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Abstract

Background and Objective: For inferring a treatment effect from the difference between a treated and untreated group on a quantitative
outcome measured before and after treatment, current methods are analysis of covariance (ANCOVA) of the outcome with the baseline as
covariate, and analysis of variance (ANOVA) of change from baseline. This article compares both methods on power and bias, for random-
ized and nonrandomized studies.

Methods: The methods are compared by writing both as a regression model and as a repeated measures model, and are applied to a
nonrandomized study of preventing depression.

Results: In randomized studies both methods are unbiased, but ANCOVA has more power. If treatment assignment is based on the
baseline, only ANCOVA is unbiased. In nonrandomized studies with preexisting groups differing at baseline, the two methods cannot both
be unbiased, and may contradict each other. In the study of depression, ANCOVA suggests absence, but ANOVA of change suggests
presence, of a treatment effect. The methods differ because ANCOVA assumes absence of a baseline difference.

Conclusion: In randomized studies and studies with treatment assignment depending on the baseline, ANCOVA must be used. In non-
randomized studies of preexisting groups, ANOVA of change seems less biased than ANCOVA, but two control groups and two baseline
measurements are recommended. � 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The effect of a treatment or exposure on a quantitative
outcome, like blood pressure or total score on a clinical
questionnaire, is usually evaluated with a ‘‘pretest–posttest
control group design.’’ The outcome is measured before
(pretest, baseline) and after (posttest, outcome) treatment
in the treated group and in a control group. Usually, treat-
ment assignment is based on (1) randomization, or (2) base-
line values, or (3) preexisting communities. The treatment
effect is tested by either of two methods for comparing both
groups: (1) analysis of covariance (ANCOVA) with the
posttest as outcome and pretest as covariate, or (2) analysis
of variance (ANOVA) of the change from baseline, defined
as posttest minus pretest. Other methods, such as repeated
measures and regression analysis, are equivalent to one of
these two, as we will see.

There are several publications on the merits and dangers
of both methods [1–11], but most researchers use a single
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method. The aim of this article is to clarify the purposes
and limitations of both methods. This is done by writing
both methods as a regression model and as a repeated mea-
sures model and applying them to a nonrandomized study
of psychotherapy. In Section 2, a definition of treatment ef-
fect is given, and the role of randomization, control group,
and baseline are discussed. Section 3 applies both methods
to a nonrandomized study, showing that they may lead to
contradictory conclusions. In Section 4, the methods are
compared by two regression equations. It is shown which
method is best if treatment assignment is based on random-
ization (Section 5), the baseline (Section 6), or preexisting
groups (Section 7). The article ends with practical advice
for nonrandomized studies.

2. Treatment effect and the role of control group,
pretest, and randomization

Following [2,6,9], the effect of a treatment G (1 5 yes,
0 5 no) on an outcome Y for person i is defined as the dif-
ference Di between that person’s outcome under treatment
and under no treatment. The treatment effect for a population
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is the average D in the population of interest. Most treat-
ments are evaluated by a parallel groups design in which
half of all persons are treated (the experimental group,
G 5 1) and half are not (control group, G 5 0). The mean
posttest difference between the groups is used to estimate
D. In doing so, one assumes that, apart from sampling error,
the posttest mean of the control group is equal to the posttest
mean of the treated group that would have resulted if that
group had not been treated. This assumption is warranted
if treatment assignment is based on randomization. How-
ever, randomization is not always possible. Exposure studies
involve preexisting communities. Mass media interventions
can only be implemented at the community level. Treatment
contamination may occur if persons within the same school
or hospital are allocated to different groups.

