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94 INTRODUCTION AND REVIEW

When the concept of a sampling distribution was introduced in Chapter One,
it was included in a list of seven topics common to all inferential statistical
methods: descriptive statistics, probability, éstimation, variability of statistics,
distributions of statistics, theoretical reference distributions, and hypothesis
testing. Since Chapter One, we have spent most of our time in descriptive
statistics, with coverage of one theoretical reference distribution (normal dis-
tributions, Chapter Five) and probability (Chapter Eight). Now we are ready
to cover three of these topics m this chapter: estimation, variability of statistics,
and distributions of statistics.'

Let’s use the final examination scores for the students taught with a new
(experimental) method as an example (originally presented as part of a two-
group study, Table 1.4). The final examination scores and the values of X and
$2 are given in Table 9.1.

A Brief Review

In addition to those seven topics in “Overview of Statistics,” the whole process
of drawing samples from populations is important to this chapter. Recall the

TABLE 9.1

Final Examination Scores for New
Teaching Method

92 86 83 88

85 87 78 81
91 92 75 87
99 94 .90 92
. X 1400
X = N6 " 87.5
fo _ NEXZ —~ (SX)?
NQ

_ (16)(123,072) — 1400° _ 9152

B 162 T 256

= 3575

A,

Periodically you should review these seven topics to maintain your perspective on statistics. If
you have forgotten what was discussed earlier about these topics, now is a good time for such
a review. Go to Section 1.8, read through the “Preview of Inferential Statistics,” then return
here.
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definitions of the following three concepts: population, sample, and random
sampling. A population is the target group for our inferences, some large group
of subjects, or an entire set of subjects, objects, measurements, or events all
of which share some common characteristic. The population for the experi-
mental teaching method would be any students who might take this intro-
ductory course in the near future if the new method were implemented. A
sample is some subgroup, subset, or part of the population and is the small
group of subjects used in the actual research. The sample here is obv1ously the
16 students from the experimental group or their scores on the final exami-
nation. Random sampling is a procedure in which selection of any one ob-
servation from a population is independent of the selection of any other ob-
servation from the same population. In this teachmg method example, random
sampling would not have been used. Students were accepted into the research
as they enrolled in the course, and the researcher “judged” that the sample
did not differ from that expected from random sampling. Remember that
random samplmg and random assignment of sub]ects to groups are different
processes.

Sampling: More Information

Samplmg is the process of selecting the subgroup of the population called the
sample. Random_sampling reduces the chances of systematic biases in the
sample if the correct population is sampled This means that there could be
bias in any one sample, but the average bias over a long run of samples is
zero. However, it is possible to draw a random sample and reach an incorrect
conclusion. Thls can occur when the sample is randomly selected from the
wrong population.

An example is the random sample taken by the Literary Digest in the
1936 Presidential election. From the results of a preelection poll, Landon was
predicted to win over Roosevelt. The Literary Digest had accurately predicted
the 1932 election, using the same process as used in 1936, but in 1936 the
prediction was wrong. What happened? We might be tempted to answer “sam-
pling variability or chance,” but there was actually a severe bias in the pop-
ulation sampled. The sample was randomly selected from subscribers to Lit-
erary Digest who had telephones. First, their subscribers may not have represented
the voting population. Second, people who had telephones in their home may
not have represented the voting population. In contrast with today, in 1936
only a small percentage of the population had telephones since telephones were
concentrated in urban areas and could be afforded only by the wealthy. In this
* case, random sampling did not guarantee freedom from bias because the wrong
population was sampled. As can be seen from this example, statistics used in
the inferential process are no better than the sampling. If the sampling is
inferior, then the statistics and the inferential process are inferior.

In most behaviora] science research, the difficulty of actually accomplish-
ing random sampling promotes use of volunteers or some other form of judg-
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ment sampling. Use of volunteers may introduce biases into the process, as
might any judgment sampling procedure. The researcher makes a judgment
that the sample is as though it were randomly selected from a given population,
and this judgment and its quality determine the quality of the inferences.
However they are taken, most samples are treated as if they are random.
Because of this assumption and because of the mathematical simplicity which

- random sampling brings to statistical procedures, random sampling is assumed
throughout the remainder of this text.

Another topic in the area of sampling is the issue of sampling with or
without replacement. Replacement refers to replacmg a subject or score in the
population after it has been sampled and used in the research, where it is
available to be sampled again. Sampling without replacement is an accurate
model for what behavioral scientists actually do, but sampling with replace-
ment is the model upon which most statistical procedures are based. Resolution
of this problem comes through the fact that for large populations, the prob-
abilities associated with the two methods of sampling are nearly equal. Thus,
there are no practical differences between sampling large populations with or
without replacement.

9.2 THREE DIFFERENT TYPES OF DISTRIBUTIONS

We sampled the population of students taught with the new method and
obtained the above sample which gave X = 87.5. What would happen if we
took another sample of N = 16 scores? Would we get the same scores as in
the first sample? It is not likely. Would we get the same X as in the first sample?
Not likely. What if we took a third sample? And a fourth? What if we took
infinitely many samples from our population, computed X for each sample,
and put these X’s in a distribution? We would get a distribution of X, called
a sampling distribution, like that illustrated in Figure 9.1, And X = 87.5
would be one value of X in this distribution.

Now, we never actually do this repeated sampling to obtain sampling
distributions; rather, we get needed information about sampling distributions
from mathematical statistics. This information comes to us as results from
mathematical calculations or from computer simulations called Monte Carlo
(from gambling simulations) studies. Still, it is helpful to conceive of sampling
distributions as if they were formed by repeatedly drawing samples of a given
size from a population, even though we don’t get our information in this way.
As you see in Figure 9.1, the population is a distribution of X’s, the sample
is a distribution of X’s, but the sampling distribution of X is a distribution of
X’s. In the coverage of populatlons, samples, and sampling distributions which
follows, keep Figure 9.1 in mind and refer to it often, looking for differences
and similarities in these three types of distributions.



