed intercept �0

and the fixed slope �1), two random effects (the by-subject random
intercept u0 and the by-item random intercept v0), and the random error (e)

Table 13
The LMEM and the R Script for a Study With One Dichotomous
Predictor (Prestige) That Varies Within Subjects But
Between Items

like � �0 � �1prestigeC � u0 � u1prestigeC � v0 � e (10)

d$prestigeC <- d$prestige – 1.5
model_3b <- lmer(like � 1 + prestigeC +
(1 + prestigeC|subject.ID) + (1|item.ID),
data = d)

summary(model_3b)
Anova(model_3b, type = 3, test = “F”)

Note. All subjects rate the same set of items. The LMEM contains two
fixed effects (the fixed intercept �0 and the fixed slope �1), three random
effects (the by-subject random intercept u0, the by-subject random slope for
prestige u1, and the by-item random intercept v0), and the random error (e).

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

401LINEAR MIXED-EFFECTS MODELS & NONINDEPENDENT DATA



are shown in a low-prestige context. In addition, the context in
which a given car is shown is counterbalanced across subjects. The
predictor “prestige” now varies within-subjects (each subjects sees
some cars in a high prestige context and other cars in a low-
prestige context) and within-items (the same car will be shown to
certain subjects in a high prestige context and to other subjects in
a low-prestige context). The design therefore calls for four random
effects: a by-subject random intercept, a by-subject random slope
for prestige, and a by-item random intercept, and a by-item random
slope for prestige.

In the examples discussed in the previous paragraphs, the pre-
dictor (prestige) was always dichotomous (high vs. low). The same
rules from Table 11 apply to continuous predictors that vary either
between or within subjects and either between or within items.

Sometimes items are nested in subjects or individuals are nested
in groups. As before, the same rules apply. Imagine students nested
in universities who evaluate two high-prestige classes and two
low-prestige classes. The predictor, prestige, varies within-subjects
and within-universities, and the maximal random effects structure
would thus have four random effects: a by-subject random inter-
cept, a by-subject random slope for prestige, and a by-university
random intercept, and a by-university random slope for prestige.

There are two caveats to the second rule shown in Table 12.
First, a by-item random effect is included in the maximal random
effects structure only if there are multiple observations per level of
the predictor. For example, if all subjects rate the same set of two
cars, one low-prestige car and one high-prestige car, then it does
not make sense to include any by-item random effects, because
variability between items is fully confounded with variability
between conditions. Second, by-item random effects are included
only if subjects judge the same set of items. If different subjects
provide ratings about different items (as in Studies 1 and 2 men-
tioned in the initial sections of this article), there is no noninde-
pendence due to items that has to be taken into account.

Random Effects for Interactions

With regard to interactions, Barr et al. (2013) suggest the third
rule provided in Table 11. When all predictors of an interaction
vary within-subjects, a by-subject random slope for the interaction
term should be included in the maximal random effects structure.

Likewise, when all predictors of an interaction vary within-items,
researchers should include a by-item random slope for the inter-
action term. This rule, in addition to the previous two, allows us to
determine the maximal random-effects structure for more complex
designs.

Consider a study in which subjects evaluate 20 well-known
politicians (10 Democrats and 10 Republicans, “party affiliation,”
a dichotomous predictor). The researchers also measure subjects’
level of openness to experience (“openness,” a continuous predic-
tor). The fixed effects structure is relatively easy to determine: it
contains the overall intercept, the effect for party affiliation, the
effect for openness, and the interaction between the two predictors
(four effects in total). To find the maximal random-effects struc-
ture, one can use the rules in Table 11. There is nonindependence
due to subjects and items, and we thus want to include a by-subject
random intercept and a by-item random intercept (first rule). Party
affiliation varies within-subjects but between-items. We thus need
to specify a by-subject random slope for party affiliation (second
rule). Openness to experience varies between-subjects but within-
items. The design thus calls for a by-item random slope for
openness (second rule). It is not the case that both predictors vary
within-subjects, and it is also not the case that they both vary
within-items. We thus do not have to include any random effects
for the interaction term (third rule). The maximal random effects
structure contains four random effects: a by-subject random inter-
cept, a by-subject random slope for party affiliation, a by-item
random intercept, and a by-item random slope for openness to
experience. The full model and the R script for the LMEM with the
maximal random effects structure is shown in Table 15.14

As an additional example, consider a study in which male and
female subjects complete a lexical-decision task. The 80 target
words are either agentic or communal (“word type”) and they are
either positive or negative (“word valence”). The researchers pre-
dict a three-way interaction. The fixed effects structure contains

14 If each subject evaluated only two politicians, one Democrat and one
Republican, then all by-item effects would drop out of the LMEM, because
item.ID would be fully confounded with the predictor affil.ID.

Table 14
The LMEM and the R Script for a Study With One Dichotomous
Predictor (Prestige) That Varies Between-Subjects But
Within-Items

like � �0 � �1prestigeC � u0 � v0 � v1prestigeC � e (11)

d$prestigeC <- d$prestige – 1.5
model_3c <- lmer(like � 1 + prestigeC +
(1|subject.ID) + (1 + prestigeC|item.ID),
data = d)

summary(model_3c)
Anova(model_3c, type = 3, test = “F”)

Note. All subjects rate the same set of items. The LMEM contains two
fixed effects (the fixed intercept �0 and the fixed slope �1), three random
effects (the by-subject random intercept u0, the by-item random intercept
v0, and the by-item random slope for prestige v1), and the random error (e).