But if randomization is impossible, then how can we ad-
just for a baseline group difference to estimate D unbias-
edly ? Usually, the outcome is observed before treatment
(pretest, X ) and after treatment (posttest, Y ). If the groups
differ significantly at pretest, this invalidates their posttest
difference as treatment effect estimator. The next step is ad-
justing the posttest difference such that D is estimated un-
biasedly. ANCOVA with treatment G as a factor, pretest
X as a covariate, and posttest Y as an outcome, is one at-
tempt at adjustment. ANOVA of change from baseline, with
G as a factor and change (Y 2 X ) as an outcome, is another
one. This article compares both methods in terms of power
and bias. To prevent misunderstanding, it must be empha-
sized that if the groups in a nonrandomized study do not
differ at pretest, this does not guarantee that the posttest dif-
ference unbiasedly estimates D. For instance, the groups
may differ in age, and this may lead to a posttest difference
even if the pretest means are equal and there is no treat-
ment. A more dramatic example is given in Section 7.
For an unbiased effect estimation in nonrandomized studies
‘‘strongly ignorable treatment assignment’’ [8] is needed.
Roughly, this means that the actual treatment assignment
of person i is independent of Di, and rules out selection
of the treatment by each person. Strongly ignorable treat-
ment assignment may hold after correcting for some cova-
riate, which is then called a ‘‘complete confounding factor’’
[11]. For an example, see Section 6. One other assumption
is needed to test D, that is, ‘‘stable unit-treatment value’’
[8], which comes down to independence between the Di

of person i and the treatment assigned to other persons,
and rules out treatment contamination.

3. Example: A nonrandomized study
of prevention of depression

Before going into the differences between ANCOVA and
ANOVA of change, both methods will be applied to a non-
randomized study of prevention of depression [12], which
serves as an example throughout this article. The study
aim was to evaluate the effectiveness of a psychotherapeutic
course in preventing depression among adolescents. The
treated group consisted of 88 students, 14–20 years old,
in the medium-sized Dutch town Nijmegen, the control
group of 92 students in the equally large neighboring town
Arnhem. Assessment of symptoms of depression and skills
was done before and after intervention. Persons were in-
cluded if their pretest Beck’s Depression Inventory (BDI)
score was between 10 and 25, reflecting mild to moderate
depression.

Of all 180 students, 32 dropped out before the posttest:
20 treated and 12 controls. Logistic regression of dropout
on treatment, age, gender, schooltype, and pretest of all out-
comes, showed dropout to depend on age and schooltype
only (all other P O .30). The present analysis is limited
to complete cases, postponing the inclusion of dropouts
until Section 4. So two analyses were run with SPSS: (1)
ANOVA of change (post- minus pretest) and (2) ANCOVA
with posttest as outcome and pretest as covariate. Both
analyses were repeated with age, gender, and schooltype
as covariates. Residual checks showed only mild violation
of normality and homogeneity of variance. No treatment
by pretest interaction was found. Figure 1 shows the result
for Symptoms, and plots for skills were similar.

The treated group had a higher pretest mean than the
control group (P 5 .000), and the group difference was
smaller and no longer significant at posttest (two-tailed
P 5 .10). ANOVA of change suggested a treatment effect,
because symptoms decreased more in the treated than in the
untreated group (effect estimate 20.46, SE 5 0.13, P 5

.000). In contrast, ANCOVA suggested absence of an effect
(estimate 20.13, SE 5 0.13, P 5 0.31). These results were
hardly affected either by adjusting for covariates or by
including dropouts (for details, see Section 4).

4. ANCOVA vs. ANOVA of change: A formal
comparison

Traditionally, ANCOVA is treated as an extension of
ANOVA [7,13]. Here, we present ANCOVA as a regression
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Fig. 1. Change of mean Symptoms score per group in the study of depres-

sion prevention.
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model, briefly mentioning the difference with classical AN-
COVA. In terms of regression analysis, ANCOVA assumes
that:

Yij 5 b0 1 b1Gij 1 b2Xij 1 eij ð1Þ

or equivalently,

�
Yij 2 b2Xij

�
5 b0 1 b1Gij 1 eij

where Yij is the posttest score of person i in group j (e.g.,
j 5 1 for control, j 5 2 for treated); Gij is a treatment indi-
cator (Gi1 5 0 for controls, Gi2 5 1 for treated); Xij is the
covariate, for example, the pretest score; and eij is normally
distributed with zero mean and constant variance. Classical
ANCOVA differs from (1) in that Gij is coded (21,11) and
Xij is ‘‘centered’’ by subtracting its mean [13,14]. This only
affects b0, called the ‘‘grand mean’’ in ANOVA.