FIGURE 9.1
Three different types
of distributions.
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9.3 POPULATION DISTRIBUTION

Populations Are Usually Large

The characteristics of populations are that they are usually large, unobtainable,
and hypothetical. Populations are large because behavioral science researchers
do want to generalize to some broadly defined group even though their sam-
pling process is restricted to some local, narrowly defined group. Remember,
it is the target of the inferences which defines the population. In our example,
the researcher wants to generalize to all students who might take the course
taught by the new method. This would include present and future students at
the university where the research was done and any other institution which
might adopt the new teaching method. Although populations are usually large,

" most statistical procedures idealize this largeness to assume that the population

is infinite. If there are infinitely many scores in the population, then infinitely
many samples of size N could be selected.

Populations Are Usually Unobtainable and Hypothetical

By the very fact that populations are usually large, they are usually unobtain-
able. This does not mean that the population is unknown: The population is
known in the sense that we define the characteristics for inclusion in the
population. However, usually not all subjects in the population can be iden-
tified, assigned a unique number for the purpose of random sampling, or
measured on the dependent variable. Additionally, not all subjects can be given
the conditions of the experiment, and so the population is hypothetical. These
three characteristics (large, unobtainable, and hypothetical) emphasize that the
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Population
distribution
Distribution of raw
scores X in the
population

main thrust of statistics is generalization from the known to the unknown.
Sample statistics are known, and population parameters are generally un-
known. For final examination scores for students taught by the new method,
the population mean is unknown.

Populations Described

Because population parameters are unknown, I have not given any formulas
for computing them. Rather, I merely defined symbols for parameters, such
as w and o2, I usually draw any picture of the population as an ambiguously
shaped, continuous curve such as in Figure 9.1, so you won’t get any false
impression about the population. Note that the population distribution is one
of raw scores X and has parameters as summary characteristics.

Oy

.

Populations and Inference

Any interest in the population distribution is in terms of the final generalization:
The researcher wants to be able to make some decisions about parameters of
this distribution or about the distribution itself. In the teaching method ex-
ample, we want to be able to generalize to all students who might take this
course taught by the new method. We are interested in current students and
future students, and we want to generalize the results from our sample to these
students and from our known value of X to the unknown value of u for the
population of these students. The first step in the decision process is to draw
a random sample of size N from the population.

9.4 SAMPLE DISTRIBUTION

Sample distribution
Distribution of raw
scores X in the sample

Samples Described

We now have N values of X (N raw scores); we have a sample. Use Figure
9.1 to compare the sample distribution with the population distribution. Note
that like the population, the sample distribution is a distribution of X. Also,
the sample has its summary characteristics, but these are not parameters; they
are the statistics X and 2. In further contrast to the population, the sample
distribution is discrete and is shown as a histogram. Also the sample differs
from the population in that the sample is known, obtainable, and real. We
can describe the shape of the sample distribution because we have it. For these
reasons, the distribution of the sample is in the region of Figure 9.1 labeled
“Real World.” In our example, we have the N = 16 final examination scores
with X = 87.5 and §? = 35.75.
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Samples and Inference

The distribution of these N scores is generally not of too much interest itself
since our focus is on the statistics. We are interested in the value of X or §2
or some other statistic computed from the N scores and our ability to infer
from the statistic to its corresponding parameter. In the example we are in-
terested in the value of X = 87.5 and in using it to make decisions about the
population mean u. We use the sampling distribution as the basis for our
inference from a statistic to a parametet.

9.5 SAMPLING DISTRIBUfION

Statistics Have Variability

One very important fact is that statistics have variability; that is, sample sta-
tistics may differ from sample to sample. Although the researcher actually
computes only one statistic, such as X for the final examination scores above,
you must realize that if the researcher were to draw another random sample
with N = 16 from the same population, the second X would most likely not
equal the X from the first sample. Another way of conceptualizing this im-
portant fact is to say that the statistic is a random variable which can take on
many potentially different values before the sample is actually drawn and the
statistic is computed. Thus, X = 87.5 is just one of many values which the
researcher could have obtained. The sample which gave X = 87.5 just hap-
pened to be selected.

Statistics Have Distributions

The conceptualization of any statistic as a random variable also helps us to
see that every statistic has a distribution. That is, any statistic that can be
computed from sample data could take on many potentially different values
which theoretically have a distribution. To students who first hear of this idea,
the notion of a statistic having a distribution seems a bit ridiculous. With great
doubt in their voices they say, “You mean that my single value of X = 87.5
has a distribution? Of course, when there is only a single value of a statistic
in hand, there is only one value and it is difficult to conceive of the distribution
from which the statistic has come. But the fact remains that there exists a
distribution of the potential values of the statistic. Before the sample is actually
drawn and the statistic computed, any number of values for the statistic po-
tentially exist. Hence, the actual value of X which is computed from the data
is only one value from potentially many values of X which could have been
obtained in this sampling procedure. The distribution of any statistic is called
the sampling distribution of that statistic. For example, the distribution of X
is called the sampling distribution of X. Similarly, every statistic which can be
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statistic

‘computed from the data has a distribution of all possible values of the statistic,

which is called the sampling distribution of that statistic.

Sampling Distributions Defined

Here is a more complete definition of a sampling distribution:

The sampling distribution of a statistic Is a distibution which is as if it had
been formed by drawing infinitely many samples of a given size N from some
population, computing the statistic on the scores for each sample, and
arranging these infinitely many statistics in a distribution.

Several important points should be noted:

1. The size of each sample is N, which is the number of scores in the sample
distribution. Do not confuse N with the number of statistics in the sampling
distribution.

2. Tt is as if all possible values of the statistic have been computed, so there
are infinitely many statistics in the sampling distribution.

3. All statistics in a sampling distribution are as if they have been computed
from samples of a common size N. ‘

4. The sampling distribution of any statistic is theoretical and is never actually
obtained by repeated sampling. This point is obvious since it is impossible
to draw infinitely many samples.

