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The health care ecosystem is witnessing a surge of arti-
fi cial intelligence (AI)-driven technologies and products 
that can potentially augment care delivery outside of 
hospital and clinic settings. These tools can be used 
to conduct remote monitoring, support telehealth 
visits, or target high-risk populations for more inten-
sive health care interventions. With much of patients’ 
time spent outside of a hospital or a provider’s offi  ce, 
these tools can off er invaluable benefi ts in facilitating 
patients’ access to their provider teams in convenient 
ways, facilitating providers’ understanding of their 
patients’ daily habits, extending care access to under-
served communities, and delivering personalized, real-
time care in the patient’s home environment. More 
importantly, by expanding care to novel settings (e.g., 
home, offi  ce), these technologies could empower pa-
tients and caregivers, as most of these tools are aimed 
at helping patients adapt their own behaviors or facili-
tating bidirectional communication between patients 
and clinicians for more personalized care. The authors 
of this manuscript refer to these such environments 
as “health settings outside the hospital and clinic,” ab-
breviated and referred to as HSOHC (pronounced “h-
sock”) hereafter (see Figure 1). In some instances, the 
capabilities of these tools are proving to be extremely 
timely in continuing care delivery amidst the disrup-
tions posed by the COVID-19 pandemic.

While a number of AI applications for care delivery 
outside of the hospital and clinical setting in medical 
specialties ranging from cardiology to psychiatry are 
either currently available or in development, their reli-
ability and true utility in improving patient outcomes 

are highly variable. In addition, fundamental logistical 
issues exist, including product scalability, inter-system 
data standardization and integration, patient and pro-
vider usability and adoption, and insurance reform that 
must be overcome prior to eff ective implementation of 
AI technologies. Broader adoption of AI in health care 
and long-term data collection must also contend with 
urgent ethical and equity challenges, including patient 
privacy, exacerbation of existing inequities and bias, 
and fair access, particularly in the context of the U.S.’s 
fragmented mix of private and public health insurance 
programs.

Introduction and Scope

To address the U.S. health care system’s deep-seated 
fi nancial and quality issues [1], several key stakehold-
ers, including health systems, retail businesses, and 
technology fi rms, are taking steps to transform the cur-
rent landscape of health care delivery. Notable among 
these eff orts is the expansion of health care services 
outside the hospital and clinic settings [2,3]. These 
novel settings, or HSOHC, and modes of care delivery 
include telehealth, retail clinics, and home and offi  ce 
environments. Care delivered in these environments 
often incorporates advanced technological applica-
tions such as wearable technology (e.g., smartwatch-
es), remote monitoring tools, and virtual assistants.

The growing adoption of these technologies in the 
past decade [4] presents an opportunity for a para-
digm shift in U.S. health care toward more precise, 
economical, integrated, and equitable care delivery. 
Coupled with advances in AI, the potential impact of 
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such technologies expands exponentially (see Box 1 for 
key defi nitions). Machine learning (ML), a subdomain 
of AI, can take advantage of continuous data regarding 
activity patterns, peripheral physiology, and ecologi-
cal momentary assessments of mood and emotion (all 
gathered in the home, school, community, and offi  ce 
settings) to predict risk for future health events and be-
havioral tendencies, and ultimately suggest personal-
ized lifestyle modifi cations and treatment options. The 
increasing aff ordability of remote monitoring devices, 
decreased dependence on brick-and-mortar health 
care infrastructure, and real-time feedback mecha-
nisms of these tools position AI as an indispensable 
factor in achieving the Quintuple Aim of health care: 
better patient outcomes, better population health, 
lower costs, increased clinician well-being, and priori-
tized health equity and inclusiveness [5] (see Figure 2). 

These tools, which use ML and conversational agents 

- another application of AI - are also particularly suit-
able for addressing and continuing care during the 
COVID-19 pandemic (see Box 1 for key defi nitions). In 
fact, the spread of COVID-19 has catalyzed many digital 
health and AI-related tools to augment personal and 
population health in the U.S. and in many other parts 
of the world.

While a number of AI applications for care delivery 
outside of the hospital and clinical setting in medical 
specialties ranging from cardiology to psychiatry are 
either currently available or in development, their reli-
ability and true utility in improving patient outcomes 
are highly variable. In addition, fundamental logistical 
issues exist, including product scalability, inter-system 
data standardization and integration, patient and pro-
vider usability and adoption, and insurance reform that 
must be overcome prior to eff ective implementation of 
AI technologies. Broader adoption of AI in health care 

Figure 1 | Artifi cial Intelligence in Health Settings Outside the Hospital and Clinic
NOTE: Represented in the orange third are the typical hospital and clinic settings. Represented in the 
blue two-thirds are the settings in which most health-related events and human experiences unfold, 
including the home, work, and community environments. Health-relevant data captured in these 
settings, for example via smartphone and wearable technology, can inform personalized and timely 
interventions, as well as public and environmental health assessments.
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and long-term data collection must also contend with 
urgent ethical and equity challenges, including patient 
privacy, exacerbation of existing inequities and bias, 
and fair access, particularly in the context of the U.S.’s 
fragmented mix of private and public health insurance 
programs.

In this discussion paper, the authors outline and 
examine the opportunities AI presents to transform 
health care in new and evolving arenas of care, as well 
as the signifi cant challenges surrounding the sustain-
able application and equitable development and de-
ployment that must be overcome to successfully incor-
porate these novel tools into current infrastructures. 
The discussion paper concludes by proposing steps for 
institutional, governmental, and policy changes that 
may facilitate broader adoption and equitable distribu-
tion of AI-driven health care technologies and an inte-
grated vision for a home health model.

Surveying Key Examples of AI Outside the Hos-
pital and Clinic Setting: Evaluating Current 
and Emerging Technologies

Implementing AI on the Individual Level for Better 
Personal Health

Telehealth and AI
Telehealth has been a long-standing element of health 
care delivery in the U.S. [6], but not until COVID-19 has 

it been considered vital to sustaining the connection 
between patients and providers. These electronic in-
teractions can be materially enhanced by AI in reducing 
the response time for medical attention and in alleviat-
ing provider case load and administrative burden. For 
example, AI triaging for telehealth uses conversational 
agents embedded in a virtual or phone visit to stratify 
patients based on acuity level and direct them accord-
ingly to the most appropriate care setting [7]. By reduc-
ing the risk of patient exposure, AI triaging platforms 
have been especially advantageous during COVID-19, 
and a number of health systems, retail clinics, and pay-
ers have implemented them to continue the facilitation 
of care services [8] and identify possible COVID-19 cas-
es. On the federal level, the Centers for Disease Con-
trol and Prevention (CDC) has launched a “Coronavirus 
Self-Checker” based on Microsoft’s Bot technology to 
guide patients to care using CDC guidelines [9,10]. Out-
side of the urgency of the COVID-19 pandemic, natural 
language processing has also been used to transcribe 
provider-patient conversations during phone visits, 
which can assist providers in writing care plans after 
the call concludes and can be useful to patients as a 
reference of what was discussed [11].

These integrations are the “tip of the iceberg” of 
the possibilities of AI in the telehealth domain. Given 
the escalating pressure amid the COVID-19 pandemic 
to continue regulatory and fi nancial support for tele-
health [12], one could envision a burgeoning variety of 

Figure 2 | Advancing the Quintuple Aim
SOURCE: Matheny, M., S. Thadaney Israni, M. Ahmed, and D. Whicher, Editors. 2019. Artifi cial Intel-
ligence in Health Care: The Hope, the Hype, the Promise, the Peril. NAM Special Publication. Washington, 
DC: National Academy of Medicine.
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AI couplings with telehealth. The future capacity of AI 
might include using video- and audiocapture tools with 
facial or tonal interpretation for stress detection in the 
home or offi  ce, or the incorporation of skin lesion de-
tection apps into real-time video for dermatological 
visits.