Table 15
The LMEM and the R Script for a Study With One Dichotomous
Predictor (“Party Affiliation”), One Continuous Predictor
(“Openness”), and Their Interaction

eval � �0 � �1affil � �2open � �3affil � open � u0

� u1affil � v0 � v1open � e (12)

d$affilC <- d$affiliation – 1.5
d$openC <- d$openness - mean(d$openness)
model_11 <- lmer(like � 1 + affilC * openC +
(1 + affilC|subject.ID) + (1 + openC|item.ID),
data = d)

summary(model_11)
Anova(model_11, type = 3, test = “F”)

Note. “Party affiliation” varies within-subjects and between-items,
whereas “openness” varies between-subjects and within-items. The param-
eters �0, �1, �2, and �3 estimate the fixed effects, the parameters u0 and u1

estimate the by-subject random effects, and the parameters v0 and v1

estimate the by-item random effects.
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eight effects (see Table 16). The maximal random effects structure
requires two random intercepts because both subjects and items
cause nonindependence. It further requires four random slopes:
one by-subject random slope for word type (because word type
varies within-subjects and between-items), one by-subject random
effect for word valence (because word valence varies within-
subjects and between-items), one by-subject random slope for the
word type by word valence interaction (because both predictors
vary within-subjects), and one by-item random slope for subject
gender (because subject gender varies between-subjects and
within-items).

The same reasoning about random effects for interaction terms
can be applied to continuous predictors and studies in which one
random variable is nested in another random variable (e.g., items
nested in subjects or students nested in classrooms).

Note that the rules in Table 11 do not apply to designs in which
subjects judge each of the items multiple times in different con-
ditions, that is, designs in which both subjects and items are
crossed with the predictor(s). A typical example for such a design
would be a study in which subjects are exposed to the same set of
target words twice, once in lower case letters and once in upper
case letters, and the researchers want to examine if subjects react
to the words differently (e.g., faster, more positively) if they are
presented in one case rather than the other. Readers are advised to
consult more specialized publications to determine the maximal
random effects structure for these types of designs (e.g., Judd et al.,
2017).

How to Address Convergence Problems

After the maximal random effects structure for the study has
been determined, the next step is to estimate the corresponding
LMEM. Unfortunately, the iterative ReML procedure to derive the

parameter estimates does not always “converge” (i.e., the numer-
ical optimization algorithm cannot reliably determine the maxi-
mum of the log-likelihood function). Such problems typically
occur when a lot of parameters are being estimated in the LMEM
or when there are only a few data points in one or more cells of the
design.

Although not absolutely necessary, it is helpful to understand
the number of parameters that are being estimated in a given
LMEM, to anticipate potential problems in the estimation proce-
dure, often referred to as “convergence problems” (Bates et al.,
2015a). A typical LMEM estimates one parameter for each fixed
effect and one parameter for each random effect. It also estimates
one parameter for the variance of the residuals (the e’s). Finally,
the LMEM estimates one parameter for every possible covariance
between all random effects belonging to the same unit. See Ap-
pendix D for some concrete examples.

Regardless of the number of parameters being estimated, re-
searchers should first run a model with the maximal random
effects structure. If this model converges, they can then move on
to the third step, described below. If this model fails to converge,
however, they can use the “remedies” listed in Table 17 (most of
which are based on Barr et al., 2013, and Winter, 2016). The
remedies are ordered hierarchically, so that researchers should try
one remedy at a time, reestimate the model, and move down the
list only if this remedy does not solve the convergence problem.
Many of the suggested remedies are self-explanatory. We will
comment on a subset of them in the following paragraphs.

The first remedy suggests checking for outliers and violations of
model assumptions (e.g., linearity). Be aware, however, that these
types of checking procedures have not yet been widely imple-
mented in software packages (but see Loy & Hofmann, 2014).

It is generally advised to center all predictors regardless of
whether they participate in an interaction term or not, as centering
reduces multicollinearity in the random effects structure (Remedy
5). Maximum likelihood estimation has difficulties with highly
correlated parameters. As mentioned above, it makes sense in most
cases to code dichotomous within-subject predictors as �.5
and �.5 and to center continuous within-subject predictors around
each subject’s own mean.

Most data analysis programs allow researchers to increase the
number of iterations, to change the numerical optimization proce-
dure, and to provide better starting values (Remedies 6, 7, and 8).
Bates et al. (2015a) report a LMEM that converged after 39,004
iterations and discuss different numerical optimization procedures.
Subject matter knowledge, results from past studies, and reports in
the literature are good sources for determining appropriate starting
values. Sometimes it is possible to estimate a simplified model
(e.g., without covariances among random effects) and to use the
parameter estimates of this model as starting values for the full
LMEM that contains the maximal random effects structure. An
in-depth discussion of these three remedies in iterative parameter
estimation goes beyond the scope of this article (but see Bates et
al., 2015b).15

15 In R, the number of iterations or the optimization procedure can be
changed with the function lmerControl, starting values can be specified
using the function start.