S. For each different statistic computed from every different size sample, thete
is a distinct sampling distribution.

6. The sampling distribution of any statistic is a probability distribution (a
theoretical relative-frequency distribution) from which we can compute
probabilities and make decisions. :

Sampling Distributions Described

Examine Figure 9.1 where the sampling distribution of X has been drawn
along with the population and sample distributions. Use this sampling distri-
bution as an example, and compare and contrast it to the other distributions.
Like the population distribution, the sampling distribution is theoretical, thus
not in the real world, and is drawn as a smooth, continuous curve; also, it
has parameters as summary characteristics. However, unlike the other two
distributions, this sampling distribution is a distribution of statistics, X’s, not
of raw scores. Another way of saying this is that the sampling distribution has

X as its random variable, rather than X.

Recall the sampling distribution of X which we built in Chapter Eight.
The population had only three scores (1, 2, and 3) with a large equal frequency



FIGURE 9.2
Population with three
values and sampling
dishibution of X,
N=2
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of each. We took all possible samples of size N = 2 and computed X on each.
Then we computed the probabilities for the distribution of X’s. This sampling
distribution of X is reproduced in Figure 9.2. This sampling distribution is
atypical of the sampling distribution of X for several reasons, First, the pop-
ulation has a very small number of possible values. Second, the sample size
N = 2 is small. This combination gives a sampling distribution of X which
is deceptively simple. It has a'small number of X values and is discrete. But it
does show several key features of the sampling distribution of X which would
be much more difficult to demonstrate with a larger population or sample size.
To start, the mean of the sampling distribution of X is the same as the mean of
the population u = 2. Then the variance of the sampling distribution of
X is 0% = 1/3, which is the same as 0?/N = (%)/2. Finally, even with the
limitations mentioned, a normal distribution would give a good approximation

to the shape of the sampling distribution of X,
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Shape of the
sampling
distribution of X
If Xis distributed
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also distributed
normally

Parameters of

the sampling _
distribution of X
Sampling distribution
of X has mean equal
fo u and variance
equal to o?/N

Sampling Distributions and Inference

Since we cannot actually form sampling dlstrnbutlons by repeated sampling,
we must turn to mathematical statistics to provide us with all the necessary
mformatlon about the distribution. We rely on the results of several theorems
to give us facts needed to completely specify a sampling distribution apart
from actual repeated sampling. The information usually desired for a sampling
distribution of a statistic includes the theoretical dlstrlbutlon which it ‘exactly
follows, or at least closely approximates, and the parameters of the sampling
distribution. Once we know these important characteristics, there is no need
fot actually obtaining the sampling distribution by repeated sampling because
we can use a tabled theoretical distribution such as the normal distribution to
make probability statements about the statistics.

For the sampling distribution of X, the facts prov1ded are that if we have
a random sample of N independent X’s and

Xis distributed normally with mean u and variance o?
then |
)_(-' is distributed normally with mean I and variance o*/N
Thus, if X is normally distributed, then X is also normally distributed with

the same mean g but with variance equal to the population variance divided
by the sample size, c*/N. We know the sampling distribution of X is fit by

~ the theoretical normal distribution and has parameters w and ¢?/N (mean and

varlance) Note that as N increases, the variance of the samplmg dlstnbutlon
of X, a¥N, decreases.

For a suimmary of these three types of dlstrlbutlons, examine Table 9.2.
Use a piece of paper to cover up the answers in the body of the table to qulz
yourself about this information.

‘I there were three or maore of the entries in the table which you did not
know, you should review the material in this section before proceeding to the
next topic.

Need for sdmpllng Distributions

We need samphng distributions to obtain probabilities about statistics for
decision making about parameters. In Chapter One, we used probability in
decision making about the fairness of a coin. In that problem, the use of fair
in connection with a coin was equivalent with saying that the probablllty of
a head was .5, or p = .5. We can consider p to be a parameter, and our
decision making about the fairness of the coin was decision making about p.
We counted the number of heads to get some indication of the fairness of the
coin, and we could consider the number of heads as the StatlSth So we asked
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TABLE 9.2 _ |
Summary of Population, Sthple, ond Sqmpllng Distributions

/ . Sampling

Population Ssample Distribution
Distribution Distribution of X

Random variable X X X

(what is in distribution) (raw score) (raw score) (statistic)

Summary characteristics m X m

' ) a? $ 4N

Size of distribution Large Small Large

Obtainable? . No . Yes No

Hypothetical or real? Hypothetical Real Hypothetical

Continubus or discrete? Continuous Discrete Continuous

Shape Generally Can describe Normal if
unknown population is

normal

What is the probability of getting 10 heads on 10 tosses of a coin if it is fair?
And we decided that the answer 1/1024 = .009766 made us doubt the premise
of the fair coin. We had to be able to get the probability of the obtained statistic
(number of heads) in otder to make a decision about the parameter (p = .5
or “coin is fair””). Reread the last sentence because this is the heart of the issue:
Without sampling distributions of statistics we could not find probabilities of
obtained statistics and could not make decisions about parameters.

Now shift your thinking to the sampling distribution of X. In using X to
make decisions about u, we need a probability from the sampling distribution
of X. Without the simpling distributioh of X, we could not obtain probabilities
associated with the obtained X and could not make decisions about the pa-
rameter u. We need probabilities of statistics which we can get only from
sampling distributions of statistics; The entire process of inferential statistics
is thus dependent on sampling distributions.

The logic of the need for sampling distributions can be summiarized as
follows:

1. The population and its parameters are unknown, yet we want to make
decisions about them. o

2. The sample and its statistics are known, and the statistics are estimates of
parameters. However, we cannot simply use a statistic as equal to a pa-
rameter and make our decision directly because statistics have variability.

3. We use the sampling distribution of a statistic to quantify the informatior
about the variability of the statistic into probability. Thus, we make our
decision indirectly, from the sample statistic through the sampling distri-
bution to the population parameter. For example, we calculate X fromi the
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sample, refer it to the sampling distribution of X for a prob_ébility statement,
and then use the probability statement to make a decision about the pop-
ulation mean p.

