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Series Editor’s Introduction

Matrix algebra is an important tool in mathematical social science
and is, in addition, the vocabulary used in teaching elementary and
advanced statistics. More and more it is anticipated that social science
practitioners have at least a rudimentary understanding of it. Nonethe-
less, social science majors and graduate students often fail to go far
enough in mathematics to get a thorough grounding in the topic. For
this reason, we are delighted to publish Matrix Algebra by Krishnan
Namboodiri.

The reader will find Namboodiri’s volume eminently readable. It
begins with the most basic definitions, which serve as an illuminating yet
relatively complete introduction, even for those who have no previous
acquaintance with the topic. Chapter 2 explains elementary manipula-
tions of matrices such as matrix muitiplication and inversion. Chapter 3
introduces the concept of linear dependence of rows or columns of a
matrix, a concept that is useful when discussing systems of linear
equations. Chapter 4 is concerned with the slightly more difficult
concepts of eigenvalues and eigenvectors. In each case the ideas are
amply illustrated with fully worked out examples.

For anyone wishing to achieve a thorough understanding of both
mathematical and statistical analysis of the social sciences, matrix
algebra is an essential ingredient. Its smooth presentation makes
Matrix Algebra by Namboodiri the place to start.

~Richard G. Niemi
Series Co-Editor




MATRIX ALGEBRA
An Introduction

KRISHNAN NAMBOODIRI
University of North Carolina

1. INTRODUCTION
Rectangular Arrays

We come across rectangular arrangements of numbers frequently in
our everyday readings. Table 1.1 contains an example. In this case, the
numbers are the results of the 1982 U.S, Senior Open Golf Champion-
ship. The numbers in a row represent the scores of a particular player,
and those in a column represent the scores in a particular round. Thus,
the position (row and column) of a score in the arrangement identifies
the player to whom and the round to which the score applies.

Another example is the weather report we usually find in daily
newspapers (see Table 1.2). In this case, each row represents a city, and
the columns represent the highest and lowest temperature for a
particular day.

‘We encounter such arrangements in our research work, ¢.g., responses
gathered in an interview survey arranged in the form shown below:

interview Question

Respondent 1 2 3 4 ...

PR T
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Examples from elementary mathematics include detached coefficients
and constant terms from a system of equations such as

2x+ 3x

-1
3

il

x -2y
arranged in the following form:

Coefficient of

Equation X ¥ Constant Term
i 2 3 -1
2 1 -2 3
And so on.

We now define a “matrix™ as a rectangular array of numbers. Qur
intention is to treat such arrays as single objects. To explicitly indicate
this intention, we enclose the array within brackets as shown in 1.1

below:

73 72 74

62 65 25 f1.1]
Instead of brackets, one may use parentheses or double ruling on both
sides as shown in (1.2)

1 2 3

4 5 6 10 11 12

7 8 9 H;s 14 15 H [1.2]
(i) (ii)

The numbers that constitute a matrix are called the elements entries
of the matrix, We refer to the elements by their row and column
numbers, in that order. Thus, the (2,1) element of the matrix in 1.2 (i) is
4; the (2,3) element of the matrix in 1.2 (i} is 15; and so on. Obviously, if
a matrix has n rows and m columns, it has altogether nm elements.

A matrix that has #» rows and m columns is said to be of ordernby m
or n X m. Thus, the matrix in 1.2 (i} is of order 3by 3 or 3X 3; the one in
1.2(ii) is of order 2 by 3 or 2 X 3. In giving the order of a matrix, we always
mention the number of rows first, followed by the number of columns.




TABLE 1.1
Results of the 1982 U.S. Senior Open Golf Championship

Rounds
Player 7 2 3 4
Miller Barber 72 74 " 65
Gene Littler 73 69 76 68
Don Stokes 75 69 72 70
Bob Goalby 72 71 74 12
Gay Brewer 73 70 78 73

Arnold Paimer 73 71 73 74

We now know that a matrix is a rectangular array of numbers; we
have introduced the concept order of a matrix and the convention that
when we give the order of a matrix we always mention the number of
rows first. If we stop here, we could not claim that matrices are
interesting or useful. What makes them useful and interesting is that we
can “make them work™for us, under a specific set of rules of operations.