Table 16
The LMEM and the R Script for a Hypothetical Study With
Three Dichotomous Predictors Gender, Word Type, and
Word Valence

rt � �0 � �1w.type � �2w.valence � �3gender

� �4w.type � w.valence � �5w.type � gender

� �6w.valence � gender � �7w.type � w.valence � gender

� u0 � u1w.type � u2w.valence � u3w.type � w.valence

� v0 � v1gender � e (13)

d$genderC <- d$gender – 1.5
d$w.typeC <- d$w.type – 1.5
d$w.valenceC <- d$w.valence – 1.5
model_12 <- lmer(rt � 1 + genderC * w.typeC *
w.valenceC + (1 + w.typeC * w.valenceC|
subject.ID) + (1 + genderC|item.ID), data = d)

summary(model_12)
Anova(model_12, type = 3, test = “F”)

Note. “Word type” and “word valence” vary within-subjects and
between-items, whereas “gender” varies between-subjects and within-
items. The parameters �0 to �7 estimate the fixed effects, the parameters u0

to u3 estimate the by-subject random effects, and the parameters v0 and v1

estimate the by-item random effects.
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Rescaling the predictor variables, the outcome variable, or both
may address a convergence problem (Remedy 9). Certain algo-
rithms do not perform well when the covariance parameters are on
a different scale. Rescaling the effects may help (e.g., recode one
of the dichotomous within-subject predictors into �10 and � 10).
Extremely large or extremely small data values on any of the
variables can cause convergence problems because of internal
tolerances built in the data analysis software (Kiernan, Tao, &
Gibbs, 2012).

LMEMs struggle with cells in the design that contain no or few
data points. They also have a hard time converging if certain
subjects or items have a lot of missing data (e.g., a single data point
in a cell for which the LMEM expects multiple data points).
Solutions for these problems are imputing missing data, removing
problematic subjects/items, or simplifying the design that is being
analyzed (Remedy 10).

In his 2013 Frontiers article, Dale Barr (2013) showed that as
long as the random effect for the higher-order interaction is in the
model, the random effects for the main effects and the lower-order
interactions can be removed without an increase in type-I error rate

if one’s hypothesis is about the higher-order interaction term. This
insight leads us to Remedy 14. Imagine a study with a 2 � 2 � 2 �
2 fully within-subjects design requiring us to estimate, among
other parameters, 16 by-subject random effects and 120 covari-
ances among by-subject random effects. Removing the main ef-
fects and the lower-order interactions from the by-subject random
effects structure reduces the number of parameters to be estimated
to three: the by-subject random intercept, the by-subject random
slope for the four-way interaction, and the covariance among the
two. A difference of 133 parameters! Note that the fixed-effects
structure remains untouched: All main effects and interactions
remain in the model.

Maximum likelihood estimation has problems with variance
and covariance parameters that are zero or that are very close to
zero. If one has theoretical or empirical reasons to believe that
a certain covariance between two random effects should be
close to zero, then it is acceptable to fix it to zero (Remedy 15).
The Expected Mean Square Calculator, developed by Jake
Westfall (jakewestfall.org), can help researchers decide which
random effects are likely to be zero. See also Bates et al.

Table 17
A List of 20 Remedies That Can be Used to Achieve Convergence of LMEMs

Preventive measures to avoid convergence failures:
1. Include as many subjects and as many items as possible in your study.
2. Include heterogeneous subjects and heterogeneous items.

Nonintrusive remedies to address convergence failures:
3. Check your data (case analysis, distributional assumptions). If necessary apply a transformation to the predictor(s) or the outcome variable.
4. Check for model misspecifications (e.g., does the model contain a by-unit random slope for a predictor that varies between units?).
5. Make sure all predictors are centered (reduces multicollinearity).
6. Increase the number of iterations.
7. Change the numerical optimization procedure that is used to maximize the log likelihood function.
8. Give the model better starting values.
9. Rescale the predictor(s) or the outcome variable.

10. Check whether the nonconvergence is due to the presence of a few subjects (or items) with a small number of observations in particular cells. If
yes, consider imputing data or removing the problematic subjects (or items).

11. Remove random effects for covariates (as long as the interactions between the covariates and the factors of interest are not in the model).
12. Check whether your model can be simplified: If the hypothesis is a X1 by X2 interaction, then it may not be necessary to include X3 and X4 in

the model (at least initially). Or remove all but one predictor in a set of highly correlated predictors.
Classic remedies to address convergence failures:

13. If the goal is to test two fixed effects, X1 and X2, but not their interaction, estimate two LMEMs, one with both fixed effects but only the
random slope for X1 (to test X1), and one with both fixed effects but only the random slopes for X2 (to test X2).

14. If you have a design with two or more within-unit predictors and your hypothesis concerns the interaction, remove the by-unit random slopes
for the within-unit predictors and the lower-order interactions, but do not remove the by-unit random slope for the highest-order interaction(s)
between the within-unit predictors (Barr, 2013, Frontiers).