Sampling distributions serve as the bridge between the known and the un-
known—the statistic and the parameter. We use the sampling distribution of
the statistic to obtain a probability to make the inference from the obtained
statistic to the unobtainable parameter.

9.6 SAMPLING DISTRIBUTION OF X AS AN EXAMPLE

Any statistic which can be computed from the sample has 4 sampling distri-
butioti. Not only is there a sampling distribution of X, but also there is a
sampling distribution of §%, a sampling distribution of Xso, etc. Several other
sampling distributions are covered later, but now we want to use the sampling
distribution of X as an examiple.

.

Information about the Sampling Distribution of X

We already have considerable inforiation about the sampling distribuition of
X, but we wdnt to review what we know and add to this knowledge. Given
that the definition of a sampling distribution includes the concept of infinitely
maiy (all possible) samples, we know that

1. The mean of the sampling distribution of X is .

2. The variance of the sampling distribution of X is 03 = o?/N.

3. The shape of the sampling distribution of X is normal if the population is
normal in shape. '

Note that the mean of the sampling distribution of X is exactly equal to
the mean of the population. Many students iniss this point, so it bears repeating.
Let’s use as an example the sampling distribution of the mean of IQ scores
introduced in Research Example Nine. If the mean of the population is u =
100, then the mean of the sampling distribution of X is u = 100. Whatever
the value of g, even though it is usually unknown, the mean of the sampling
distribution of X has exactly the same value. The sampling distribution of X’s
calculated from IQ scores of infinitely many repeated samples of 59 deaf
children has the same mean as the population of 1Q scores of all deaf children,
whatever its value.

The staridard deviation of the sampling distribution of X is

__\/E—f__f’_
7XTNVN T VN



Standard error of
the mean

Standard deviation of
Xis o/VN

zscore for X
zisformed by _
subtracting u from X
and dividing by the
standard eror of X
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and it is given a special name, the standard error of the mean. Note that o3
is a standard deviation and is conceptually the same as other standard devia-
tions. For the IQ scores in Research Example Nine, the value of e is the square
root of 225, or o = 185. Since N = 59, the value of the standard error of the

. mean of these IQ scores is o = 15/V59 = 1.95.

It bears repeating that the information we have on the sampling distri-
bution of X depends on the concept of infinitely many samples. Anything less
than infinitely many samples, such as a computer sampling experiment would
have, leads to an approximation of the sampling distribution and only ap-
proximations of u, o*/N, and normality.

Let’s return to the teaching method example. Suppose we know somehow
that u = 84.75 and o> = 40 for the population. You have just obtained the
sample in Table 9.1 of N = 16 final examination scores with X = 87.5.
Assume that final examination scores are normally distributed in the popu-
lation. Now list everything you know about the sampling distribution of X
for this situation. Go back through this section, and be as specific as you can
about the information concerning the sampling distribution of X. Are you
finished? The mean of the sampling distribution of X would be u = 84.75;
the variance of the sampling distribution of X would be ¢¥/N = 40/16 = 2.5;
the shape of the sampling distribution of X would be normal; and the standard
error of the mean would be 0% = o/VN = V2.5 = 1.58.

Defining zx

‘When we need to compute probabilities about X’s, we use the above infor-

mation about the sampling distribution of X. Looking at the sampling distri-
bution of X, we realize that if the population is normal in shape, then the
sampling distribution of X is normal in shape. We can use Table C to look
up probabilities if we can change the sampling distribution of X from a normal
distribution with mean u and standard deviation a/V'N to the standard normal
distribution with mean of 0 and standard deviation of 1.

To compute probabilities in the sampling distribution of X, we need to
form a z score for X which is

z——)—f_u
T oVN

(9.1)

Remember that z doesn’t change the shape of the distribution, so we can use
a normal distribution for z% as we could for X. Notice that formula 9.1 takes
on the same form as z for raw scores given in formula 5.2: something minus
its mean, divided by its standard deviation. Here, we wish to get a z score for
X, so we subtract its mean p and divide by its standard deviation o/V'N. Even
though this formula is slightly more complicated than that for a z score given
in formula 5.2, the general form is the same. Using formula 9.1, we can convert
X to zx and then use Table C to obtain the desired probability.
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For Research Example Nine, u = 100, 0 = 15, N = 59, and X = 88.07.
The value of zx would be

z__)_(—u_88.07—1()0_ e
X7 @VN 15/V59 '

From what we know about z scores, this value of —6.11 tells us that X =
88.07 is more than 6 standard deviations of X (standard errors) below 100.
This value of X would be very unusual if the population had a mean of 100.

Is zx Practical?

From examining the formula for z%, we can see that we need to have numerical
values for p and o2 before we can obtain a numerical value for zx. If we are
dealing with a random variable that is a score on a standardized test, such as
1Q scores, GRE scores, etc., then we can easily use the formula for zx, since
 and a? are known in the form of norms for norming populations for stand-
ardized tests. Sometimes we want to test whether the population we sample
is the same as that on which norms were calculated (the norming population).
S0 we want to test whether our unknown g is the same as the norm value.
For example, is the mean (u) IQ of firefighters the same as g = 100 for the
entire population? Also, if previous research or some specific theory gives us
the values of u and o for a specific population, we can proceed to compute
zx. However, for most research in the behavioral sciences, the values of u and
o2 are never known since the dependent variables are not standardized tests.
Because of this, use of zx is restricted to hypothetical examples used in the
teaching of statistics or to one of the situations given here. In spite of its
restricted use, zx and probabilities computed from zx illustrate all the desired
principles of decision making.