Indeveloping the rules for matrix operations, it is convenient to use a
single letter as a label for a matrix and also to use letters to designate its
elements so that we may refer to matrices with arbitrary elements. To
distinguish between the letter designations of matrices and those of their
clements, we shall follow the convention of using boldface capital letters
for matrices, and lower-case, ordinary letters for their elements, An

example is
A - a b
" le 4

Here we use the label A (a single letter in boldface) for the 2 X 2 matrix
whose elements are a, b, ¢, and 4. (The equality sign is used here to
indicate the label.) '

Other ways of using letter designations for the elements of a matrix
are shown in 1.3 (i), (ii}, and (iii).

a1 ar a b g au @iz A
by by b a4 by a1 dxm ap
Ci C2 3 as bs ¢ asy ds dis

I (i) (i) [1.3]
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TABLE 1.2
Weather Report for Selected Cities on a Particular Day

Temperature
City High Low
Amsterdam 79 68
Athens 82 64
Bangkok 79 77
Barbados a1 79
Beirut 77 &8
Belgrade 74 55
Vancouver 75 56

“I'he most common notation is 1.3 (iii), in which we use a single letter
with double subscripts to designate the elements, the first subscript
designating the row, and the second one the column, in which the
elements appear.

- Sometimes it is convenient to use letters for subscripts also, as shown
in 1.4,

ay iz v Tm
o ap .- m
gy Gp - ny {1.4]

This matrix has n rows and m columns; a; denotes its typical element.
Since the exact numerical values of # and m are not specified, it is not
possible to write the matrix in full. So we use dots (ellipses), to indicate
the elements not written. Thus, in the first row the dots (ellipses} after
a2 and before a,,, indicate that elements between them are not written.
Similarly, the dots (ellipses) in column 1 indicate that elements between
az1 and a,,; are not written. A notation closely resembling the one used in
1.4 is shown in 1.5

Ay e [1.5]
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It is often informative to write

Anxrn = ((a,_,))

indicating that the matrix A with n rows and m columns has typical
element a;. Thus B,,; = ((#;)) means.

B - bu bz b
bu b b

Matrices containing only one row are often called row vectors, and,
similarly, matrices containing only one column are cailled column

vectors. Thusfa b c¢}is arow vector and [ Z ] is a column vector.
We shall return to vectors later.
Equality of Matrices

Two matrices are equal if (a) they both have the same number of rows
and the same number of columns, and (b) their corresponding elements
are equal. In symbols, if

A = (@) and By = ((by))

then A=B,i.e, Aand Bareequalifn=rand m=sand a;=b;fori=
L2,... . 0(=r;i=12,..., m(=s).

e ¢ B=1' 7
-343.11 —y4

- then A = B implies that x = 2 and y = 3. Similarly, if M = B where

uo[? 03 PN
lg 1t 3] P72 1 o3
thenp=4and g=2. If

N_13 dw_’abc
le ] = “ld e 1

then N cannot be equal to W because they do not have the same number
of columns.
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Addition and Subtraction of Matrices -

We define addition (subtraction) of matrices in terms of addition
(subtraction) of their corresponding elements. The sum of two n by m
matrices is an n by m matrix whose elements are the sum of the
corresponding elements of the original matrices. In symbols, if A, =
((a;)} and B,.x.,,, = ((by), then their sum, denoted by A + B, is ((a; + b)).

Thus, if
. di a by b2
A= B =
[ @ an ] [ by bn ]

then their sum is

A+B - {(an + by (a2 + b)
(a1 + b21) (a2 + bxn)

By way of numerical examples
i 2 R 5 61  J(+5) @+6} _ 6 8
3 4 7 8] 3+7) (4+8) Tt 12
1+V3 01 ., [V3 o] _ [t o
-1 1-43 1 V31 Lo 1

0.1 02 03 1.1 22 33

P2 3
4 5 6 + 04 035 06 = 44 35 66
7 &8 9 67 08 09 7.7 B8 99

Note that we shall add two matrices only if they are of the same order.
Addition is not defined for matrices of different orders. There is no
question of adding a 3 X 4 matrix to a 4 X 5 matrix.

The definition of subtraction parallels the definition of addition.