15. Selectively remove covariances among random effects: Start out by removing covariances of predictors that are not directly related to your
hypotheses (X3 and X4 mentioned in remedy #12 if you have decided to keep these predictors in the model). Continue to remove covariances
that you suspect to be close to zero anyway. Finally, remove all covariances among random effects.

16. Remove some or all of the random intercepts for which there are also random slopes in the model. Do not remove the random slopes. Warn
your readers that you have estimated a model without random intercepts.

17. Perform two separate LMEMs—one with subject as the unit of analysis (with maximal by-subject random effect structure, but no by-item
random effects) and one with item as the unit of analysis (with maximal by-item random effect structure, but no by-subject random effects) –
and apply the F1 � F2 logic (both have to be significant at p � .05).

Corrective remedies with major shortcomings:
18. Run the analyses and compute Clark’s (1973) min-F’ statistic. Be aware that this test is seriously underpowered. If min-F’ is significant you can

be confident that your result is not due to an inflated type-I error rate.
19. Run a LMEM or a repeated-measures ANOVA in which subjects is the only random variable (and thus ignore the nonindependence due to

items). Warn your readers that your type-I error rate may be as high as 60% (see Table 2 in Judd et al., 2012).
20. Estimate a LMEM in which you keep the random intercepts but not the random-slopes. Warn your readers that your type-I error rate may be as

high as 80% (see Table 5 in Barr et al., 2013).

Note. Each remedy is likely to affect parameter estimates to a greater extent than the previous one. It is thus advised to use a certain remedy only if all
previous remedies have proven to be ineffective.
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(2015a) for a discussion of the parameters that are likely to be
zero.16

Remedy 16 may surprise certain readers. Simulations have
shown that removing the random intercepts (falsely assuming that
all subjects have the same average score on the outcome) leads to
less biased parameter estimates than removing the random slopes
for the predictor that is the focus of the researchers’ hypothesis
(falsely assuming that the effect of the within-subject predictor on
the outcome is the same for all subjects; see Barr et al., 2013).17 If
one has multiple random intercepts to choose from, it usually
makes more sense to remove the intercept with the smallest vari-
ance first. One can also compute the intraclass correlation (ICC)
for subjects and for items, and then remove the random intercept
of the unit that has the smallest ICC. This remedy assumes that the
researchers’ hypothesis concern a predictor (which is usually the
case). In the rare case of a hypothesis about a fixed intercept it is
advised to keep the random intercept. The general rule is: Re-
searchers should never remove the random effect for a parameter
for which they have a hypothesis, because the inferential test for a
fixed parameter will maintain a 5% type-I error rate only if its
corresponding random effect is in the model.

As an alternative to Remedies 15 (removing covariances among
random effects) and 16 (removing random intercepts), which are
both top-down approaches, Barr et al. (2013) also discusses two
bottom-up approaches. One approach is to use “backward selec-
tion” and/or test slopes using the “best path” algorithm. The other
approach is to use a “forward selection” with one of two selection
criteria: (a) test the slopes in an arbitrary sequence or (b) at each
step, test for the potential inclusion of all random effects not
currently in the model, and include any that pass at a relatively
liberal 
-level (e.g., .20). Be aware that these two approaches are
data-driven and that the result may not replicate with a different
data set (see Barr et al., 2013, and Matuschek, Kliegl, Vasishth,
Baayen, & Bates, 2017, for more details).

Note that estimating a model that ignores the nonindependence
caused by a random variable (Remedy 19) and estimating a model
with random intercepts but without random slopes (Remedy 20)
are last on the list. Further note that several earlier remedies
involve using data analysis strategies that belong to the family of
general linear models, which by definition do not have conver-
gence problems (e.g., Remedies 17 and 18). As a consequence, it
is advised that researchers use these last two remedies only in
exceptional circumstances. Until recently, models with a random
intercept but without the random slopes were considered the gold
standard in LMEMs (especially in multilevel modeling). We now
know that these models have type-I error rates well above the
acceptable level of 5%.

Deciding on the LMEM to be Estimated

In the previous sections, we have described the first two steps
for the analysis of LMEMs. The first step was to determine the
maximal random effects structure called for by the design of the
study. The second step was to get the LMEM to converge while
keeping the random effects structure as maximal as possible. What
is the next step? Unfortunately the literature fails to provide a clear
answer to this question. Experts like Barr et al. (2013) suggest the
“keep-it-maximal approach” which consists of interpreting the first
model that achieves convergence. Others, like Bates et al. (2015a)

and Matuschek et al. (2017), propose a “model selection approach”
in which the first model that converges is further simplified. The
goal of the simplification process is to remove variance compo-
nents (random intercepts, random slopes, or covariances among
random effects) that have a near-zero variance.

Note that the “keep-it-maximal-approach” implies that there is
no need to test whether a certain random effect (variance compo-
nent) is statistically different from zero. Inferential tests of vari-
ance components are usually underpowered (especially when the
random variable only has a small number of levels) and require
specialized mixture chi-square tests (Savalei & Kolenikov, 2008).