Using AI to Augment Primary Care Outside of the Clini-
cal Encounter
In the last six years, there has been a signifi cant in-
crease in the use of consumer applications for patient 
self-management of chronic diseases, and to a lesser 
degree for patient-provider shared management 
through home health care delivery and remote moni-
toring [13].

In 2018, diabetic care witnessed the landmark ap-
proval by the U.S. Food and Drug Administration (FDA) 
of IDx-DR, a ML-based algorithm that detects diabetic 
retinopathy, as the fi rst AI-driven medical device to not 
require physician interpretation [14,15]. Outside the 
hospital, several AI applications have been developed 
for diabetes self-management, including those that 
have shown improvements in HgbA1c through AI anal-
ysis of photos of patient meals to assess calories and 
nutrients [16] and another pilot trial of fully automated 
coaching for prediabetics, showing decreases in weight 
and HgbA1c [17]. For insulin management in type 1 
diabetes, multiple studies have found that using self-
adaptive learning algorithms in conjunction with con-

tinuous glucose monitors and insulin pumps results 
in decreased rates of hypoglycemia and an increase 
in patients reaching their target glucose range [18]. 
In March 2020 in the United Kingdom, the fi rst such 
tool was offi  cially licensed and launched publicly [19]. 
For type 2 diabetes, a promising example is an FDA-
approved diabetes management system called Well-
Doc that gives individualized feedback and recommen-
dations on blood sugar management and has been 
shown to reduce HgbA1c levels signifi cantly [20,21].

Other consumer tools, some with approvals by regu-
latory agencies, help monitor and support blood pres-
sure control and vital sign checks. One app, Binah.ai, 
features a validated tool that can scan a person’s face 
in good lighting conditions and report heart rate (HR), 
oxygen saturation, and respiration with high levels of 
accuracy [22,23]. In addition, an increasing number of 
AI virtual health and lifestyle coaches have been devel-
oped for weight management and smoking cessation.

Remote Technology Monitoring for Promoting Cardiac 
Health
Wearable and remote monitoring technology can as-
sist in ushering in the next era of health care data in-
novation by capturing physiologic data in HSOHC [24]. 
In the current clinic-based paradigm, data is captured 
in isolated snapshots and often at infrequent time in-
tervals. For example, blood pressure is measured and 
recorded during clinic visits once or twice a year, which 

Box 1 | Key Artifi cial Intelligence Terminology Defi nitions

Artifi cial intelligence (AI) “refers to the capacity of computers or other machines to exhibit or 
simulate intelligent behavior” (Oxford English Dictionary).

Artifi cial intelligence writ large is comprised of several domains. Some of the critical terms uti-
lized in this paper are defi ned below.

Machine learning (ML) is a family of statistical and mathematical modeling techniques that 
uses a variety of approaches to automatically learn and improve the prediction of a target state, 
without explicit programming. Machine learning can be applied for predictive analytics to un-
cover insights about current and future trends.

Natural language processing (NLP) enables computers to understand and organize human 
speech. Conversational agents can engage in two-way dialogue with humans using NLP to 
comprehend human speech and respond accordingly.

SOURCES: Oxford English Dictionary; Witten, I. H., E. Frank, M. A. Hall, and C. J. Pal. 2016. Data Mining: Prac-
tical Machine Learning Tools and Techniques. Burlington, MA, USA: Morgan Kaufmann; and Manning, C. D., 
and H. Schütze. 1999. Foundations of Statistical Natural Language Processing. Cambridge, MA: MIT Press.
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does not provide an accurate or longitudinal under-
standing of an individual’s blood pressure fl uctuations.

The current “Internet of Things” era has changed the 
landscape for wearable technology. Wearables can 
capture data from any location and transmit it back 
to a hospital or clinic, moving a signifi cant piece of the 
health care enterprise to places where patients spend 
the bulk of their time. These measurements can then 
be coupled with machine learning (ML) algorithms and 
a user interface to turn the data into relevant informa-
tion about an individual’s health-related behaviors and 
physiological conditions.

Wearable technology has been applied to many 
health care domains, ranging from cardiology to mental 
health. Prominent examples of technologies are those 
that incorporate cardiac monitoring, such as HR and 
rhythm sensors, including the Apple Watch, iRhythm, 
and Huawei devices. These devices are quite popular 
and, in the case of the Apple Watch, have received 
FDA approval as a medical device to detect and alert 
individuals of an irregular heart rhythm, a condition 
called atrial fi brillation [25]. Atrial fi brillation is associ-
ated with reduced quality of life and can result in the 
formation of blood clots in the upper heart chambers, 
ultimately leading to increased risk of stroke. Theoreti-
cally, enabling diagnosis of this condition outside of the 
clinic could bring patients to medical attention sooner 
and, in turn, considerably reduce the risk of stroke.

However, the effi  cacy of some of these devices in re-
lation to improving patient outcomes (increased qual-
ity of life and longevity) through detection of abnor-
mal rhythms remains unproven, and there have been 
some concerns regarding the accuracy of the ML algo-
rithms. For example, some of the Huawei and Apple 
Watch studies suggest that the devices seem to work 
well in sinus rhythm (beating normally at rest), but un-
derestimate HR at higher rates in atrial fi brillation or in 
elevated sinus rhythm (i.e., with exercise) [26,27].

Hypertension, or high blood pressure, is another ex-
ample of a highly prevalent, actionable condition that 
merits surveillance. Hypertension aff ects approximate-
ly 45 percent of Americans and is associated with heart 
failure, stroke, acute myocardial infarction, and death 
[28]. Sadly, hypertension control rates are worsening 
in the U.S., which will have downstream eff ects in most 
likely increasing the prevalence of cardiovascular dis-
ease [29]. Unlike smartwatch devices, blood pressure 
cuff s have been commercially available for decades.
Today, several blood pressure manufacturers, includ-
ing Omron, Withings, and others, off er cuff s that col-

lect and transmit blood pressure measurements along 
with data like HR to health care providers [30,31]. Col-
lecting longitudinal, densely sampled HR and blood 
pressure data in these ways allows for nuanced pat-
tern detection through ML to predict increased risk of 
cardiovascular events like stroke or heart failure and, 
in turn, triage patients for medication management or 
more intensive treatment. Ultimately, such prognostic 
capabilities could be embedded into the device itself. 
However, establishing the accuracy of data capture 
measurements relative to traditional sphygmoma-
nometry is challenging because of the lack of scientifi c 
assessment standards [32].

In addition to established measurement standards, 
remote blood pressure monitoring devices should be 
coupled with a system to deliver interventions based 
on the data. One such option includes ML-powered 
smartphone apps paired with remote monitoring de-
vices. The apps should eff ectively provide behavioral 
therapy for hypertensive patients [33], assess adher-
ence to interventions, and promote patient self-aware-
ness [34]. In terms of patient outcomes, some studies 
suggest that home monitoring, when coupled with 
pharmacist-led medication management and lifestyle 
coaching, is associated with improved blood pressure 
control; other studies are neutral [35]. Historically, the 
traditional health care delivery system has been unsuc-
cessful in blood pressure control, and moving manage-
ment into the home settings shows promise [36].