Computing Probabilities

Suppose we have 1Q scores (u = 100, o = 15) for nine firefighters. If X =
105 for the N = 9 firefighters, what is p(X = 105)? Since

and
plzx = 1.00) = .1587  (from Table C)
then

p(X = 105) = .1587
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TABLE 9.3
Computation of zz and p(X = 87.5)

1. Obtain all values necessary to use formula 9.1: X = 875, u =8475, 0 = V40 = 6.32,
and N = 16.

2. Put these values in formula 9.1 and compute 23:
e o X B _ 875 - 8475
YT eVN T 63216

_ 275 275
6.3214 158
‘ = 1.74
3. Refer zx to Table C, restating the probability question about X into a probability question

about 23

p(X = 87.5) = pzx = 1.74) = 0409  from Table C

As a second example, use the teaching method example in Table 9.1.
Suppose that previous research told us that n o= 8475 a* = 40, and the
population is normal. Given these values of r and o2, we can compute z% for
X = 87.5 and find the probability of getting an X this large or larger. Table
9.3 shows these computations. Figure 9.3 shows the area in a normal distri-
bution for X’s larger than 87.5 (and for zx larger than 1.74).

These computations are based on the knowledge of u and o2 and on the
assumption that the raw scores X are normally distributed in the population.

FIGURE 9.3

Sampling distribution
ofX and zx

(v = 8475, o = 6.32):
N =16, a/VN = 158,
X =875, 25 = 174,
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For practice, find p(X = 89), using the values for  and o? given in the second
example. You should get

p(X = 89) = plzx = 2.69) = .0036

As N Increases, a?/N Decreases

Let’s return to the fact that o®/N, the variance of the sampling distribution of
X, decreases as N increases. We can now illustrate this fact by computing the
variance for X for various sized samples. Table 9.4 contains such computations
for sample sizes of 3, 5, and 15 and compates the values of o*/N for these
samples to the variance of the population.

As N increased from 3 to 15, 0%/N decreased from 75 to 15, when the
variance of the population was a2 = 225. As sample size increases, it becomes
more unlikely that we will obtain a sample which consists of nothing but
extreme values; so the values of X tend to cluster more closely around p,
which gives less variability. Figure 9.4 shows the distribution for the population
and the sampling distributions of X for N = 3, 5, and 15. For most statistics,
the variability of the statistic decreases as N increases, as we have seen here
for X.

9.7 MEANS OF SAMPLING DISTRIBUTIONS: UNBIASED ESTIMATES

Estimation
Calculation of an
approximate value of
Q parameter

Point estimate

Using a statistic as a
single value (point) to
estimate a parameter

Estimation is related to sampling distributions. Remember that estimation is
the calculation of an approximate value of a parameter. If we want some idea
of the value of the population mean, we can calculate the sample mean as an
estimate. When we use the sample mean as an estimate of the population mean,
X is called a point estimate. We realize that the sample mean is not equal to
the population mean, but it is an available indicator of the value of u, so we

TABLE 9.4

Computation of o2 = a2/N for Various
Sized Samples from a Normal Popula-
tion with u = 100 and o2 = 226

Variance
Single score g? =225
N=3 aN = 22513 = 75
N=35 a¥N = 225/5 = 45
N =15 YN = 225/15 = 15
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Distribution for X and X.

use X as our estimate. When we do not have a population parameter, we can
estimate it with the corresponding sample statistic.?

Parameters and Estimates

Table 9.5 lists population parameters that could be estimated by statistics
which we have covered so fat in the text. Your might be surprised by some
of the combinations, such as the sample median as an estimate of the population
mean. Since any statistic can be used to estimate any population parameter,
you need to know about the quality of the estimate, which statistics are good
estimates. For example, is X5 a good estimate of u? The ultimate question
concerns the quality of the statistic as an estimate of a given parameter: Is the
statistic a good estimate??

*Another type of estimation is called interval estimation. The goal of interval estimation is to
obtain an interval of potential values for a parameter. Rather than giving just X = 87.5 as our
best estimate of , we could calculate an interval of potential values of p. Integval estimation is
covered in Section 12,5,

3Pay attention to the last two entties in the right pair of columns of Table 9.5. These entries
give the variance and standard error of X and their estimates. Since N is a constant, only a2 or
o needs to be estimated by a corresponding statistic, $2 or £, and combined with Nor VN to
give the estimates. Any of the statistics using 52 or § have a problem in that they are not good
estimates, as we will see shortly,
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Unbiased

A statistic is an
unbiased estimate of
a parameter if the
meain of its sampling
distribution is equal to
the parameter

TABLE 9.5 R o
Parameéters and Statistics as Point Estimates

Pardmeter Statistic ‘ ~ Parameter Statistic
Population mode " Mode . I"op‘ul.ation range Rénge
Population median Xso o? $?
© X o $
u Xso Ui-x Sy
n Mode - o% = o2N SN
p r oy = O‘/X/ZTI ?/\/ITI
Unblased

Unfortunately, there are many definitions of good statistics as estimates. Let’s
concentrate on two definitions, one in this section and one in the next. The
first definition of a good estimate is one which is unbiased:

-

A s’roﬁéﬁc is an unbicrséd esfimee of a parameter if the mean of the sampling
distribution of the statistic is equal to the parameter.

Although we can make no statement about equality of the parameter and the
statistic.itself, unbiased tells us that the parameter and the mean of the sampling
distribution are equal. Another way of saying this is that on the average the
statistic will equal the parameter. This does nor say that the statistic equals
the parameter; rather, the mean of the statistic’s sampling distribution equals
the parameter,

X Is Unbiased

The sample mean X is an unbiased estimate of the population mean . Check
this last statement against the definition of unbiased given above: Is the mean
of the sampling distribution of the statistic X equal to the parametef u? Yes,
and this means that even though we cannot be guaranteed that our single
sampled value of X equals u, we know that X is a statistic whose average
value equals u. If we were to repeatedly draw samples of size N froni the same
population, some of the X’s would be too high and others would be too low,
but the average value of the X’s would be right on target. Unbiased means
that on the average, X is free from any systematic teridencies to be larger or
smaller than . One important additional comment is that X is an unbiased
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estimate of u regardless of the shape of the populatlon of raw scores. No
restrictions are put on the unbiasedness of X as an estimate of -