AnXm - BnXm = ((ay - by))

Thaus, if




AL A

I3

then

A po|2-1 0-CD 1- 0
T Lo0-1 1 0 -1-¢D

Multiplication by a Scalar

Let & be an ordinary number (scalar) and A = {(a;)) be any matrix. Then
kA = ((kay)). That is, to multiply a matrix by an ordinary number
(scalar), we multiply each element of the matrix by the number.

It is easy to verify that multiplication of a matrix by a positive integer
is the same as repeated addition. Thus, 2Q = Q + Q, where Q is any
matrix. Also, it is easy to see that

BnXm - AnXm = BnXm + (“I)Anx’m

IfA= 23 twi A-A-I-AA‘“4 6 d if A= 31 d
=l aptrice A= —zs,anx—o__ian

0 1 0 -1
B:[l 0],’then(-—1)timesBis[l 0],zmdA«B=A+(—l)B=

3 0-17 [3 o
0 <tf -1 of -1 a1t
Vectors

Obviously all that has been said so far about matrices apply to
vectors, since vectors, as we mentioned earlier, are special kinds of
matrices (having only a single column or a single row). Nonetheless, we
shall repeat some of the main points with special reference to vectors.
We shall denote a vector by a boldface, lower-case letter, and refer to a
vector consisting of » elements by the term n-tuple,

Equality of two vectors. Two column vectors are said to be equal if
they have the same number of elements and their corresponding
elements are equal. Similarly, two row vectors are said to be equal if they
have the same number of elements and their corresponding elements are
equal. (In some books the term component is used instead of element. }

A row vector is never equal to a column vector. Equality of two
vectors a and b is denoted bya= b,

Addition of vectors. The sum of two column vectors with the same
number of elements (or of two row vectors with the same number of
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elements) is formed by adding the corresponding elements of the given
vectors.

Addition of a row vector and a column vector is not defined. The sum
of two vectors a and b is denoted by a + b. By way of illustration,

9 2 i1
@ 13} + 1} =] 4%
4 0 4

@ [ 4 -11+3 0 8]=[4 4 71,

(3) Thesumofe=[1 2 3 4jandd=[3 5 6]isnot defined,
since ¢ and d do not have the same number of elements;

2
(4) Thesumofa={l 2]andb= [ 1] is not defined because ais a

row vector, while b is a column vector.

Multiplication by a scalar. Let a be a column or row vector and & an
ordinary number. Then the product ka is defined as the vector whose
elements are k times the corresponding elements of a.

VECTOR REPRESENTATION OF A
SYSTEM OF LINEAR EQUATIONS

The vector operations defined above can be used t0 eXpress a system
of linear equations compactly as a single vector equation. Consider, for
example, the following two equations in two unknowns:

2x+3y=5
Ix+2y=35

1 et us form the following three column vectors, corresponding to the
coefficients of x, those of y, and the constant terms:

RoISH R

Now the given set of equations can be expressed compactly as

xa+ ybh=¢
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To check this out, we note that the vector equation just written is

equivalent to
2 . 31 |5
131 77 2] T Ls

which, by virtue of the definition of scalar multiplication, becomes

G126

which, in turn, by virtue of the definition of addition is the same as

@x+39] [5
Gx+2n] |5

and now the definition of equality gives

1l
th Ln

2x + 3y
3x + 2y
INNER PRODUCTS

Leta’be arow vector and b a column vector, both being n-tuples, that
is, vectors having n elements:

r

a" = [a...a)]

b

=2
1]

b,
‘Then the product a’ times b is defined to be the scalar b1+ . . . +a,b,,. This
product is denoted by a’h or ab or a’*b. It is sometimes called the inner
product of a’ and b. To give an example,

2
{1 2 4] [4} = (D2 + @)H) + (4)(3) = 22
3
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Note that the inner product is defined for the particular circumstance in
which the first (i.¢., the left) vector is a row vector and the second (i.e.,
the right) vector is.a column vector, both having the same number of
elements.