Remote Sensing and Mobile Health (mHealth) for Be-
havioral and Psychiatric Care
The pursuit of precision medicine — “delivering the 
right treatments, at the right time, every time to the 
right person” [37,38] — has been a long-standing goal 
in medicine. In particular, for psychiatry, clinical psy-
chology, and related disciplines, increased precision 
regarding the timing of interventions presents an im-
portant opportunity for mental health care. In major 
depressive disorder, episodes of depression contrast 
with periods of relatively improved mood. In bipo-
lar disorder, patients cycle between both manic and 
depressive episodes. For substance use disorders, 
patients may alternate between periods of use and 
disuse. At an even more granular level, risk for return-
ing to substance use can be instigated at times by dis-
crete stressors but at other times in the presence of 
substances or peers using substances. Poor sleep and 
other issues that aff ect self-regulation may exacerbate 
this risk some days but not others. In each of these 
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examples, diff erent interventions are better suited to 
each of these specifi c moments in time to improve 
mental health.

The synthesis of AI with “personal sensing” provides 
a powerful framework to develop, evaluate, and even-
tually implement more precise mental health inter-
ventions that can be matched to characteristics of the 
patient, their context, and the specifi c moment in time 
[39]. Today, sensors relevant to medical care are ubiq-
uitous. Smartphones log personal communications by 
voice calls and text messages. Facebook posts, Insta-
gram photos, tweets, and other social media activities 
are also recorded. Smartphone-embedded sensors 
know our location (via GPS) and activity level (via ac-
celerometer), and can detect other people in our im-
mediate environment (via Bluetooth). Smartwatches 
that can monitor our physiology and many other raw 
signals are increasing in popularity.

Personal sensing involves collecting these many raw 
data signals and combining them with ML algorithms 
to predict thoughts, behaviors, and emotions, as well 
as clinical states and disorders. This synthesis of ML 
and personal sensing can revolutionize the delivery of 
mental health care beyond the one-size-fi ts-all diag-
noses and treatments to personalized interventions 
based on vast amounts of data collected not only in 
health care settings but in situ.

To be clear, the fi eld of personal sensing (or digi-
tal phenotyping) is nascent and rapidly evolving [39]. 
However, emerging evidence already demonstrates 
the potential of its signals to characterize relevant 
mental health states at any moment in time. For ex-
ample, GPS, cellular communication logs, and patterns 
of social media activity have all been used to classify 
psychiatric disorders and prognosis over time [40,41]. 
Natural language processing of what people write on 
social media can also be used to sense cognitive or 
motivational states (depressed mood, hopelessness, 
suicidal ideation) that may be more diffi  cult to monitor 
with nonverbal sensors [42]. Moreover, many of these 
promising signals are collected passively by people’s 
smartphones, such that they can be measured without 
burden. This allows for long-term, densely sampled, 
longitudinal monitoring of patients that will be neces-
sary to provide precisely timed interventions (e.g., just-
in-time adaptive interventions [43]) for psychiatric dis-
orders that are often chronic and/or cyclical.

mHealth apps are also well positioned to deliver 
AI-assisted precision mental health care. Mobile apps 
without AI have been already developed and deployed 

for post-traumatic stress disorder, depression, sub-
stance use disorders, and suicidal ideation, among 
others [44,45], many of which have been pioneered by 
the U.S. Department of Veterans Aff airs. These applica-
tions can screen for psychiatric disorders, track chang-
es over time, and deliver evidence-based treatment or 
post-treatment support. They often include a variety of 
tools and services for patients including bibliotherapy, 
cognitive behavioral interventions, peer-to-peer or oth-
er social support, guided relaxation and mindfulness 
meditation, and appointment and medication remind-
ers. In fact, many studies have demonstrated that pa-
tients are more expressive and more willing to report 
mental health symptoms to virtual human interviewers 
[46,47]. Moreover, because smartphones are nearly al-
ways both on and available, mobile mental health care 
apps can provide immediate intervention while a pa-
tient is waiting for a higher level of care. Active eff orts 
are underway to augment these systems with personal 
sensing AI to improve their ability to detect psychiat-
ric risk in the moment and to recommend specifi c in-
terventions among their available tools and services 
based on the characteristics of the patient and the mo-
ment in time [43,48].

Leveraging AI and Patient-Level Data from Remote 
Monitoring Tools to Gather Population-Level In-
sight

Integrating AI into Population Health Strategies
Since population health takes a holistic philosophy 
about caring for a large group of patients’ health 
throughout their lives and all their activities, health 
management at this level necessarily goes far outside 
the bounds of a traditional medical encounter and into 
the daily lives of patients. A variety of integrated care 
delivery mechanisms have been used to improve popu-
lation-level wellness and health, in many cases through 
novel partnerships and collaborations [49]. With the 
ongoing development of increasingly refi ned AI appli-
cations for individual use, next-generation population 
health strategies include analysis of aggregate patient-
level data geared toward identifi cation of broader pop-
ulation health trends and habits. Furthermore, these 
large-scale datasets set the stage for population-level 
AI algorithms for the purposes of epidemiological pre-
diction, fueling a synergistic and powerful feedback 
loop of personal and population health innovation.

In the U.S., much of population health is managed 
and prioritized by insurance companies, employers, 
and disease management companies and increasingly 
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by accountable care organizations and risk-bearing 
health care delivery organizations, whose primary aim 
is to decrease wasteful spending and improve health 
care quality by proactively engaging with and interven-
ing for patients. The question becomes how to precise-
ly identify these patients at the right time in their care 
journey, so as to not engage them too late—after the 
health care decision is made and costs are no longer 
avoidable—or to engage them too early, and therefore 
waste administrative resources in engaging them. This 
need has given rise to the fi eld of predictive analytics, 
which increasingly leverages AI to improve the eff ec-
tiveness and effi  ciency of these programs. In the health 
care industry, these analytics typically rely on medical 
and pharmacy claims data, but are increasingly inte-
grating a more diverse set of data, including health risk 
assessment data, electronic health record data, social 
determinants of health data—and even more recently, 
data from connected health devices and from tran-
scribed call and messaging data between patients and 
these managed care organizations.

There has been tremendous interest and investment 
in deploying sensors, monitors, and automated track-
ing tools that, when combined with AI, can be used for 
population health management [50]. These tools and 
systems have been applied with varying degrees of 
sophistication to a wide variety of acute and chronic 
diseases, such as for diabetes and hypertension (de-
scribed in previous sections), monitoring patients in 
rehabilitation [51], ongoing cardiovascular care [52], 
mental health care, falls [53], or dementia and elder 
care [54]. This category of potential applications dis-
tinguishes itself from self-management-related AI 
through the primary users of the systems. In this do-
main, the users are health care professionals seeking 
to manage population health through information syn-
thesis and recommendations.

Just like on an individual level, these algorithms re-
motely and passively detect physical and physiologic 
indicators of health and pathology, integrate them with 
patient-level environmental or health care system data, 
and generate insights, recommendations, and risks for 
many conditions. The challenges in this domain are 
melding disparate data—some from sensing informa-
tion, some from image tracking, some from voice and 
audio analysis, and some from inertial or positional 
data—with more traditional medical data to improve 
outcomes and care. 

Improving Medication Adherence with AI Tools
Another key challenge that population health faces is 
a lack of medication adherence. In some disease treat-
ments, up to 40 percent of patients misunderstand, 
forget, or ignore health care advice [55]. Promotion of 
adherence to medical therapy is a complex interaction 
between patient preferences and autonomy; health 
communication and literacy; trust between patients/
caregivers and the clinical enterprise; social determi-
nants of health; cultural alignment between patients, 
caregivers, and health care professionals; home en-
vironment; management of polypharmacy; and mis-
understandings about the disease being treated [56]. 
Numerous examples of adherence challenges abound, 
from treatments of chronic obstructive pulmonary dis-
ease [57], asthma [58], diabetes [59], and heart failure 
[60].