In eq. (1), b1 is the group difference on Y adjusted for
differences on X. Practical use of ANCOVA requires esti-
mation of b2, which is a function of the within-group vari-
ances and correlation of pretest and posttest. ANCOVA
assumes linearity of the covariate effect and absence of co-
variate by group interaction. Both assumptions can be re-
laxed [14], but this article is limited to the classical
model to allow a comparison with ANOVA of change (Y 2

X ), which comes down to (1) with the assumption that
b2 5 1.

The real difference between ANCOVA and ANOVA of
change becomes clear, however, by writing both in terms
of repeated measures. ANOVA of change is equivalent to
testing the group by time interaction in the following model
(with g instead of b for regression weights to prevent
confusion with the ANCOVA model (1):

Yijt 5 g0 1 g1Gij 1 g2 Tit 1 g3GijTit 1 eijt ð2Þ

where Yijt is the observation of person i in group j at time
point t, G is the group (0 5 control, 1 5 treated), T is
the time point (0 5 pretest, 1 5 posttest), and eijt is a ran-
dom person by time effect. Filling in G and T shows that g0

is the pretest (population) mean of the control group, g1 is
the pretest mean difference between the groups, g2 is the
mean change in the control group, and g3 is the difference
in mean change between the groups. So testing absence of
group by time interaction, that is, of H0: g3 5 0 in eq. (2), is
equivalent to testing the H0 of no group effect on the
change (Y 2 X ). Repeated-measures ANOVA differs from
(2) only in that it uses (21,11) instead of (0,1) coding for
G and T.

It is much less known that ANCOVA is equivalent to
testing the group by time interaction g3 in the reduced
model (2), which is obtained by assuming that g1 5 0.
So ANCOVA assumes that there is no group difference at
pretest [15]. This assumption is warranted if treatment as-
signment is based on randomization or on the pretest X.
In both cases, there is only one group of persons, and so
there can be no group effect at pretest. Groups come into
existence after the pretest, by randomization or treatment
assignment based on X. For these two designs, ANCOVA
is known to be the best method [2,9,10].

Repeated-measures analysis of the psychotherapy exam-
ple in Section 3 was run with the SPSS procedure Mixed,
using model (2) with and without the pretest group effect
g1 Gij. These two models gave the same effect estimate,
SE and P-value as ANOVA of change and ANCOVA, re-
spectively, confirming that g3 in (2) is equivalent to b1 in
(1). An advantage of the repeated measures approach is that
it allows inclusion of persons with a missing posttest due to
dropout. In this example, including dropouts hardly
affected the results. In general, it may make a difference
(see Section 7).

In summary, in terms of regression (1), ANOVA of
change is a special case of ANCOVA in that it assumes
a slope b2 5 1 for regressing posttest Y on pretest X. In
terms of repeated measures (2), ANCOVA is a special case
of ANOVA of change in that it assumes a slope g1 5 0 for
regressing pretest X on group G. It is this difference that
makes ANCOVA superior in randomized studies and ques-
tionable in nonrandomized ones.

5. Randomized studies: Power

In a randomized study any pretest group difference is
due to sampling error, so any value of b2 in (1) gives the
same b1 (5 D) apart from sampling error, because b1 is
the posttest difference minus b2 3 the pretest difference.
ANOVA of the posttest lets b2 5 0, ANOVA of change
takes b2 5 1, and ANCOVA computes b2 such that the re-
sidual posttest variance is minimized, thereby minimizing
the standard error of the treatment effect estimate. So AN-
COVA gives the largest power and the smallest confidence
interval. If pretest and posttest have the same within-group
variance and rXY denotes the pretest–posttest correlation
within groups, then ANCOVA needs a sample size only
(1 1 rXY)/2 as large as that for ANOVA of change to have
the same standard error, for instance, only 75% if rXY 5

0.50.
In terms of repeated measures (2), the superiority of AN-

COVA in randomized studies is due to the fact that, because
there is no group effect at pretest, ANCOVA is more
parsimonious than ANOVA of change, which contains a
superfluous parameter g1.