The property of unbiasedness helps us to correctly choose X as the best
estimate of g among those available. The sample median is unbiased as an
estimate of u only if the population is symmetric. If the populatlon is not
symmetric, then the mean of the sampling distribution of X5, is not equal to
p. Because of this, if you had reason to believe that your population was not
symmetric and wanted your statistic to be an unbiased estimate of , you
would choose X over Xs,. Little is known about the mode as an estimate, but
speculation would lead us to believe that the mode also would not be unbiased
if the population were not symmetric. Consideration of the property of un-
biasedness would lead us to choose X to estimate u, which fits with a com-
monsense notion that the sample mean should be the best estimate of the
population mean,

Bicléed ahd Unbiased Sample Varianceé

Unfortunately, common sense is not always correct, and we realize this when
we look at the sample variance §2 as an estimate of g%, We have used the
sample variance 52 for descriptive purposes as a measure of the vanabllrty of
the sample. But 52 has a serious drawback as an estimate of o: $2 is not
unbiased. Remember, for a statistic to be an unbiased estimate of a?; the
mean of the sampling dlstrlbutlon of the statistic must equal o, The mean

of the sampling distribution of 52

2
-1
Mean of sampling distribution of §* = 0—(—1\%1—) (9.2)

which is not exactly o2, On the average, § 52 is too small as an estimate of o
This is not to say that every value of $2 is smaller than o2, but that the averagc
of all possible values of §2 is smaller than 0'2 For example if N = 10 then
the mean of the sampling distribution of §2 is 0.902, so the bias in 2 is that
% is too small on the average.
Reconsider the sampling experiment in Chapter Eight. We sampled from
a population which had only three scores (1, 2, and 3), each with a large equal
frequency. We took all possible samples of N = 2. Now we want to compute
the sample variance $2 for each sample and arrange the $2 in a dlstrlbutlon
Figure 9.5 contains the possrble samples, the sample variances §2, and the
sampling distribution of 52, The mean of the samplmg distribution of $2 for
N = 2 from this small population is .33, which is 02(N — 1)/N = (0.67)(1)/2.
Thus 52 is too small on the average. As a sidelight, note that the sampling
drstrlbutlon of $% is positively skewed. See Box 9.1 for an explanation of why
% is too small on the average.
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FIGURE 9.5

Sampling distribution
of §2 from population
in Figure 9.2,

a? = ¥ = 67,

Unbiased sample
variance

52 is a measure of
variability in the
sample which is
formed by dividing
the sum of squares by
N — 1; the mean of
the sampling
distribution of 52 is o2
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Probability
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We correct the tendency to underestimate o2 by dividing (X — X)? by
N — 1 instead of N. This gives a new measure of sample variability,* the
unbiased sample variance s-.

(X - X)?
2 _ A T A7
N1 (9.3)
We take formula 9.3 as the definitional formula for s> and use the following
formula for computational purposes:

_ NZX? — (ZX)? 9.4
- NN -1) o4
We now have s* as an unbiased estimate of o, On the average, use of s*
as an estimate of o will be correct. However, since s2 is a statistic and has
variability, we cannot be certain how close any one sample statistic s> will be
to a?, but we can be confident that the mean of the sampling distribution of
s* is exactly equal to o?2. Figure 9.6 shows the sampling distribution of all
possible values of s* for the sampling experiment from the sample population

*One of my students says that the way he remembers s2 as unbiased and 52 as biased is that s2
is “unstarred and unbiased.”



As an estimate of the population variance o2, the sample variance $? is too small on the
average. Why? To see that the bias in 52 is toward $2 being too small, consider the “ideal”
estimate of population variance given as

(X — pP

N

This estimate of o? has no bias; that is, the average of the sampling distribution of
%(X — w)*N is 0% Unfortunately, we never know the value of u, so we cannot compute
2(X — w)?/N. Using X as an estimate of u gives §2 = S(X — X)¥N. Remember that X
minimizes the sum of squared deviations. That is, (X — X)? is as small as it can be and
smaller than (X — u)?. By this least-squares property of X, when we substitute X for p
in 2(X — w)*/N, we make it too small. The exact amount by which it is too small is shown
when we consider the mean of the numerator of the ideal estimate. The mean of the sampling
distribution of £(X — u)? can be shown to be

'

Mean of sampling distribution of (X — p)? = Ng?
When we substitute X for u, we get
Mean of sampling distribution of (X — X)?> = N o? — ¢2

That is, the numerator is too small by o2 Rewriting No? — ¢? as g*(N — 1) gives the
solution to the problem:

Mean of sampling distribution of £(X — X)2 = ¢*(N — 1)

Since Z(X — X)? has an average value of o3(N — 1), all we have to do is divide this
numerator by N — 1 instead of N, and we have an unbiased estimate of o2, or

— 3\2
Mean of sampling distribution of -2-—(%“_—%(—) = g2

We call s* = Z(X ~ X)(N — 1) the unbiased sample variance.
Another way of looking at the problem is to correct the bias in £2. All we need to do
is to multiply $2 by N/(N — 1), giving

@ = (2 N _EX-X? N  3(X-Xp
N-1" N N-1 N-1




290 cHaptEr 9

FIGURE 9.6 '
Sampling distribution of s2 from population in Flgure 92, 02 =% = 67,

with scores of 1, 2, and 3. The mean of the sampling distribution of s? is
exactly 2 = .67 because s? is unbiased. »

Computation of s? is very similar to computation of $2, except for the
denominator. Table 9.6 shows the computation of s> for the data of Table
9.1. Use of formula 9.4 gives s> = 38.13, which corrects for $2 = 35.75 being
too small. The followmg is 1mportant

The biased sample variance 52 is not used further in this text, but the unbiased
sample variance s° is used whenever an estimate of o2 is needed.

TABLE 9.6
Computation of s* for Data of Table 9.1

o _ NEX? - =Xp?