There is tremendous opportunity for AI to identify 
and mitigate patient adherence challenges. One ex-
ample of how AI might assist in improving adherence is 
in the case of direct oral anticoagulants in which an AI 
system embedded in smartphones was used to directly 
observe patients taking the medications. The AI incor-
porated imaging systems such as facial recognition and 
medication identifi cation as well as analytics to identify 
those at high risk or to confi rm delay in administra-
tion. Those who were identifi ed as being at high risk 
were routed to a study team for in-person outreach as 
needed [61]. In a 12-week randomized controlled trial 
format, the AI arm had 100 percent adherence and the 
control arm had 50 percent adherence by plasma drug 
concentration level assessment. There are other no-
table examples in this area of medication adherence, 
such as with tuberculosis [62] and schizophrenia treat-
ments [63].

AI Eff orts in Public and Environmental Health 
There is a strong need and opportunity for the use of 
AI technologies in public health, with opportunities that 
include information synthesis, outbreak detection, and 
responsible, appropriately governed, ethical, secure, 
and judicious syndromic surveillance. Public health has 
been incorporating and leveraging AI technologies for 
a number of years, and many countries have syndrom-
ic surveillance systems in place, such as RAMMIE in the 
U.K. [64]. As a subdomain of public health, environmen-
tal health has applied ML techniques to tremendously
benefi t from the wide integration of publicly available 
data sources. One example is the need to assess toxic-
ity in silico among chemicals used in commercial prod-
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ucts, with over 140,000 mono-constituent chemicals in 
use and safety studies in less than 10 percent of them, 
not counting the vast number of chemical admixtures 
and metabolites [65,66,67]. There are important impli-
cations for environmental impacts in overall determi-
nants of health along with genetic and chronic disease 
data, and AI will be critical in allowing the eff ective anal-
ysis of these types of data.

Another key area is the estimation of exposure his-
tories and magnitude of patients over time, which 
requires diverse data ranging from location history, 
environmental conditions in areas of exposure, and 
subsequent evaluation and integration of said data into 
overall disease risk and clinical management strategies 
[68]. This also requires complex capacities in geospa-
tial analysis and transformation [69]. In addition, the 
emphasis on geography and location mapping to as-
sess potential outbreaks and environmental exposures 
is important for air pollution modeling [70]. AI-driven 
air pollution modeling uses a combination of satellite 
data, fi xed monitoring, and professional and personal 
mobile monitoring devices to conduct complex assess-
ments [71]. However, sensors such as PurpleAir require 
individuals to pay and install them in their homes and 
communities [72]. Thus, access is limited to those who 
have the privilege of disposable income. There have 
also been novel applications in assessing and inform-
ing public health policy with regard to neighborhood 
physical activity and assessment of greenspace access, 
as well as access to healthy food outlets and grocery 
stores [73].

Combating COVID-19 with AI-Assisted Technologies
AI interpretation and human review of incoming data 
for syndromic surveillance provided early warning of 
the recent COVID-19 pandemic. The fi rst early warning 
alert of a potential outbreak was issued on December 
30, 2019, by the HealthMap system at Boston Children’s 
Hospital, while four hours earlier a team at the Pro-
gram for Monitoring Emerging Diseases had mobilized 
a team to start looking into the data and issued a more 
detailed report 30 minutes after the HealthMap alert 
[74]. BlueDot also issued an advisory on December 31,
2019, to all its customers [75]. These systems are in-
terconnected and share data using a complex system 
of machine learning and natural language processing 
to analyze social media, news articles, government re-
ports, airline travel patterns, and in some cases emer-
gency room symptoms and reports [76,77,78]. Another 
set of ML algorithms consumes these processed data 

to make predictions about possible outbreaks [79].
In addition, wearable devices could serve an im-

portant role in the surveillance of high prevalence 
conditions, for which COVID-19 provides an immedi-
ate and important application. Fever alone provides 
inadequate screening for COVID-19 infection [80], but 
combining temperature with HR, respiratory rate, and 
oxygen saturation—all of which can be captured via 
wearable devices—could aid in triage and diagnosis. 
Prior research related to infl uenza, in which investiga-
tors found that Fitbit data among 47,249 users could 
reliably predict prevalence rates estimated by the CDC, 
supports the role of wearables in infectious disease 
surveillance [81]. Indeed, randomized trials to test this 
hypothesis in relation to COVID-19 are underway [82], 
while others are using wearables for COVID-19 tracking 
outside of the research enterprise [83]. Furthermore, 
many wearables can provide location data when linked 
to a smartphone, opening the door for geographic out-
break monitoring.

Development and Integration of Health-Relat-
ed AI Tools: Overarching Logistical Challenges 
and Considerations

AI development and integration, especially of those de-
vices deployed in HSOHC, face several logistical chal-
lenges in the health care marketplace. The authors of 
this discussion paper focus on six major categories of 
challenges that have been carefully documented in 
the literature and in practice: data interoperability and 
standardization, data handling and privacy protection, 
systemic biases in AI algorithm development, insurance 
and health care payment reform, quality improvement 
and algorithm updates, and AI tool integration into pro-
vider workfl ows.

Data Interoperability and Standardization
Logistical challenges to technology development and 
integration with virtual care systems include the chal-
lenges inherent to health care data collection, aggre-
gation, analysis, and communication. In particular, 
AI-based programs must contend with data interop-
erability standards that have been created to ensure 
that data can be reliably transferred between schedul-
ing, billing (including electronic health records), labora-
tory, registry, and insurer entities, as well as third party 
health data administrators, and ultimately be action-
able to end users. Common data interoperability stan-
dards for health care data (e.g., the Health Level Seven 
standards [84] and its Fast Healthcare Interoperability 
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Resources specifi cation [85]) have helped to enhance 
communication among AI developer teams, data ana-
lysts, and engineers working on other health care plat-
forms, such as electronic health records. Nevertheless, 
considerable time can be spent by AI developers on ex-
traction, transformation, and loading of data into dif-
ferent formats to both input and output data from AI 
platforms to health care data systems.

Often a major hurdle to AI development has been 
the personnel eff ort and time needed for data orga-
nization and cleaning, including the development of a 
strategy to address unclear data defi nitions and miss-
ing data [86]. The Observational Health Data Sciences 
and Informatics (or OHDSI, pronounced “Odyssey”) 
program involves an interdisciplinary collaboration to 
help address these issues for data analytics, and has 
introduced a common data model that many AI devel-
opers are now using to help translate and back-trans-
late their health care data into a standard structure 
that aids communication with other health data man-
agement systems [87].

Data Handling and Privacy Protection
AI developer teams may also be subject to state and 
federal privacy regulations that aff ect sharing, use, 
and access to data for use in training and operating AI 
health care tools. As the major federal medical privacy 
statute, the Health Insurance Portability and Account-
ability Act (HIPAA) applies to “HIPAA-covered entities,” 
including health care providers such as clinics and 
hospitals, health care payers, and health care clearing 
houses that process billing information. HIPAA-cov-
ered entities are subject to the HIPAA Privacy Rule, the 
federal medical and genetic privacy regulation promul-
gated pursuant to HIPAA. However, many entities that 
handle health-related information are not HIPAA-cov-
ered. Such entities can include many medical device 
and wearable/home monitoring manufacturers and 
medical software developers, unless they enter into 
“Business Associate Agreements” with organizations 
that do qualify as HIPAA-covered entities. Overall, be-
cause HIPAA is targeted to traditional health care pro-
viders, it often does not cover health AI companies that 
do not intersect or work closely with more traditional 
organizations.