In nonrandomized studies the group indicator G in (1)
correlates with the pretest X, thereby inflating the SE of
the ANCOVA estimator [14]. This explains why both
methods gave the same SE in Section 3. But in nonrandom-
ized studies bias, not power, is the issue.

6. Treatment assignment based on the pretest: Bias

Suppose that treatment assignment is based on the pre-
test X such that the groups have different pretest means.
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An example is randomized assignment where the probabil-
ity of assignment to the treated group increases with X be-
cause a high X indicates a strong need for treatment. An
extreme case is the ‘‘regression discontinuity design’’ [3],
where all persons with X above some cutoff are treated
and all persons below it are controls. In these cases the
methods cannot both be unbiased, because b1 in (1) is the
posttest difference minus b2 3 the pretest difference. So
b1 depends on b2 , which is 1 for ANOVA of change, but
less than 1 for ANCOVA unless posttest variance is much
larger than pretest variance. If pre- and posttest have the
same within-group variance, then b2 5 rXY , the within-
group correlation. With treatment assignment based on X,
ANOVA of change is biased due to regression to the mean
while ANCOVA is unbiased [1–3,10,11]. Stratified on X
there is random assignment, and so by including X as a
covariate the treatment effect D is estimated unbiasedly.
Compared with pure randomization power is lost, as G in
(1) correlates with X.

Regression to the mean may best be understood by tak-
ing the case of one group, with pretest and posttest having
the same variance. Regression of Y on X then simplifies
into: (predicted Y – mY) 5 rXY 3 (observed X – mX), where
rXY is the within-group correlation of X and Y, which is less
than 1. So the predicted posttest Y is closer to its mean than
the observed pretest X used as predictor [16], hence ‘‘re-
gression to the mean.’’ This effect may also be understood
by noting that if pretest and posttest have the same vari-
ance, then it can be shown mathematically that change
(Y 2 X ) correlates negatively with pretest X. In particular,
if the mean change is zero, then high pretest values are on
average followed by a decrease, and low pretest values are
on average followed by an increase.

That this is not just a mathematical tric, but a real-life
phenomenon, can be shown with a simple example. The
pretest X of N 5 20 persons on a symptoms checklist varies
from 1 (healthy) to 20 (unhealthy), each person having a dif-
ferent score, which gives a mean of 10.5 and SD of 5.9. A
clinician decides to give all persons with X O 10.5 treat-
ment and use all other persons as controls. Unknown to
the clinician, no treatment is given at all. Posttest Y is 1 year
later, giving again a mean of 10.5 and an SD of 5.9, and
a pre–post correlation of 0.52. Figure 2 plots Y against X.
Of all 10 persons allocated to treatment (those with X O
mean), 6 are below the line Y 5 X. Of all 10 controls (with
X ! mean), 8 are above the line Y 5 X. So Y is closer to the
mean than X for 14 of 20 persons and the posttest group
difference is only 4.6 against a pretest difference of 10.
ANOVA of change ignores regression to the mean and takes
the pretest difference too seriously by subtracting this
whole difference from the posttest difference, giving a treat-
ment effect of 25.4 (P 5 .03), where no treatment was
given at all. ANCOVA takes regression to the mean into ac-
count and subtracts only part of the pretest difference from
the posttest difference, leading to the correct conclusion of
no effect (P 5 0.60).
7. Treatment assigment of preexisting groups: Bias

In nonrandomized studies of preexisting groups these
groups often have different pretest means. So b1 in (1) de-
pends on b2 and ANOVA of change and ANCOVA cannot
both be unbiased and may give contradictory results, a phe-
nomenon known as Lord’s ANCOVA paradox [2,4,5]. The
difference between the methods can again be shown by the
case of no treatment so that D 5 0, and therefore, b1 5

0 must hold for (1) to be unbiased. For ANOVA of change
to be unbiased, filling in b2 5 1 in (1) shows that the post-
test group difference must equal the pretest difference,
apart from sampling error. In contrast, ANCOVA gives b2

! 1 and so b1 5 0 can hold only if the posttest group dif-
ference is smaller than the pretest difference. So, whereas
ANOVA of change predicts equal change, ANCOVA pre-
dicts convergence between groups if there is no treatment.