By way of application, we shall now show that quantities such as the
arithmetic mean of a set of numbers can be expressed as inner products.
Suppose we are given the heights of five children in a day-care center:

Child number 1 2 3 4 5
Height 30 32 31 33 35

. The sum of the heights can be expressed as the inner product

30
32
(r1r o113
33
35

and the average height as the inner product

30
32
[1/5 15 45 ys 151 |31
33
35

We also note that the sum of squares of the heights can be expressed as
the inner product

30
32

(30 32 31 33 35] |31
33

35

This last inner product suggests that it is useful to define an operation
called transposition, whereby the i element of a given column vector is
entered as the /™ element of a corresponding row vector, and vice versa.
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2
Thus, we say that {2 3] and [ 3] are transposes of each other. More

generally, [a) . . . a,} is the transpose of

and vice versa. The usual notation for the transpose of ais a ora”. Itis
easy to see that the transpose of a transpose of a vector is the original

2
vector. In symbols, () = a. Thus, if a = [ 3], then a” = [2 3], and

(a’) = [ 3]. (Since any matrix can be viewed as a concatenation of

vectors, the operation of transposition can be extended to matrices.
Thus, if A is an » X m matrix, then the m X n matrix A’ obtained by
interchanging the rows and columns of A is called the transpose of A.

4 1 8

Using the operation of transposition of vectors, the following
compact expression for sum of squares is obtained:

3 8 3 4
For example, [ ] and [ 1] are transposes of each other))

2

2 2 .
xXi+.,. . tx, =X

X
where
X1
x = . and X’ = {x1...x,]
*n

Similarly, given two sets of n ordered numbers (x1, . - ., X,y and (y1, ... ., yn)s
we have the following compact expression for their sum of products:

Xy=yx=xpn+...+Xppn
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where

X

.
-

Ji

Xn Yn
Matrix-Vector Multiplication

Consider the frequency distribution of localities (places) by popula-
tion size, given in Table 1.3. It is easy to verify that the cumulative
frequencies shown in column 3 of Table 1.3 correspond to the following
inner products:

- 4
4
[1 1 1 17 {40 =40

25_

- 1-
4
o1t 11}

h25-

ol 11
4
[o 6 1 110
25

39

H|

35

o lq
4
o0 1]

hzs-

25

If we stack up these inner products we get the following result:

1 40

1111

01 11 41 _ 130
0 0 1 1 10 35
00 0 1 25 25

which suggests the following definition of matrix-vector multiplication.
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{.et A be a matrix and v a column vector such that the number of
columns of A equals the number of elements in v. Then the product A
times v, written Av, or Av or A*v, is a column vector e whose i® element
is equal to the inner product of the i row of A with v.

Thaus in the product

000 171
001 1| |4f.,
01 1 1] f10
111 1] |25

1
the first element of ¢ is [0 0 O 1} [lg] , le., 25; the second
25

1
glement is {0 O I 1] lg , l.e., 35; the third element is
25
1T
[0 1 1 13 lg , L&, 39; the fourth element, [1 1 1 1]
25 '
1
41 e, 40.
10
25
Similarly,
I 00 0 1 1
11 00 41 .1 5%
1110 10 15
| S T R | 25 40

which, incidentally, illustrates the calculation of cumulatives from
the top.

NOTE:

(1) If Ais a2 X 3 matrix, and Av is defined (where v is a column
vector), then we know that v has 3 elements.
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TABLE 1.3
Population Number of Cumulative Cumulative
Size Class Localities from Bottom from Top
50 or more 1 40 1
20-49 4 3@ 5
5-19 10 35 15
Betow 5 25 25 40

(2) If Cis a2 X 3 matrix,and u is a column vector with 2 elements
only, then Cu is not defined.

Vi
3) fAx,=(@)andv=1} " 1, then
Vi

Av = ¢ implies that k = m and that chas n elements.

(4) The product of a row vector (on the left) times a matrix (on the
right) may be defined as follows: Let o be a row vector with n
elements and let A be any n X m matrix. Then the product u’ (on
the left) times A (on the right), denoted as w’Aoru"Aorw*A,is
a row vector whose /™ element equals the inner product of u’ with
the /* column of A. Thus, for example,

123
[ -] [4 p 6]x[-?, 3 3]

Incidentally, this particular example illustrates an operation
which gives the difference: the first row of a2 by 3 matrix minus
its second row. The following example illustrates an operation
that yields the sum of the two rows of a2 X 3 matrix:

a ¢ ¢
it 1 [b d f] = [(a+d) (c+d) (e*N]

(5) If A is an n X m matrix, w’ is a 1 X r vector andd’al Xk
vector, then wA = d’ implies r = n and k = m. Also, the 7" element
of d’ equals the inner product of u’ with the 7" column of A.