The model selection approach consists of several highly similar
strategies. Bates et al. (2015a) suggest conducting a principal
components analysis of the random effects structure to identify the
variance components that can be removed without a loss in good-
ness of fit of the model. The authors developed a function in R to
perform this analysis. Matuschek et al. (2017) use a “backward
selection heuristic” paired with a likelihood ratio test. The heuristic
tests, at each step, whether the model contains one or more
variance components that are not reliably different from zero
(using a liberal significance level of 
 � .20). If yes, it removes the
variance component with the smallest variance and re-estimates
the model. The heuristic continues this process until the LMEM
contains only variance components that differ reliably from zero.

There are several good arguments in favor of the model selec-
tion approach. Variance components with near-zero variance do
not contribute to the goodness of fit of the model. If anything, they
lead to “overparameterized models” that are not supported by the
data, even if these models converge (Bates et al., 2015a). All other
things being equal, including random slopes usually decreases the
degrees of freedom and thus increases the standard errors of the
fixed parameter estimates. As a consequence, the inclusion of
random slopes that have a near-zero variance in the data may lead
to an unnecessary decrease of statistical power (Matuschek et al.,
2017).

There are also several arguments in favor of the keep-it-
maximal approach. Barr et al.’s (2013) simulations have shown
that the inclusion of random slopes for “critical predictors” (i.e.,
predictors related to the researchers’ hypotheses) is necessary if
one wants to keep the type-I error rate at 5%, even if these random
slopes have a relatively small (and maybe nonsignificant) variance.
Techniques like the above-mentioned backward selection heuristic
are data driven and their outcome is influenced by randomness in

16 In R, a covariance parameter between two random effects is set to zero by
writing the two random effects in separate parentheses. Thus, the model lmer-
(like � 1 + prestigeC + scienceC + (1|subject.ID) + (0 +
prestigeC + scienceC|subject.ID) estimates the by-subject random
intercept, the by-subject random slope for prestige, the by-subject random slope for
science, and the covariance between the two by-subject random slopes, but it does
not estimate the covariances between the random intercept and each of the random
slopes. It is possible to set all covariances to zero by adding an second vertical trait
between the last random effect and the random variable that causes nonindepen-
dence, for example, (1 + prestige||subject.ID) instead of (1 +
prestige|subject.ID).

17 In R, the variance parameter of a random intercept can be set to zero by
replacing the 1 by a 0. Thus, in the model lmer(like � 1 + prestigeC +
(0 + prestigeC|subject.ID) + (0 + prestigeC|item.ID),
both random intercepts are set to zero. Remember that omitting the “1” will not set
the random intercept to zero, since (prestigeC|subject.ID) is equivalent
to (1 + prestigeC|subject.ID).
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the data. Even an exact replication of the same study may have a
different random effects structure. Finally, it is unclear why over-
parameterized models, as long as they converge, are problematic.
We are not aware of any simulations showing that such models
lead to biased parameter estimates. The gain in statistical power
when adopting the model selection approach seems to be relatively
minor and limited to underpowered studies (Barr et al., 2013;
Matuschek et al., 2017).

Although the keep-it-maximal approach and the model selection
approach seem to be fundamentally opposed, their differences are
in fact relatively minor. Most experts agree that the final LMEM
needs to contain the random slope(s) for the predictor that is the
focus of the researchers’ hypothesis, regardless of the variance of
this (these) random slope(s). They also agree that the presence of
variance components with a near-zero variance in the random
effects structure does not affect the goodness-of-fit of the model.
Whether they are included or excluded will thus have a minimal
effect on the significance tests of the fixed effects.18

Statistical Power Versus Generalizability

Westfall, Kenny, and Judd (2014) demonstrated that the infer-
ential test of the predictor (i.e., the fixed effect) is underpowered
in most LMEMs. They coined the term “maximally attainable
power” to describe the highest level of power that one can achieve
with a given number of items. For example, in a study in which
subjects evaluate both eight low-prestige and eight high-prestige
cars (see Table 13), the statistical power for the condition effect
will never exceed .40, even if the researchers collect data from
thousands or even millions of subjects (assuming a medium effect
size of d � .5 and an intermediate level of variability between
subjects and between items). As a rule of thumb, Westfall et al.
(2014) suggest to never use less than 16 items and 16 subjects,
preferably more.

Researchers may be tempted to include only one item per
treatment level. Paradoxically, reducing the number of items per
treatment levels from, let’s say, eight to one, drastically increases
statistical power. This is because no by-item random effects are
needed with one item per treatment level. As tempting as it may
seem, this solution is unsatisfactory because of its negative effects
on generalizability. When multiple items per treatment level are
used, the study’s conclusion can be generalized to the entire
population of items from which they were drawn (assuming they
were drawn randomly). When the researchers include only one
item per level of the predictor, then the results hold only for the
items included in the study.

To illustrate this point, consider two studies, one in which
subjects rate one low- and high-prestige car (see section Special
Case—Only One Observation per Cell) and another in which
they rate eight low- and eight high-prestige cars (see Table 13).
Although the first study is more powerful (because the random
effects structure contains no by-item random effects), its con-
clusions cannot be generalized to other low- and high-prestige
cars. After all, it could be that the results are limited to the two
particular cars chosen by the researchers. A similar reasoning
applies to experiments in which researchers have subjects in-
teract with either a White confederate or a Black confederate
and then measure behavioral outcome measures. If the research-
ers employ only one White and one Black confederate in the

study, their results cannot be generalized to people’s reactions
to Whites and Blacks in general. If, however, the researchers
randomly chose a group of White and Black individuals on
campus to serve as confederates, then the results can be gen-
eralized to people’s reactions to White and Black students in
general. In the latter case, it is necessary to include appropriate
by-confederate random effects. Confederate race varies be-
tween confederates. And if there is a between-subjects condi-
tion and the same confederate interacts with subjects in both
conditions, then condition varies within confederates.