The reason for this behavior of ANCOVA is its assump-
tion of no group effect at pretest [g1 5 0 in (2)], which
leads to regression of both groups to a common mean. If
treatment assignment is based on randomization or on the
pretest, this assumption is valid, because at pretest no as-
signment has yet been made and there is only one group.
But in a nonrandomized study with preexisting groups it
is not obvious toward what population mean the individuals
of a group regress [11]. If the two groups are random sam-
ples from their populations, and if these populations have
different means, then regression of individual scores to
the mean of their own population will not change group
means apart from sampling error. As a result, the posttest
difference equals the pretest difference and ANOVA of
change rather than ANCOVA is unbiased, at least if each
population has a stable mean or if this mean changes in
the same way in both populations. If the two groups are
nonrandom samples, then both methods may be biased.
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Fig. 2. Regression to the mean effect in the regression discontinuity

design. If X O mean, then Y ! X (downward regression), and if X !
mean, then Y O X (upward regression), for the majority. Reference lines:

X 5 mean (10.5), Y 5 mean (10.5), Y 5 X.
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That ANCOVA is biased for preexisting groups, which
are random samples from their populations is shown in
Fig. 3. The sample of Fig. 2 is now the control group (solid
circles) and the experimental group is obtained by adding
110 to each X and Y in the control group (clear circles).
So the group difference is 10 at both time points. There
is no treatment in either group and so D 5 0. ANOVA of
change correctly estimates b1 to be zero (P 5 1.00), but
ANCOVA estimates b1 to be 4.8 (P 5 .03). Almost the
same result (effect 5 5.4, P 5 .03) is obtained by first
matching on X, which leads to the exclusion of all persons
with X ! 11 or X O 20 (vertical lines in Fig. 3), and then
applying ANOVA to the posttest Y or the change Y 2 X of
included persons only. Figure 3 shows the cause of this
bias. Matching leads to selection of the upper half of con-
trol group I and the lower half of experimental group II. At
posttest there is regression, not to a common mean as AN-
COVA assumes, but to the mean that would have been ob-
served without selection, that is, to 10.5 in the control
group and 20.5 in the experimental group. Of all 10 in-
cluded controls, 6 are below the Y 5 X line (downward re-
gression). Of all 10 included experimentals, 8 are above it
(upward regression). The opposite trends occur in the
excluded subgroups. ANCOVA is a mathematical method
of matching and shares its bias in nonrandomized studies.

In this example the bias is clear, because there is no
treatment and we have posttest data of all persons. In prac-
tice, there are no posttest data of excluded persons and AN-
OVA of change on the included (matched) persons suffers
from the same differential regression effect as ANCOVA
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Fig. 3. Bias introduced by matching on the pretest X due to regression to

different means, in a nonrandomized study of preexisting groups with

a fixed mean each. Reference lines: X 5 10.5 and X 5 20.5 (inclusion cri-

terion: 10 ! X ! 21) and Y 5 X. �: Included: X O 10, result: Y ! X;

excluded: X ! 10, result: Y O X, for a majority. B:Included: X ! 20,

result: Y O X; excluded: X O 20, result: Y ! X, for a majority.
on the total sample. This is a problem in nonrandomized
studies where the inclusion of persons is based on cutoffs
for the pretest, which act like a mild matching. But there
is a simple solution. If exclusion is based on the pretest
data, then posttest data of the excluded persons are ‘‘miss-
ing at random’’ [17]. This type of missingness can be han-
dled by repeated-measures analysis (2), including the
pretest data of excluded persons, which is not possible with
(1). In the present example repeated-measures analysis of
all 40 persons, using only the pretest data of excluded per-
sons, gave an effect estimate of 2.55, with a two-tailed P 5

.30, leading to the correct conclusion of no effect, while
ANCOVA of all data and ANOVA of change without
excluded persons led to the wrong conclusion.