Because the HIPAA Privacy Rule is directed at private 
sector players in health care, Medicare data and other 
health data in governmental databases are governed 
by a diff erent statute, the Federal Privacy Act. State 
privacy laws add a layer of privacy protections, be-

cause the HIPAA Privacy Rule does not preempt more 
stringent provisions of state law. Several states, such 
as California, have state privacy laws that may cover 
commercial entities that are not subject to HIPAA, and 
which may provide more stringent privacy provisions 
in some instances. This means that companies that 
operate across multiple states may face diff erent pri-
vacy regulatory requirements depending on where pa-
tients/clients are located.

When AI software is developed by a HIPAA-covered 
entity, such as at an academic medical center or teach-
ing hospital that provides health care services, data 
must be maintained on HIPAA-compliant servers (even 
during model training) and not used or distributed to 
others without fi rst complying with the HIPAA Privacy 
Rule’s requirements. These requirements include that 
HIPAA-covered entities must obtain individual autho-
rizations before disclosing or using people’s health 
information, but there are many exceptions allowing 
data to be used or shared for use in AI systems with-
out individual authorization. An important exception 
allows sharing and use of data that have been de-
identifi ed, or had key elements removed, according 
to HIPAA’s standards [88]. Also, individual authoriza-
tion is not required (even if data are identifi able) for 
use in treatment, payment, and health care operations 
(such as quality improvement studies) [88]. This treat-
ment exception is particularly broad, and the Offi  ce 
for Civil Rights in the U.S. Department of Health and 
Human Services, which administers the HIPAA Privacy 
Rule, has construed it as allowing the sharing of one 
person’s data for treatment of other people [89]. This 
would allow sharing and use of data for AI tools that 
aim to improve treatment of patients.

Data also can be shared and used with public health 
authorities and their contractors, which could support 
data fl ows for public health AI systems [90]. Data can 
be shared for use in AI research without consent (in-
cluding in identifi able form) pursuant to a waiver of au-
thorization approved by an institutional review board 
or privacy board [90]. Such bodies sometimes balk at 
approving research uses of identifi able data, but the 
HIPAA Privacy Rule legally allows it, subject to HIPAA’s 
“minimum necessary” standard, which requires a de-
termination that the identifi ers are genuinely neces-
sary to accomplish the purpose of the research [91,92]. 
These and various other exceptions, in theory, allow 
HIPAA-covered care providers to use and share data 
for development of AI tools. However, all of HIPAA’s 
authorization exceptions are permissive, in that they 
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allow HIPAA-covered entities to share data but do not 
require them to do so.

Another concern is that much of today’s health-
relevant data, such as those from fi tness trackers 
and wearable health devices, exist outside the HIPAA-
regulated environment. This is because, as discussed 
above, HIPAA regulates the behavior of HIPAA-covered 
entities and their business associates only, leaving out 
many other organizations that develop AI. This has 
two implications: (1) the lack of privacy protection is of 
concern to consumers, and (2) it can be hard to access 
these data, and to know how to do it ethically, absent 
HIPAA’s framework of authorization exceptions. Ethical 
standards for accessing data for responsible use in AI 
research and AI health tools are essential. Otherwise, 
public trust will be undermined.

There are an increasing number of publicly available 
and de-identifi ed datasets that will allow for model 
comparisons, catalogued in the PhysioNet repository 
for biomedical data science and including the Medical 
Information Mart for Intensive Care dataset that in-
volves intensive care unit data [93,94]. As most of these 
data are from research or hospital contexts, they high-
light the need for more public, de-identifi ed data from 
outpatient settings including telemedicine and patient-
driven home monitoring devices.

Systematic Biases in AI Algorithm Development
Beyond data standards and regulations, a major chal-
lenge for AI developers in the U.S. health care environ-
ment is the risk that AI technologies will incorporate 
racial, social, or economic biases into prediction or 
classifi cation models. Moreover, even if training data-
sets are perfectly refl ective of the U.S. general popula-
tion, an AI system could still be biased if it is applied in 
a setting where patients diff er from the U.S. popula-
tion at large. Many biases do, however, refl ect broader 
historical racism and societal injustices that further 
perpetuate health care inequalities. Once these biased 
data are incorporated into ML algorithms, the biases 
cannot easily be interrogated and addressed. For ex-
ample, while de-identifi ed health care data from pay-
ers is increasingly available to predict which patients 
are higher or lower cost, Black patients in the U.S. are 
disproportionately at risk for lower health care access, 
and thus lower cost relative to their illness level (be-
cause of inadequate utilization). This artifi cially lower 
cost occurs in spite of this population’s higher burden 
of social ills that increase the risk of poor health out-
comes, such as social stressors related to hyperten-

sion or poor food security that often worsens diabetes 
outcomes. Researchers have observed that AI predic-
tion models that seek to determine which people need 
more outreach for home-based or community-based 
care were developed from cost data, without a correc-
tion for diff erential access, and thus biased predictions 
against predicting care needs for Black individuals [95]. 
Outside of the hospital and clinic settings, historically 
marginalized communities may face similar barriers 
to access to technologies, algorithms, and devices. In-
deed, recent surveys indicate that use of smartwatches 
and fi tness trackers correlates with household income, 
but ethnicity-based diff erences are less pronounced, 
with Black and Latinx Americans reporting usage rates 
equivalent or higher than those of white Americans 
[96].

Developing AI tools is a process of active discovery 
and simultaneously subject to counterintuitive com-
plexities, making the work of removing bias from health 
care data extremely complex. For example, observing 
equal treatment among groups may actually be indica-
tive of a highly inequitable AI model [97]. Some groups 
may be properly deserving of higher attention be-
cause of disproportionate risk for a health care event, 
and therefore treating them equally would be an er-
ror [98]. Bias in the data itself is also paired with bias 
in outcomes, in that AI models can predict risk of an 
event such as health care utilization, but can also make 
suggestions for appropriate health care treatments. If 
the treatment recommendations are also biased, then 
disadvantaged groups may get erroneous advice more 
often, or simply not receive AI-aided advice while their 
counterparts who are better represented in the data 
receive the advantages of the AI-aided decision mak-
ing [99]. To reiterate, using AI systems and tools that 
utilize biased data or biased processes will further en-
trench and exacerbate existing inequities and must be 
addressed before a system or tool is deployed.

Insurance and Health Care Payment Reform
A logistical challenge for AI use outside of the hospital 
and clinic setting that also challenges AI development 
and integration is the U.S. health care payment land-
scape. Many, albeit an increasingly smaller percentage, 
of health care payments from commercial insurers or 
government payers (e.g., Medicare Part B) to health 
care delivery entities are in the form of fee-for-service 
payments for in-person visits or procedures. Health 
care delivery entities generate revenues by billing pay-
ers with attached billing codes that reference negotiat-
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ed payments for diff erent services, from routine offi  ce 
visits to a primary care provider to surgeries. Programs 
outside of the hospital and clinic setting are incentiv-
ized to fi t into the fee-for-service model if they are to 
be paid for by traditional payment mechanisms. While 
telemedicine visits (video and phone) are now covered 
by most payment entities, and, in the initial months of 
the COVID-19 pandemic, were reimbursed at an equal 
rate to in-person visits [100], the tools used to deliver 
such services are traditionally not reimbursed. For ex-
ample, a physician could use many AI tools, remote 
sensing tools included, to help improve the quality or 
precision of diagnosis or therapeutic recommenda-
tions. Such tool use could be costly in personnel and 
computational time, and as discussed earlier, these 
tools can have questionable validity. However, the use 
of these tools would not necessarily be paid for, as its 
use would be considered implicit in conducting a medi-
cal visit, even though various diagnostic procedures 
with their own personnel and equipment costs (e.g., 
radiology) have their own payment rates. A change 
in such policies to help pay for AI tools is one step to 
encouraging AI applications both inside and outside of 
the hospital or clinic. The fi rst billing code for an AI tool 
is one that helps to detect diabetic retinopathy. Still, 
it is unclear at this point how much this new code will 
pave the way for payers to accept the code and pay for 
AI services within a fee-for-service payment structure 
[101].