To summarize, deciding on one’s experimental design is partly
a trade-off between statistical power and generalizability. The
ideal is to include more than 16 levels (preferably more) per
random variable. When this is not possible due to constraints (e.g.,
not enough items exist, excessive length of the study, few schools
gave permission to collect data), researchers should choose the
design that has the greatest statistical power. Westfall et al. (2014)
provide helpful advice on what this design is given the particular
constraints faced by the researchers.

Conclusion

In his classic article, Mook (1983) introduced the distinction
between testing whether effects “can” exist versus testing whether
they “do” exist. When the primary goal of a research project is to
test a prediction derived from theory, it is irrelevant whether the
effect generalizes to other items or real-life settings. In such a
context, it suffices to show that a certain effect “can be made to
occur” (Mook, 1983, p. 385, italics added). Other research proj-
ects, however, are designed to explore a particular effect, to show
that it plays an important role in a variety of settings, to quantify
its size, and maybe even to “predict real-life behavior in the real
world” (p. 381). The goal of these projects is to examine whether
a certain effect “does” exist.

Most psychological research has focused on demonstrating that
hypothesized effects “can” exist, using experimental materials and
procedures specifically chosen to maximize the likelihood that the
hypothesized effect occurs. Although this research has provided
important insights, it is often unclear whether the observed effects
actually play a role in everyday human cognition and behavior.
Many of them do not replicate (Open Science Collaboration, 2015;
Yong, 2012). Others are dependent on the specific stimuli used by
the researchers (Bahník & Vranka, 2017; Westfall, Judd, & Kenny,
2015). If we want to know whether our effects do exist—that is,
whether the psychological processes under investigation occur and
play a role in real-world settings and the observed effects replicate
even if a minor aspect of the study is changed—it will be necessary
to randomly select items (i.e., stimuli, targets, confederates,
schools, locations, settings) from a larger pool of possible items
and to estimate LMEMs that include the appropriate by-item
random effects in our data analyses.

LMEMs have numerous advantages. They allow us to analyze
categorical and continuous predictors with the same data-analytic

18 One alternative for dealing with small sample sizes and overparam-
eterized/nonconverging models is to switch to Bayesian data analyses.
Excellent texts on this topic have been published in recent years (e.g.,
Rouder, Morey, Verhagen, Swagman, & Wagenmakers, 2017; Stegmuel-
ler, 2013).
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framework and with virtually the same script in the data analysis
program, regardless of whether the predictors vary between or
within “units” (i.e., subjects, groups, classrooms). In the case of
categorical within-unit predictors, LMEMs perfectly reproduce the
results of the repeated-measures ANOVA, as long as there are no
missing values and the appropriate specifications are chosen (i.e.,
F approximation with Kenward-Roger dfs, unstructured covari-
ance matrix). Unlike repeated measures ANOVA, LMEMs can
accommodate “unbalanced repeats” (e.g., different subjects pro-
duce a different number of data points for each level of the
within-subject predictor).

LMEMs can handle issues that pose problems for other data-
analytic strategies. For example, one can use LMEMs to analyze
predictor variables with levels that are not equally spaced. LMEMs
can easily handle data that contain multiple sources of noninde-
pendence, regardless of whether this nonindependence is caused
by subjects, targets, confederates, classrooms, settings, or loca-
tions. LMEMs are ideally suited to analyze change over time (or
space) for subjects who are either independent or who are clustered
by some higher-order unit (e.g., patients within therapists).
LMEMs deal with missing data more effectively because unlike
repeated measures ANOVAs, they do not eliminate all observa-
tions of a subject who has one or more missing values. It is a small
step from LMEMs to “generalized linear-mixed effects models,”
which are needed when the outcome variables are categorical,
ordinal, or counts.

Are standard statistical procedures such as ANOVA and
regression analysis outdated? Definitely not, because there are
still numerous psychological studies in which predictors vary
between subjects and in which subjects is the only random
variable. However, we often expose our subjects to multiple
items (e.g., stimuli, confederates), examine how they change
over time (e.g., therapy, learning), test them in multiple settings
(e.g., locations, situations), and deal with subjects who influ-
ence each other (e.g., groups, classrooms). Given that these
types of studies involve multiple sources of nonindependence,
LMEMs will be increasingly present in the results sections of
our scientific journals and undoubtedly belong in the standard
tool kit for psychological researchers.
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Appendix A

The Reshape Function in R

The reshape function in R is particularly well-suited to transform data files from one format into another, that is,
from wide to long and from long to wide. The following R script transforms the data file in wide format that is
shown in the top panel of Table 1 into the data file in long format that is shown in the bottom panel of Table 1:

## WIDE TO LONG
d_long<-reshape(d_wide,

varying = c("like.lo1", "like.lo2", "like.hi1", "like.hi2"),
v.names = "like",
timevar = "prestige",
times = c("1", "1", "2", "2"),
new.row.names = 1:1000,
direction = "long")

d_long <- d_long[order(d_long$subject.ID),] # sort data file
d_long$id<-NULL # eliminate unneeded variable

The following R script transforms the data file in long format that is shown in the bottom panel of Table
1 into the data file in wide format that is shown in the top panel of Table 1:

## LONG TO WIDE
d_long$index<-rep(c("lo1","lo2","hi1","hi2"),each = 1) # index var
d_long$prestige<-NULL # eliminate unneeded variable
d_wide <- reshape(d_long,

timevar = "index",
idvar = c("subject.ID", "gender", "age"),
direction = "wide")

(Appendices continue)

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

408 BRAUER AND CURTIN

http://dx.doi.org/10.1080/00273171.2016.1167008
http://dx.doi.org/10.1080/00273171.2016.1167008
http://dx.doi.org/10.1037/0003-066X.38.4.379
http://dx.doi.org/10.1126/science.aac4716
http://dx.doi.org/10.1126/science.aac4716
http://dx.doi.org/10.1037/met0000057
http://dx.doi.org/10.1037/1082-989X.13.2.150
http://dx.doi.org/10.1111/j.2041-210X.2010.00012.x
http://dx.doi.org/10.1111/ajps.12001
http://dx.doi.org/10.1177/1745691614564879
http://dx.doi.org/10.1177/1745691614564879
http://dx.doi.org/10.1037/xge0000014
http://dx.doi.org/10.18637/jss.v059.i10
http://www.bodowinter.com/stuff/convergence_issues.pdf
http://www.bodowinter.com/stuff/convergence_issues.pdf
http://dx.doi.org/10.1093/jole/lzv003
http://dx.doi.org/10.1038/485298a


Appendix B

Within- and Between-Unit Associations

As mentioned in the main text, the centering of a continuous
within-unit predictor affects the researchers’ capacity to interpret
its coefficient. When the predictor is centered around each unit’s
own mean (e.g., centered around each subject’s own mean), its
coefficient describes the within-unit association between the pre-
dictor and the outcome variable, and this association is likely to
differ from the between-unit association.

The issue of within- versus between-unit associations may be
particularly important in studies in which subjects are nested in
higher-order units such as groups or classrooms. It may be that two
variables are related at the group level (e.g., discussion groups that
talk longer come up with more creative solutions) but not at the
individual level (e.g., individuals who talk longer than their fellow
discussion group members do not necessarily propose more cre-
ative solutions). It may even be that the same two variables are
positively related at the individual level (e.g., individuals with a
higher income tend to vote Republican) but negatively related at
the aggregate level (e.g., states with a higher average income tend
to be Democrat).

Enders and Tofighi (2007) describe a data-analytic procedure
that allows researchers to examine the within-unit and the
between-unit associations with the same model. It suffices to add
the means of the higher-order unit (e.g., the group means) as a
predictor to the model. The resulting LMEM contains two predic-
tors, the group-mean centered predictor (describing the within-
group association) and the group means (describing the between-
groups associations), and researchers can examine whether each of
them is reliably different from zero. Of course, the group-mean
centered predictor varies within-groups (and therefore requires a
by-group random slope) whereas the group means vary between-
groups (and therefore do not require a by-group random slope).
Enders and Tofighi (2007) also propose a test that allows research-
ers to examine whether the within-group association is reliably
different from the between-groups association (p. 131).

If the study includes only a small number of higher-order units
and a small number of lower-order units, the test of the within-
group association and the test of the between-groups association
may both be underpowered. If the researchers’ hypothesis is not
specifically related to one of the two types of associations but
simply predicts an association between two variables in the subject
population (which happens to be nested in higher-order units), they
can proceed in the following way: (a) run a model with the
group-mean centered predictor and the group means, (b) use End-
ers and Tofighi’s (2007) procedure to determine whether the two
types of associations are reliably different from each other, using
a liberal significance level (e.g., 
 � .20), and (c) if they are not,
run a LMEM in which the outcome variable is regressed on the
grand-mean centered predictor (including the appropriate by-group
random effects). The resulting coefficient will be an amalgam of
within- and between-groups association, but given that the two are
not reliably different from each other, researchers would not be
committing the ecological fallacy when they interpret this coeffi-
cient.

Later research on Enders and Tofighi’s (2007) data analytic
approach revealed that the estimate of the between-groups associ-
ation tends to be biased toward the within-group association under
certain circumstances (Lüdtke et al., 2008). For example, if the
within-group association is small and the between-groups associ-
ation is large, the coefficient associated with the group means will
often underestimate the true population between-groups associa-
tion. The coefficient will be biased especially when there are few
subjects per higher-order unit and when the nonindependence
introduced by the higher-order unit is relatively small. Lüdtke and
colleagues suggested a data-analytic procedure that produces un-
biased estimates (the so-called multilevel latent covariate ap-
proach), but an in-depth presentation of this approach goes beyond
the scope of this article.

(Appendices continue)
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Appendix C

Is Item Always a Random Variable?