What do these results imply for the example in Section
3? Given that the groups were recruited from different
towns and had different pretest means, ANOVA of change
seems more reasonable than ANCOVA, and one might con-
clude that there was a treatment effect. But there are two
complications. First, the BDI score was used both as inclu-
sion criterion (10 ! BDI ! 25) and as part of the outcome
Symptoms, implying some matching on the pretest. As
Fig. 3 shows, this may lead to differential regression if
the two populations (before exclusion based on BDI) have
different BDI means. This not only threatens the unbiased-
ness of ANCOVA, but also that of ANOVA of change when
applied to the included persons only. But because no data
are available from the excluded persons, no further analysis
is possible. A second complication is that the BDI score
was measured twice before the intervention period in the
control group. The first was used as inclusion criterion
and the second was 1 month later on the pretest of all out-
comes ([12], p. 142). Given that a BDI score O10 is well
above the population mean ([12], p. 72), it is likely that
regression to the mean had already occurred at pretest in
the control group. So the pretest difference in Fig. 1 may be
artificially large, casting doubt on the treatment effect. Un-
fortunately, no data from that first BDI measurement in the
control group are available.

8. Discussion

Based on literature, we saw that (1) the difference be-
tween ANCOVA and ANOVA of change is that between as-
suming absence or presence of a baseline group difference,
and (2) the choice between both methods depends on the
treatment assignment procedure. If treatment assignment
is by randomization, both methods are unbiased but AN-
COVA has more power. If treatment assignment is based
on the pretest, ANCOVA is unbiased but ANOVA of change
is not, due to regression to the mean. Both designs imply
treatment assignment after the pretest and so at pretest there
is one group, justifying the ANCOVA assumption of no
group effect at pretest. In contrast, if preexisting groups
are assigned to treatment, the unbiasedness of both methods
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depends on strong assumptions about trends in the absence
of treatment. The ANOVA of change assumption (equal
change) is more plausible than the ANCOVA assumption
(regression to a common mean), at least if each group is
a random sample from its population. The larger the pretest
difference between preexisting groups, the worse ANCOVA
is on bias (Section 7) and efficiency (Section 5). This bias
has to do with measurement error (intraindividual variabil-
ity) in the covariate, which leads to underestimation of b2 in
(1) and a greater discrepancy between ANCOVA and AN-
OVA of change. Statistical corrections for this underestima-
tion exist [7,18], but are beyond the present scope. Instead,
measurement error can be reduced by repeated pretesting
and taking a person’s average as covariate [19].

The present results lead to practical advice for non-
randomized studies, assuming that person and cluster ran-
domization are impossible. The design is enhanced by
having (1) more than one control group [20], and (2) more
than one pretest [7,11], and (3) more than one outcome, in-
cluding some that are known to be unaffected by treatment
[21]. Having more than one control group or pretest allows
estimation of group trend in the absence of treatment. Equal
change of two control groups provides support for ANOVA
of change, especially if the treated group is in-between both
control groups at pretest. Likewise, equal change between
repeated pretests of treated and control group suggests the
use of ANOVA of change rather than ANCOVA. Moreover,
a person’s average pretest is less subject to measurement er-
ror than a single pretest, leading to larger power for both
methods and less disagreement. Finally, including out-
comes known to be unaffected by treatment allows checks
on hidden bias in methods of analysis. For instance, finding
a treatment effect on intelligence in the study of depression
would cast doubt on the method of analysis. In nonrandom-
ized studies with one preexisting control group and one pre-
test, ANOVA of change may be better than ANCOVA, but
running both methods may be even better. If both methods
lead to the same conclusion, differing only in effect size,
this increases one’s confidence in that conclusion [3].

Additional problems, illustrated by the study of depres-
sion, are dropout and bias due to inclusion criteria in non-
randomized studies. In randomized and nonrandomized
studies, dropouts must be included by using proper methods
for missing data [17]. In nonrandomized studies, further
bias arises from the exclusion of persons based on pretest
data, as Fig. 3 showed. So the best analysis of preexisting
groups may be a repeated-measures analysis including all
available data of dropouts and of excluded persons.
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