Matrix Multiplication

Suppose a department has a two-track graduate program, empha-
sizing, say, “basic” research and “application,” respectively. Let us
assume that a typical student in the basic program takes four required




=nis

the
thn
{on
A, is
vith

tion
inus
tion

nent

pha-
st us
tired

2i

courses and eight electives, whle one in the applied program takes two
required courses and twelve electives. This structure can be depicted in
matrix form as shown below:

Number of
required Number of
courses electives
4 8 Basic
A1, 2 Applied

Suppose, on the average, in the required courses a student devotes a1
hours to directed study and a; hours to independent study, per course,
while the corresponding figures in electives are by and b,, respectively.
Let us depict this feature also in matrix form:

Directed Independent
Study Study
a a Required
B = by b Elective

Now, suppose based on these pieces of “information” we are asked to
calcuiate the hours devoted to directed study and independent study,
respectively, by a typical stident in the basic program and by one in the
applied program. It is easy to see that the figures we are looking for are
those in the following matrix:

Directed Independent
Study Study

C= 4a1 + 8by daa v 8hy Basic
B a0+ 12b;  2ax+ 12b, Applied

Notice that the first column of Cis the matrix-vector product A times
the first column of B, while the second column of Cis A times the second
column of B. This example suggests the usefulness of defining an
operation that produces a matrix (€ in our example) by concatenating
horizontally a given matrix (A in our example} times the successive
columns of another (B in the example). We define such a concatenation
involving A and B the product A times B, usually denoted by AB, or A'B
or A*B. The operation that produces such a concatenation is called
matrix-matrix multiplication or simply matrix multiplication. Using the
matrices introduced above, we say that

AB=C
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stipulating that, as mentioned above, AB means the horizontal concat-
enation in which A times the first column of Bis followed on the right
by A times the second column of B.

Notice that this operation (i.€., matrix multiplication as defined
above) applies only if the number of columns in the left-factor (A inour
example) equals the number of rows in the right-factor (B in the
example). Obviously, if this condition does not prevail, the matrix-
vector product A times j™ column of B is not defined, for any J. For this

reason if
a b e f g
= ¥ =
E [c d] and [h z‘j]

then the product EF is defined, while FE is not. _

Let us now illustrate the important point that matrix multiplication, in
general, is not commutative, i.e., that if the factors are rearranged, the
product may be altered. Consider the matrices

M_ll dess
=13 4| 17 8

{n this case both MN and NM are defined. But

w10 BT - £

while

o[ 00 6 6 - B2

demonstrating that the product is altered when the factors ar¢
reartanged.

Because matrix multiplication is not, in general, commutative, we
give special attention to the order of factors and speak of the product AB
as the result of premultiplying Bby Aor postmultipiying AbyB.
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NOTE:

{1} An alternative way of defining matrix multiplication is the
following: Given A, = ((a;)) and B, = {(b;)), the product AB s
an (n X p) matrix whose (4, /) element equals the inner product of
the i row of A with the /" column of B. Thus

E [ ek

p ¢ 43 50
o o[} o af]

{2) Even when the product AB exists, the product BA may not be
defined. This is the case, for example, if A is of order (2 X 3) while
Bis of order (3 X 7).

(3) If the product AB exists, the factors A and B are said to be
conformable (with respect to multiplication).

(4) If the factors of AB are conformable (i.c., if the number of
columns in A is equal to the number of rows in B), and the factors
of BC are conformable (i.e., if the number of columns in B is
equal to the number of rows in C), then the product ABC exists
and is equal to A(BC) and to (AB)C, where parentheses signify
the operation that has priority (the one that should be performed
first). Put differently, assuming that the matrices are conformable,
we can get the product ABC either by postmultiplying AB by C
or premultiplying BC by A.

{5) Assuming that the factors of AB are conformable and that those
of AC are also conformable, the product A(B + C), where
parentheses signify operation that has priority, is equivalent to
AB + AC. Similarly, given conformability, (E + F)G = EG + FG.