N(N - 1)
_ (16)(123,072) — 1400 _ 9152 9152
- (16)(16 — 1) " (16)(15) 240

= 38.13333 = 38.13 -
35.75 '

i




Biased standard
deviation

The square root of s2
gives the standard
deviation s, which is
biased
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TABLE 9.7
Unbiased Estimates of Parameters

Parameter Statistic Parameter “Statistic
n X a? s?
P r(ifp = 0) o*N s%IN
2
Ui’-x Sy.x

To form an unbiased estimate of o*/N, we substitute s for o2, yielding
$2/N. Whenever an estimate of o/N is needed, s*/N is used. Note that the
general principle in finding an unbiased estimate of a parameter is to find a
statistic whose sampling distribution has its mean equal to the parameter.
Table 9.7 shows parameters and their unbiased estimates.

Biased Standard Deviation

Neither ¥ nor s is an unbiased estimate of o. The reason is that the property
of unbiasedness is not retained for a nonlinear transformation such as square
root. So s = Vs is not an unbiased estimate of o. However, the bias is
appreciable only for small samples, and as N increases, the bias decreases. For
N = 2, the mean of the sampling distribution of s is 0.798 o, and for N =
10 it is 0.973 o.° For subsequent statistics which use s as an estimate of o,
the degree of bias is taken into account in the statistic and in its sampling
distribution.

The property of unbiasedness is a good place to emphasize Polya’s first
point in How to Solve It,° understanding the problem. There, he asks, “What
is the unknown?” In understanding the concept of unbiased estimators, the
key is the mean of the sampling distribution of a statistic. The mean of the
sampling distribution is the unknown. If we find that the mean of a statistic’s
sampling distribution is the parameter we desire to estimate, then the statistic
is unbiased. For example, in estimating p with X, the mean of X’s sampling
distribution is u, so X is unbiased. As we conclude this section on the property
of unbiasedness, check that you know the unknown for each of these statistics
in Table 9.8. For each parameter-statistic pair, give the mean of the statistic’s
sampling distribution and answer yes or no to the question, Is the statistic
unbiased? Cover up the answers in the right of the table so you can use them
to check your answers (all of which are available in this section). If you did
not get all the answers correct, review the information in this section. Any

$See Marascuilo and McSweeney, 1977, p. 81.

5See Section 1.7.
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TABLE 9.8 ‘
Quiz on Unbiased Estimates

Mean of
Desired Statistic’s Sampling
Parameter Statistic Distribution ] Unbiased?
" X I : Yes
u s a? No
o? %2 oXN ~ 1) ~ No
) N
o s? ol . Yes
o s (N = 10) 0.973 o No

statistic is an unbiased estimate of a desired parameter if the sampling distri-
bution of the statistic has its mean equal to the parameter.

This section has shown us the importance of sampling distributions in
connection with a part of inferential statistics, estimation. The mean of the
sampling distribution of a statistic tells us whether a statistic is unbiased as
an estimate of a parameter. Sampling distributions continue to play a crucial
role in inferential statistics as we examine the variance of sampling distributions
for another property of statistics as estimates. The next section on variance of
sampling distributions is optional, but Section 9.9 on the shape of sampling
distributions is #ot optional. Be sure you don’t miss it.

9.8 VARIABILITY OF SAMPLING DISTRIBUTIONS: EFFICIENCY* >

Efficiency Defined

As we have mentioned, the mean and variance of sampling distributions are
important to inferential statistics. We have seen how the variance of the sam-
pling distribution of X plays an important part in forming z%, as shown in
formula 9.1. Then zx is used in computing probabllltles for X to make decisions
about g. For most descriptive statistics, the variance of the sampling distri-
bution does not play such a direct role in the formation of the statistic used
in the decision making. However, variability of sampling distributions is im-
portant when we consider these statistics as estimates of parameters. Generally
speaking, the less variable the statistic, the better it is as an estimate. For
example, which X do you think is a better estimate of u, X from a sample of
size N = 2 ot X from a sample of size N = 100? Both X’s are unbiased, but
the X from the larger sample is less variable (6?/N = ¢*/100) than the X from

the smaller sample (6%/N = o*/2). This property is labeled efficiency, and the

X from N = 100 is more efficient than X from N = 2.



Efficlent i
Astatistic is efficient if
the variance of its
sampling distribution is
small
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Relative Efficiency and Examples
Efficiency as a property of estimates is a direct function of the variance of the
sampling distribution of the statistics. If the variance of the sampling distri-
bution of a statistic is small, the statistic is efficient. In practice, efficiency is
a relative property since we compare the efficiency of two different estimates.
So if we have two statistics which could be chosen as an estimate of a parameter,
We want to compare the variance of their sampling distributions and choose
the statistic with the smallest variance.
For example, for normal populations, both X and X;, are unbiased es-
timates of u. Since we cannot distinguish between these two statistics for this

. situation on the basis of unbiasedness, we turn to the property of efficiericy.

The variance of the sampling distribution of the sample mean is less than that
of the sample median, so X is more efficient than X, as an estimate of u. For
normal populations we would choose X as the best estimate of u because it
is both unbiased and efficient. o , ,

When considering measures of variability, we would not use the range
because it is more variable than s2 or 5. Other words used to describe efficiency
are stability and reliability, so the sample range is said to be inefficient, unstable,
and unreliable, ‘

Having discussed the mean and variance of sampling distributions, we
now turn to the shape of the sampling distribution of X and the Central Limit
Theorem.

9.9 SHAPE OF SAMPLING DISTRIBUTIONS: CENTRAL LIMIT THEOREM

In Chapter One we discussed theoretical reference distributions used to ap-
proximate sampling distributions of statistics, We mentioned that e rely on
certain theorems and the results of research that tell us the shape of any given
sampling distribution, which can often be closely approximated by a known
theoretical distribution. This section covers the shape of the sampling distri-
bution of X. Shapes of other sampling distributions are discussed throughout
the remainder of the text.