While much billing in the U.S. health care landscape 
remains a fee-for-service billing approach in which ser-
vices are rendered and reimbursed according to nego-
tiated rates for services that a payer covers, alternative 
payment models exist that may alter the AI payment 
landscape. Such alternative models include capitation 
payments (per-patient, per-month payments) that pay-
ers could increase for practices or providers that incor-
porate high-quality, externally validated AI tools into 
their practice, and value-based payments for providers 
who show that their use of AI tools has improved out-
comes. Capitation payments have now been increas-
ingly adopted for routine health care delivery in many 
managed-care environments, but as of yet there are 
no adjustments for the use of AI tools. Value-based 
payments have to date failed to capture a majority 
of the health care market share [102,103], and such 
value-based payments may incentivize use of AI tools 
outside of the hospital or clinic if they improve clinical 
outcomes, whether or not such tools require interven-
tion within a medical visit. Both capitation and value-

based payments could be adjusted to explicitly reward 
the use of AI tools for better outcomes.

Quality Improvement and Algorithm Updates
To further aid in the adoption and implementation 
of AI tools into clinical practice, particularly into tele-
medicine and virtual care environments, it is important 
to solidify the practice of quality improvement and 
to responsibly navigate the challenges of ownership, 
responsibility, decision making, and liability. As tele-
health and virtual care platforms continue to improve 
their user experiences, it becomes critical that the AI 
tools they rely on—from symptom checkers that direct 
providers toward considering particular diagnoses, to 
scheduling and billing tools that aid patients, to per-
sonalized recommendation systems that help remind 
patients of routine cancer screening and available 
health coaching—must have a built-in feedback pro-
cess. There are numerous examples of complex chron-
ic diseases that require detailed self-management, 
such as blood glucose monitoring and adjustments in 
daily calorie intake or insulin administration for diabe-
tes [104,105] or management of diet, salt, exercise, and 
medication dosing after heart failure [106]. The key 
challenges in this subdomain are those of appropriate 
data collection through patient-facing technologies—
whether linked glucose monitors, blood pressure mon-
itoring, calories and types of food eaten, steps taken, 
and other features—and integrating AI algorithms and 
tools safely into cautions and recommendations along 
with information synthesis to patients.

AI-driven personal sensing algorithms will likely have 
limited shelf lives for a variety of reasons [39]. Given 
the rapid pace of development, there is considerable 
churn in both the software and hardware that are used 
to measure these signals. As sensor software and hard-
ware are updated, raw data signals will change. There 
will also be shifts in how patients interact with these 
software and hardware and where these digital inter-
actions happen that necessitate changes in the devices 
and signals that are monitored. Additionally, as modes 
of data collection become more precise (e.g., more ad-
vanced HR and glucose monitors), algorithms can be 
regularly retrained with these more reliable data to 
harness greater predictive accuracy.

For example, smartphone use has changed dramati-
cally in recent years. Communications have shifted 
from voice to SMS, and SMS itself has moved from 
native smartphone apps to separate applications like 
Facebook Messenger, Snapchat, and WhatsApp. Video 
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conferencing has also been rapidly adopted during CO-
VID-19.

More fundamentally, the meaning of the raw signals 
may change over time as well. Language usage and 
even specifi c words that indicate clinically relevant ef-
fects or stressors have a temporal context that may 
change rapidly based on sociopolitical or other current 
events (e.g., the COVID-19 pandemic, the Black Lives 
Matter movement and associated  protests, political 
election cycles). Patterns of movement and their impli-
cations can change as well (e.g., time spent at home or 
in the offi  ce). This limited shelf life for personal sensing 
algorithms must be explicitly acknowledged and pro-
cesses must be developed to monitor and update the 
performance of the algorithms over time to keep them 
current and accurate. 

AI Tool Integration into Provider Workfl ows Out-
side of the Hospital or Clinic
Most health care systems today have training and ex-
ecution of quality improvement programs that identify 
important problems such as medical errors and under-
go cycles of planning, piloting, studying, and modify-
ing workfl ows to reduce such problems, often using a 
Lean framework for improvement [107,108]. AI tools 
outside of the hospital or clinic can be integrated into 

that workfl ow to improve their eff ectiveness, effi  ciency, 
and utilization. Such tools may be vital for quality im-
provement of services outside of hospital or clinic set-
tings, as well as to scale and diff use such technologies 
among teams that may be initially skeptical about their 
value. Issues of usability have signifi cant implica-tions 
for provider adoption. The increasing volume of data 
collected through wearable technology can overwhelm 
providers who are already experiencing high rates of 
alert fatigue and clinician burnout. Ensuring usabil-
ity entails developing an accessible user interface and 
presenting information in a clear and actionable way.

Inherent to the implementation and improvement 
process is the dilemma of how to ensure that the busi-
ness models underlying AI tool innovation are tailored 
to their users. It is often assumed that AI tools will have 
a single user: a provider or a patient. Typically, how-
ever, AI tools are used in a mixed manner because of 
availability and access of the tools in shared environ-
ments or in the transition of settings from the home to 
clinical visits where providers use and show the results 
or visualizations from a tool. Therefore, communica-
tions to mixed groups of users are important to con-
sider [109].

Figure 3 | Translational Path for AI into Clinical Care
NOTE: Depicted here are the key steps towards successful implementation of AI applications in 
HSOHC into clinical workfl ows, including engagement of diverse stakeholders, thoughtful application 
design and development, evaluation and validation, and diff usion and scaling of technologies.
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Practical Steps for Integration of New AI Tools into 
the U.S. Health System
To help overcome the challenges of AI tool develop-
ment and deployment, the authors of this discussion 
paper suggest considering a series of steps for taking 
a model from design to health system integration and 
highlight challenges specifi c to each step (see Figure 3).

The fi rst step on the translational path for AI into 
clinical care is to engage a wide range of stakeholders 
to ensure that the tools developed account for a wide 
range of perspectives, including patients and clinicians 
across the care continuum, and that the approach to 
building the technology does not “automate inequal-
ity” [110] or build “weapons of math destruction” [111].

The second step should be careful and thoughtful 
model design and development. During the model de-
sign step, AI developers often curate a dataset, secure 
initial research funding to develop a model, and build 
an interdisciplinary team with technical and clinical ex-
perts. A critical challenge during this stage is to develop 
a product that solves a real, relevant problem for end 
users. AI developers looking to translate their technol-
ogies into practice need to approach the technical task 
of training a model as part of a product development 
process. As described by Clayton Christensen, “when 
people fi nd themselves needing to get a job done, 
they essentially hire products to do that job for them” 
[112].For an AI model to be used in practice, the model 
must successfully complete a job for an end user, be 
it a patient or expert clinician. Unfortunately, this goal 
usually involves more than a straightforward modeling 
task, and models need to be conceptualized as a single 
component within a more complex system required to 
deliver value to users. Deeply understanding the “job 
to be done” requires close collaboration with end users 
and interdisciplinary collaboration [113]. In contrast, 
many AI and ML technologies are built without clinical 
collaborators and leverage readily available datasets to 
model a small set of outcomes [114,115]. Teams that 
successfully navigate the design and develop steps 
deeply understand user needs and have developed an 
AI technology potentially able to solve a problem.