In some research projects, the question arises, which types of
multiple measurements require by-item random effects. For exam-
ple, do items from a scale require by-item effects? The answer is
straightforward: When our materials can be thought of as a sample
from a larger possible set and we want to generalize our findings
to this set, then we want to include by-item random effects in the
maximal random effects structure. Typical examples are faces
from two or more social categories (e.g., subjects judge European
American and African American faces) and words having certain
characteristics (e.g., subjects react to emotional and neutral
words). Said differently, when our goal is to generalize the find-
ings from “our” items to the entire pool of items from which they
were drawn, we need to include by-item random effects. Similarly,
by-item random effects are required when a failure to replicate
with new materials would undermine our hypothesis. Items of
individual difference scales and test questions usually do not
require by-item random effects. The same is true when items are
included to activate a category and they do so indistinctly (i.e.,
there is effectively no variability due to items).

Sometimes, it is necessary to explicitly examine whether the
effects of the predictor on the outcome varies considerably among
the items included in the study. Wolsiefer, Westfall, and Judd
(2016) recently examined different implicit attitudes measures for
which it is generally assumed that stimulus words or pictures
indistinctly activate the category or concept they are supposed to
represent. The authors showed that contrary to the general assump-
tion, the items caused nonindependence in the data. As a result, the
test statistics from the traditional analyses were substantially in-
flated (by about 60%) compared with the LMEM analyses with the
appropriate by-item random effects.

For most studies, it is quite clear whether a given variable is
random or not. For some studies, however, the decision is less
obvious. When the data file included observations from all the

counties of one of the U.S. states and the goal is not to generalize
to other U.S. counties, it is not entirely clear whether county is a
random variable or a fixed variable (Snijders & Bosker, 2012).
Although test questions are usually not considered a random
variable, some researchers might argue that they should be. After
all, the questions included in the test were selected from a larger
pool of possible test questions and it would be worrisome if
students had radically different scores on a different but similar
test that included another subset of the large pool of possible test
questions.

When the research question is entirely theory-driven, the goal of
a study may be to show that a hypothesized effect can be made to
occur, even if the stimulus material or circumstances are rather
contrived. In other words, the goal may be to show that it is
possible to produce a certain effect with items that were chosen for
that particular purpose. In such research, the goal is not to gener-
alize to similar items of the same kind, and the study’s conclusion
would not be invalidated if the results failed to replicate with
different stimuli.

In a field study conducted on 12 different locations on campus,
it is not entirely clear whether “location” is a random variable. One
might argue that data have been gathered from all the levels of the
variable that are of interest, a typical characteristic of fixed vari-
ables. The SAS User’s Guide summarizes the situation appropri-
ately: “One modeler’s fixed effect is another modeler’s random
effect.” It is acceptable to treat certain variables as fixed rather
than random (i.e., to abstain from including certain random effects
in the maximal random effects structure). However, such a choice
should be justified in the manuscript, that is, authors should
explain why they omitted to include the appropriate by-variable
random slopes for variables that some of their colleagues might
consider random.

(Appendices continue)
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Appendix D

How to Compute the Number of Estimated Parameters

In the following paragraphs, we will provide a description of
concrete studies and how to compute the number of parameters
that are being estimated in a LMEM with the maximal random
effects structure.

If there are four by-subject random effects (let’s say one by-
subject random intercept and three by-subject random slopes) and
no by-item random effects, the LMEM will estimate a total of 10
parameters for the random effects structure alone: four parameters
for the random effects and six parameters for all possible pairwise
covariances of the random effects.

LMEMs estimate the covariances of random effects belonging
to the same unit (either subjects or items), but not the covariances
of random effects belonging to different units. This is because it is
impossible to compute the covariance between a by-subject ran-
dom effect and a by-item random effect.

Consider a LMEM with four fixed effects, two by-subject ran-
dom effects, and two by-item random effects (see Table 15). The
model will estimate a total of 11 parameters: the four fixed effects,
the four random effects, the covariance between the two by-subject
random effects, the covariance between the two by-item random
effects, and the residuals.

Consider another LMEM with three predictors, all possible two-
and three-way interactions, four by-subject random effects, and
two by-item random effects (see Table 16). In total, the LMEM
with the maximal random effects structure will estimate eight fixed

effects, four by-subject random effects, six covariances between
the by-subject random effects, two by-item random effects, one
covariance between the by-item random effects, and the residuals
. . . 22 parameters in total.

With more complex designs, the LMEM with the maximal
random effects structure may attempt to estimate 100 parameters
or more. Such a large number of parameters may cause problems
in the estimation process. As mentioned above, maximum likeli-
hood estimation involves an iterative process in which the com-
puter progressively changes the parameter estimates with the goal
to maximize the likelihood of having obtained the data at hand.
With an excessive number of parameters and/or too many missing
data and/or numerous random effects with near-zero variance, the
model may fail to converge. In that case, the error message
displayed by the data analysis program has to be taken seriously
because the output that is printed below cannot be trusted.

Note that R assumes that users want to estimate all possible
covariances. In all of the scripts presented in the tables of this
article, R estimates all covariances among random effects that are
listed in the same parenthesis.
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