Central Limit Theorem Defined

Under the assumption that the population is normally distributed, we know
that the sampling distribution of X is also normally distributed. However, riost
researchers do not know the actual shape of the sampled population; or if
they do know the shape, it is not normal. So most researchers would not be
able to assert that the population sampled was normal. This position represents
a serious dilemma since what we know so far indicates that X is normally
distributed only if X is normally distributed, and we need to be able to compute
probabilities for X. Remember that we want to use X to make decisions about
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Central Limit
Theorem

The theorem which
states that the
sampling distrioution
of X approaches a
normal shape as N
approaches infinity

u, and we need probabilities from the sampling distribution of X to make
these decisions. The researcher who is in'this position is rescued from the
dilernrna by one of the most amazing theorems in all mathematics, the Central
Limit Theorem:

If the researcher is sampling independently from a population which has mean
4 and variance o2, then as sample size N approaches infinity, the: sampling
distribution of the sample mean X approaches normality without regard to the
shape of the sampled population. '

Central Limit Theorem Applied: Only X

The Central Limit Theoremi says that as N approaches infinity, the distribution
of X will approach a normal distribution with mean p and variance a?/N.
Another way to state this theorem is that the larger the sample size, the more
closely the sampling distribution of X will be approximated by the normal
distribution. At this point, many students say, “The theorem sounds great, but
we don’t have infinitely many rats for our experiment. How does the theorem
help for realistic sample sizes?” As long as the population is not very unusual
in shape, the approximation is quite good for even moderate sample sizes such
as those used by behavioral scientists. For samples of éven 25 or 30 from most
populations, the sampling distribution of X approaches 4 normal shape. Figure
9.7 shows several populations and the sampling distribution of X for N = 2
and N = 30. , ] L

" The sampling distribution of X approaches normality fairly rapidly as N
increases. So for many applied situations, we can proceed to use the norinal
distribution to compute probabilities for the sampling distribution of X, even
though we cannot say that the population is normally distributed. Please note
that the Central Limit Theorem applies only to X. Other statistics have other
theorems which tell us the shape of their sampling distributions, but the Central
Limit Theorem does not apply to them.

910 SUMMARY AND COMPUTATION
Ssummary '

The important concept of sampling distributions includes three general types
of distributions. We randomly sample scores from a population distribution
to get our sample distribution. The sampling distribution of any statistic is as
if it had been formed by repeatedly drawing such samples of a given siz,
computing the statistic, and arranging the statistics in a distribution. Decision
making about parameters involves the use of the probability of the statistic
from the sampling distribution. ‘ : “ :
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Central Limit Theorem
effect for small
samples: sampling
distrioution of X.
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" Exponential -

If the X’s are independent and X is distributed normally with mean of u
and variance of o2, then X is distributed normally with mean of p and variance
of o*/N. Probabllmes for X are obtained from the standard normal dlstrlbu-
tion by transforming X to zx.

An unbiased estimate has a sampling distribution with its mean equal to
the parameter estimated. Examples of unbiased estimators are X and s% An
efficient estimate has a samphng distribution with small variance, and for a
normal population X and s* are efficient relative to other estimates of 4 and
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EXERCISES
Secrion(s)

9.1

v'[v

9.2
to
9.5

. The Central Limit Theorem lets us use a normal distribution to approximate
the distribution of X even when the population shape is unknown.

Key terms introduced in this chapter are

Population distribution Standard error of the mean

Sample distribution Unbiased

Sampling distribution Relatively efficient*

a*IN - Central Limit Theorem
‘ Compuiaﬂon

Since much of this chapter is conceptually based, there is very little compu-

~ tation, none of which is new. We computed zx which used the basic operations

learned in Chapter Five, so we have nothing new to add. None of the exercises
which follow need to be done on the computer, so use them to help understand
the important concepts covered above.

1.
J7

S

3.

A university researcher randomly samples 10 subjects from a list of 175
volunteers from introductory psychology. Is the population actually sam-
pled “all students in introductory psychology this semester?”” Why or why
not? ' !

. How could judgment sampling justify the population stated in exercise

1? Could judgment sampling stretch the population to all college students
in the United States enrolied in a similar course? Why or why not?

Without referring to Figure 9.1 or Table 6.2, compare the population
distribution, the sample distribution, and the sampling distribution of X
on the following: -

a. Random variable in the distribution

b. Shape of the distribution

¢. Mean of the distribution

d. Variance of the distribution

e. Reality of obtaining the distribution

. Describe each of the following populations in terms of large {or small),

unobtainable (or obtainable), and hypothetlcal (or real)

a. Whooping cranes

b. All college students taking any statistics course in the next 3 yr
¢. All rats deprived of food for 24 h '

d. All professional basketball players



9.6 .

9.7 10.

11.
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Suppose you computed the average IQ of the students in your statistics
class and found it to be X = 115. IfIQ is normally distributed with mean
of 100 and variance of 225, and there are 25 students in your class, what
is the probability of getting 115 or larger for the value of X?

. If N = 100, how does the probability in exercise S change? For N = 92

If this population is not normal, how would the Central Limit Theorem
influence our ability to do these computations?

Suppose you work in a car manufacturing plant where the average number
of defects per car is 16 with a standard deviation of 3. If your quality
control program samples four cars which have X = 18 defects, what is
the probability of getting an X greater than or equal to 18? State the
assumptions you made in order to calculate this probability. Would you
act to make changes in the assembly line? ‘

- If your sample in exercise 7 used nine cars which had ¥ = 18 defects,

what is the probability of getting an X greater than or equal to 182 Would
you act to make changes in the assembly line? Explain the difference
between your answer to this question and exercise 7, given that X = 18
in both cases.

. Suppose a psychological clinic claims that its patients treated for anxiety

are “normal” on this mood state after 4 weeks of therapy. The norms for
a standard anxiety test are 25 for the mean and 5 for the standard de-
viation. If you randomly sample N = 16 patients and obtain an anxiety
score for each, yielding X = 27.8, what is the probability of getting an
X this large or larger?

Is unbiased the only way to define a good estimate? Are all statistics
unbiased? Do all statistics have a sampling distribution? Does the Central
Limit Theorem apply to all statistics?

True or False? An unbiased statistic is equal to the parameter estimated.

Defend your answer. L