EXAMPLES OF THE USE OF
MATRIX MULTIPLICATION

Matrices in Regression Analysis. Consider the following paxrs of
observations on ¥ = weight and X = height:

Child number i 2 3 4 5 6 7 8 9
Y: weight 63 70 51 62 54 60 75 58 53
X height 57 58 47 57 50 52 53 49 40
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Suppose we hypothesize that there is a straight-line regression
relationship between weight and height. Under this hypothesis we write
the following equations connecting the observed values of X and Y¢

63 = B+ SThi+ &
70 = ot S8/t e

and so on, where e, &2, . . . are residuals, These equations can be
compactly written using matrices. We define three vectors and one
matrix

¥

e -

63.1 1 57 el.]
70 1 58 ex
5l 1 47 [
62 1 57 €4
y= |54 X=}71 50 BK[B‘)] e= | &
60 1 52 B os
15 1 53 er
58 1 49 e
53 1 40 &s

The observational equations can now be written as

Yox1 = XoxaBaxi * et

Notice that the first column of the X matrix contains only 1’s. This is
true of all regression models in which there is a constant term So.

Markov chains. As another area of application, let us consider
Markov chains. A Markov chain is a chance process having the special
property that one can predict its future just as accurately from a
knowledge of the present state of affairs as from a knowledge of the
present as well as the entire past history. By way of illustration, consider
intergenerational mobility in a society, For simplicity, et us imagine
that there are only two social classes, say, the upper and the lower.
Considering only the eldest sons, we say that the mobility process is a
Markov process if the probability that a man is in a particular class is
dependent only on the class of his father, but not further dependent on
the class of his grandfather or of any of the more distant members of
the male line.

The probability that a man is in a particular class (e.g., lower class),
given that his fatherisina particalar class (say, upper class) is known as
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TABLE 1.4
Transition Probabilities: intergenerational Mobility Process

Son’s Social Class

Father’s

Social Class Upper Lower
Upper 0.4 0.6
Lower 0.1 0.8

a transition probability, With two classes, a 2 X 2 matrix of transition
probabilities, as illustrated in Table 1.4, determines the fundamental
properties of a Markov chain.

According to these figures, the chance that an upper-class father’s
son (remember that we are considering only the eldest sons) moves
down to the lower class is 0.6, and similarly the probability of upward
mobility for those in the lower class is 0.1.

Suppose at the beginning of the observation period 20 percent of the
(initial) generation are in the upper class and the rest in the lower class. If
there are N persons in the initial generation, then 0.2N are in the upper
class and 0.8 in the lower class. According to the transition probabil-
ities given above, we would expect (0.2N)0.4) + (0.8N)(0.1) of the next
generation to be in the upper class and (0.2¥)(0.6} + (0.8N)(0.9) in the
lower class. The class structure of the second generation is thus expected
to be

04 06
[O2N (0.8)N] [0_1 0_9]

which is the initial class structure postmultiplied by the transition
probability matrix. To get the class structure of the third generation we
similarly postmultiply the class structure of the second generation by the
transition probability matrix, If the transition probabilities remain
unchanged, the class structure of the third generation is obtained as

(0.4 0.6] [oa o0s6
LODN O8N o1 09] [0.1 0.9]

which can be written as

(0.4 06]
[ODN O8N o1 09]

following the familiar convention in ordinary algebra of writing x*for x
times x.
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Similarly, if the transition probabilities remain unchanged, the expected
class structure of the fourth generation is

04 067
[(0.2)N (0.8)N] 01 09

i
i
i
i
£
|
i

and so on. H you try 1o derive these results (the class structure of
successive generations) without using matrices, you would find your
task extremely cumbersome.

An interesting property of transition probability matrices of the kind
introduced above is that for sufficiently large values of n, their powers
higher than n are indistinguishable. Thus,

04 06} _ [0.1498 08502
01 09 101417 0.8583
{0.4 0.6]3 } [0.14291338 0.85708662]

0.1 09 0.14284777 0.85715223

indicating that for large n, powers of

0.4 0.6
0.1 09

higher than # ar¢ indistinguishable from

17 67
1/7 6/7
We return to this topic in Chapter 4.

THE IDENTITY MATRIX

{n ordinary algebra we have the number 1, which has the property
that its product with any number is the number itself. We now introduce
an analogous concept in matrix algebra.

Consider the following 2 X 2 matrices:

LR dB_xo
13 4] ® “lo 1
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The product A times B and the product B times A in this case are both
equal to A as can be easily verified. That is, AB=BA = A. Inthe algebra
of 2 by 2 matrices

1 0

0 1

is called the identity matrix under multiplication. (It behaves like unity
in ordinary algebra.) It is a square matrix—one having the same number
of rows as columns-—and it has anity in the principal diagonal (i.e., the
diagonal of elements from the upper left corner to the lower right
corner) and 0 everywhere else.