The third step on the translational path is to evaluate 
and validate the new AI tool. During this step, AI devel-
opers often evaluate the clinical and economic utility of 
a model using retrospective, population-representative 
data. Models may then undergo temporal and external 
validation, and then be integrated into a care delivery 
setting to assess clinical and economic impact. Unfor-
tunately, many AI models undergo in silico experiments 

using retrospective data and do not progress further 
[116]. These experiments can provide preliminary data 
on the potential utility of a model, but do not provide 
evidence of realized impact. Prospective implementa-
tion in clinical care requires both clinical and techni-
cal integration of the AI model into routine operations. 
Technical integration requires sophisticated infrastruc-
ture that automates and monitors extraction, transfor-
mation, and load processes that ingest data from data 
sources and write model output into workfl ow systems 
[117]. Clinical integration requires the design and suc-
cessful implementation of clinical workfl ows for end 
users. There is a rich literature on innovation adoption 
in health care, and adoption barriers and facilitators 
specifi c to AI are emerging [118,119]. Teams that suc-
cessfully navigate the “evaluate and validate” steps are 
able to demonstrate the clinical and economic impact 
of an AI model within at least one setting.

The fourth and fi fth steps on the translational path 
are to diff use and scale. To date, no AI model has effi  -
ciently scaled across all health care settings. Most mod-
els have been validated within silos or single settings, 
and a small number of AI technologies have undergone 
peer-reviewed external validations [120]. Furthermore, 
while some AI developers externally validate the same 
model in multiple settings, other teams take a diff erent 
approach. For example, there is ongoing research into a 
generalizable approach to train site-specifi c Clostridium 
diffi  cile models (a model of within-hospital infection) by 
which each hospital has a local model [120,121]. Ex-
ternally validating and scaling a model across settings 
also introduces data quality challenges as institutional 
datasets are not interoperable and signifi cant eff ort is 
required to harmonize data across settings [122].

Equitable and Humanistic Deployment of 
Health-Related AI Tools: Legal and Ethical 
Considerations

Health-related AI tools designed for use outside hos-
pitals and clinics present special legal, regulatory, and 
ethical challenges.

Chief among the legal challenges are:
1. the safety of patients, consumers, and other 

populations whose well-being may depend on 
these systems; and 

2. concerns about accountability and liability for 
errors and injuries that will inevitably occur 
even if these tools deliver hoped-for benefi ts 
such as improving patient care and public 
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health, reducing health disparities, and help-
ing to control health care costs.

Major ethical challenges are:

1. ensuring privacy and other rights of persons 
whose data will be used or stored in these sys-
tems; 

2. ensuring ethical access to high-quality and in-
clusive (population representative) input data 
sets capable of producing accurate, generaliz-
able, and unbiased results; and 

3. ensuring ethical implementation of these 
tools in home care and other diverse settings.

Safety Oversight
The sheer diversity of AI tools discussed in this paper 
implies a nonuniform and, at times, incomplete land-
scape of safety oversight. Policymakers and the public 
often look to the FDA to ensure the safety of health-
related products, and the FDA is currently working to 
develop suitable frameworks for regulating software 
as a medical device [123], including AI/ML software 
[124]. For software intended for use outside traditional 
care settings, however, the FDA cannot by itself ensure 
safety. Involvement of state regulators, private sector 
institutional and professional bodies, as well as other 
state and federal consumer safety regulators such as 
the Federal Trade Commission and Consumer Product 
Safety Commission, will also be required. Coordina-
tion is crucial, however, and the FDA can use its infor-
mational powers to inform and engage the necessary 
dialogue and cooperation among concerned oversight 
bodies: state, federal, and nongovernmental. 

The 21st Century Cures Act of 2016 delineated types 
of health-related software that the FDA can and cannot 
regulate [125]. In 2017, the agency announced its Digi-
tal Health Innovation Action Plan [126] followed by the 
Digital Health Software Precertifi cation (Pre-Cert) Pro-
gram [127] and published fi nal or draft guidance docu-
ments covering various relevant software categories, 
including consumer grade general wellness devices 
such as wearable fi tness trackers [128], mobile medi-
cal applications [129], and clinical decision support 
software [130].

The software discussed in this paper raises special 
concerns when it comes to regulatory oversight. First, 
AI software intended for population and public health 
applications is not subject to FDA oversight, because 
it does not fi t within Congress’s defi nition of an FDA-

regulable device intended for use in diagnosing, treat-
ing, or preventing disease of individuals in a clinical 
setting [131]. Second, there is a potential for software 
designed for one intended use to be repurposed for 
new uses where its risk profi le is less understood. For 
example, consumer grade wearables and at-home 
monitoring devices, when marketed as general well-
ness devices, lie outside the FDA’s jurisdiction and do 
not receive the FDA’s safety oversight. These devices 
might be repurposed for medical uses by consumers 
or by developers of software applications. Repurpos-
ing raises diffi  cult questions about the FDA’s capacity 
to detect and regulate potential misuses of these de-
vices [132]. Consumers may not understand the limits 
of the FDA’s regulatory jurisdiction and assume that 
general wellness devices are regulated as medical de-
vices because they touch on health concerns.

Also pertinent to the home care setting, the FDA tried 
in 2017 to address “patient decision support” (PDS) 
software, where the user is a patient, family member, 
or other layperson (paid or unpaid caregivers) in the 
home care setting (as opposed to a medical profes-
sional in a clinic or hospital), but subsequently elimi-
nated this topic from its 2019 clinical decision support 
draft policy [130]. The regulatory framework for PDS 
software remains vague. Even when a trained medical 
professional uses clinical decision support software 
(whether in a clinic, hospital, or HSOHC), patient safety 
depends heavily on appropriate application of the soft-
ware. This is primarily a medical practice issue, rather 
than a medical product safety issue that the FDA can 
regulate. State agencies that license physicians, nurses, 
and home care agencies have a crucial role to play, as 
do private-sector institutional and professional bodies 
that oversee care in HSOHC. A singular focus on the 
FDA’s role as a potential software regulator distracts 
from the need for other regulatory bodies to engage 
with the challenge of ensuring proper oversight for 
health care workers applying AI/ML software inside 
and outside traditional clinical settings.

Accountability and Liability Issues
AI tools for public health raise accountability concerns 
for the agencies that rely on them, but appear less 
likely to generate tort liability, because of the diffi  culty 
of tracing individual injuries to the use of the software 
and because public health agencies often would apply 
such software to perform discretionary functions that 
enjoy sovereign immunity from tort lawsuits.
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Concerns about accountability and liability are great-
er for private-sector users, such as a health care insti-
tution applying AI population health tools or quality 
improvement software that recommends approaches 
that, while benefi cial on the whole, may result in inju-
ries to specifi c patients. It remains unclear what duties 
institutions have (either ethically or legally, as elabo-
rated in future tort suits) to inform patients about the 
objectives of population health software (for example, 
is the software programmed to reduce health care 
costs or to ration access to scarce facilities such as ICU 
beds) and how these objectives may aff ect individual 
patients’ care.

More generally, AI tools are relatively new, so there 
is not yet a well-developed body of case law with which 
to predict the tort causes of action that courts will rec-
ognize or the doctrines courts may apply when hearing 
those claims. Possible claims may include malpractice 
claims against physicians, nurses, or home care provid-
ers who rely on AI decision-support tools; direct suits 
against home care agencies and institutions for lax pol-
icies and supervision in using such systems; and suits 
against software developers including possible prod-
uct liability actions [133]. Scholars are actively engaged 
in exploring the liability landscape, but uncertainties 
will remain until courts resolve cases in this fi eld.

Data Privacy and Individual Consent
Many types of data that would be useful for training 
and ongoing operation of AI health systems, as well 
as the data such software may generate and store 
about individuals who use and rely on them, may fall 
outside the umbrella of HIPAA privacy protections. As 
discussed above, HIPAA privacy protections generally 
apply only to HIPAA-covered entities such as providers 
and payers for health care services. HIPAA’s coverage 
excludes many device and software developers, gov-
ernmental public health agencies (which may be gov-
erned by the Federal Privacy Act), and research institu-
tions that are not affi  liated with HIPAA-covered clinics 
or teaching hospitals. Data generated and used in 
HSOHC have spotty privacy protections, subject largely 
to a patchwork of state privacy laws. Data bearing on 
social determinants of health, behavioral factors, and 
environmental exposures are crucial in developing 
AI tools tailored to diverse subpopulations, yet such 
data often arise in non-HIPAA-covered environments 
with weak oversight of sharing and data uses, creat-
ing ethical challenges such as “surveillance capitalism” 
[134] and “automating inequality” [110]. The absence 

of a uniform fl oor of federal privacy protections for all 
types of health-relevant data in all settings (medical 
and nonmedical) is a factor that may hinder future de-
velopment of promising AI technologies in the U.S. and 
undermine public trust in the AI tools that do managed 
to be developed.

The lack of uniform privacy protections in the U.S. 
also encourages heavy reliance on de-identifi ed data 
by AI system developers, who are navigating the ethical 
challenges of data uses without clear regulatory pro-
tections and guidance. The reliance on de-identifi ed 
data, however, is a “second-best” solution that can 
diminish the accuracy and generalizability of AI tools 
available in the U.S. As to the concerns, noted earlier, 
about the risks of re-identifi cation of such data [135], 
there is scholarly debate about how real these risks 
actually are, with empirical studies indicating the risk 
is considerably lower than portrayed in the popular 
press [136]. On one hand, there is increased aware-
ness that de-identifi ed data sets can be combined to 
re-identify individuals, a process known as data aggre-
gation, suggesting that de-identifi cation may not be a 
complete solution to privacy concerns [137]. The pub-
lic is concerned about wide dissemination of their de-
identifi ed data. On the other hand, a serious—and less 
understood—concern relates to the quality and gener-
alizability of AI software developed using de-identifi ed 
data. The process of de-identifying data diminishes its 
usefulness and can hinder the creation of high-quality 
longitudinal data sets to support accurate results from 
AI health tools. Moreover, de-identifi cation strips away 
information that may be needed to audit data sets to 
ensure that they are inclusive and generalizable across 
all population subgroups. This can increase the dan-
ger of biased data sets that fail to produce accurate 
results for all racial, geographical, and gender-related 
subgroups [138]. Rather than rely on de-identifi cation 
as a weak proxy for privacy protection, the U.S. needs 
a strong framework of meaningful privacy protections 
that would allow the best available data to be used.

As AI systems move into health care settings, patients 
may not be aware when AI systems are being used to 
inform their care [139]. Whether and when informed 
consent is appropriate has not received adequate dis-
cussion [140]. On one hand, it is not standard practice 
for physicians to inform patients about every medical 
device or every software tool used in their care. On the 
other hand, some functions performed by AI software 
tools (such as deciding which therapy is best for the 
patient) may rise to a level of materiality where con-
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sent becomes appropriate. The bioethics community, 
health care accreditation organizations, and state med-
ical regulators need to engage with the challenge of de-
fi ning when, and under what circumstances, informed 
consent may be needed. A related topic is how future 
consent standards, designed for traditional clinic and 
hospital care settings, could be applied and enforced 
in HSOHC.

Ensuring Equitable Use of AI in Health
mHealth apps can address many of the current dis-
parities that result in unmet health care needs. For ex-
ample, in reference to mental health, the geographic 
distribution of licensed clinical psychologists across the 
U.S. is highly uneven, with large swaths of rural Amer-
ica signifi cantly underserved [141]. Offi  ce visits with 
psychiatrists and psychologists can be infrequent, diffi   
cult to schedule, and typically not available at moments 
of peak need. Mental health care is costly, and those 
with greatest need are often uninsured or otherwise 
unable to aff ord necessary care [142]. In contrast, ac-
cess to mental health care via mHealth apps is not lim-
ited by either geographic or temporal constraints. Fur-
thermore, the percentage of Americans who now own 
smartphones is 81 percent, up from just 35 percent in 
2011 [143]. Equally important, Black and Latinx adults 
have smartphones in shares similar to whites and are 
more likely than whites to use smartphones to access 
information about health conditions [144].

Nevertheless, equity in access to mHealth apps and 
technology will not happen without attention and plan-
ning. For example, the majority of telehealth visits dur-
ing the initial months of the COVID-19 pandemic were 
based on pre-existing provider/patient relationships 
[145]. This emphasis on continuity of care, rather than 
establishing new care relationships, suggests that in-
dividuals in medically underserved communities may 
not be benefi tting from the shift to digital home health. 
Likewise, individuals who are already underserved be-
cause of racial and other disparities may struggle to ac-
cess mHealth apps or other AI applications. mHealth 
apps that are powered by AI personal sensing can ad-
dress racial and other heath disparities but only if they 
are thoughtfully designed, developed, and distributed 
[146] with the intention of reducing biases and the 
digital divide. The development of these AI algorithms 
using personal sensing signals must include data from 
people from racial and ethnic minorities and other un-
derserved groups to account for diff erences in how 
these signals function in diff erent groups of people 

[147]. Algorithms must also be carefully designed and 
scrutinized to avoid reinforcing contemporary racial 
and other biases by instantiating them in these algo-
rithms [111]. Thoughtful infrastructure measurement, 
regulation, and accountability are necessary for the 
distribution and oversight of these mHealth apps.

Setting the Stage for Impactful AI Tools in 
HSOCH: Calls to Action

AI-powered digital health technology is a rapidly de-
veloping sector that is poised to signifi cantly alter the 
current landscape of health care delivery in the U.S., 
particularly as care extends beyond the walls of the 
hospital and clinic. As mHealth applications and per-
sonal health devices, including wearable technology, 
become increasingly ubiquitous, they enable large-
scale collection of detailed, continuous health data that 
processed through AI can support individual and pop-
ulation health. Illustrated by the examples discussed 
here, these tools signal a paradigm shift in the tradi-
tional notion of clinical point-of-care to one that meets 
people where they are to deliver care. However, wide-
spread adoption, secure implementation, and integra-
tion of these novel technologies into existing health 
care infrastructures pose major legal and ethical chal-
lenges. Concrete steps toward ensuring the success of 
AI health tools outside the hospital and clinic can in-
clude:

• Building broad regulatory oversight to pro-
mote patient safety by engaging organizations 
beyond the FDA, including other state, federal, 
and nongovernmental oversight bodies; 

• Reconsidering the defi nition and implications 
of informed consent in the context of big data, 
AI algorithm development, and patient privacy 
in HSOHC; 

• Developing policy initiatives that push for 
greater data interoperability and device inte-
gration standards with hospital clinical sys-
tems, so as to enhance stress-free provider 
and consumer/patient usability; 

• Recognizing and mitigating biases (racial, so-
cioeconomic) in both AI algorithms and access 
to personal health devices by including popu-
lation-representative data in AI development 
and increasing aff ordability and access (or in-
surance coverage) of personal health technol-
ogy, respectively; 
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• Advocating for insurance and health care pay-
ment reform that incentivizes adoption of AI 
tools into physicians’ workfl ow; and

• Establishing clarity in regard to liability for ap-
plications of health AI, with an eye to support-
ing rather than hindering innovation in this 
fi eld.

It is important to acknowledge that many of these 
steps necessitate fundamental changes in governmen-
tal oversight of health care, industry-hospital com-
munication, and the patient-provider relationship it-
self. However, approaching novel applications of AI in 
health with a critical but receptive mindset will enable 
the U.S. to lead in ushering in the next generation of 
health care innovation.
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