There are identity matrices of different orders. Thus,

1 000
1t 00]ljo 100
[10]010 001 0
0 1§ Lo 0 1) [o o0 0 1

are identity matrices of orders 2 X 2,3 X 3, and 4 XX 4, respectively. in
general, an n X n identity matrix has its (1,1), 2,2), . . ., (n,n) elements
each equal to 1 and all other elements equal to 0, The usual notation for
an nXn identity matrix is L,or E, or I, the last when the order is obvious.

2. ELEMENTARY OPERATIONS AND THE
INVERSE OF A MATRIX

This chapter is concerned with some further properties of matrices
and the matrix as an operator. The main objective is to introduce the
concept “inverse of a matrix,” and to illustrate its applications.

Elementary Operations

The first concept we shall introduce is that of elementary operations.
To see why such operations are of interest, let us consider the following
two equations in two unknowns;

2x+3y= §
3x-6y=-3 [2.1]




28

To solve this set of equations, let us adopt the elementary approach
consisting of elimination of one of the two unknowns to get an equation
in one unknown. Multiplication of the first equation by 2 gives

4x+6y=10 [2.2]
Adding this to the second equation in the initial set, we get
Ix=7 2.31

leading to the solution x=1; y = 1.

The first two steps just carried out—namely (1) mulitiplying an
equation by a scalar, and (2} adding one equation to another-—can be
performed by matrix muitiplication, as iflustrated below.

Let us write the initial set of equations {2.1) in matrix form:

[ < B1-[5] 2

If we premultiply both sides of this matrix equation by

2 0
Ei=]0 1

5 D115 25

which is equivalent to 2.2 paired with the second equationin2.1. Now let
us premultiply 2.5 by
11
E: =10 1

< B1-15] 2

which gives the equation 7x = 7, obtained earlier, and the second
equation of the initial set.

The matrices E; and Ez used above are examples of what are known as
elementary operators. (We encountered such operators in Chapter 1.
See, for example, the matrices used for obtaining cumulative sums.)

we get

The result is
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Formally, there are three types of elementary row operations that
may be carried out on a matrix:

(1) interchanging two rows,
(2) muitiplying each element of a row by a nonzero scalar, and
(3} adding a nonzero multiple of one row to another.

Each of these operations on the rows of a matrix can be carried out by
premultiplying the given matrix by an appropriate elementary row
operator. To get the appropriate elementary row operator, all that we
have to do is carry out the required operations on an n X n identity
matrix, if the given matrix is of order 7 X m. To illustrate, suppose we are
given

2 3
A=1]1 0
11

To interchange rows | and 3, we premultiply A by

0 01
E =0 1 0
1 6 0

which is obtained by interchanging the first and third rows of I,
Clearly,
¢ 0 1 2 3 11
EA=|0G 1 0 I 0j=i1 0
1 00 | 2 3

Notice that by premultiplying A by E; we interchanged the first and
third rows of A. Now suppose we want to multiply the second row of the

same A by a scalar, say, (-8). The appropriate elementary row operator
for this is

i 00
E=|0 -8 0
0 01

which, it may be noted, is constructed by performing the required
operation {multiplying the second row by (-8)] on a 3 X 3 identity matrix.
As can be verified,
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23
E:A=1-8 0
b1

which is A with its second row multiplied by (-8), as desired.

If we wish to add twice the second row of A to the first, we perform
the operation on a 3 X 3 identity matrix and use the resulting matrix as an
elementary row operator:

120
E={0 10
_001]
4 3
EA=|1 0
i

Elementary column operations can be defined similarly. They are
equivalent to postmultiplication by appropriate elementary column
operators (of order m X m, if A is of order n X m) which can be
constructed by carrying out the specified elementary column operations
on the identity matrix of the appropriate order. Two examples follow.

1. If A is the same matrix as the one given above, interchange of
the first and second column can be achieved by postmultiplication of

)
RIER S

2. With the same matrix A, the addition of the first column to the

second can be effected with postmultiplication of A by [1 !

[
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Echeton Matrices
Consider the set of equations

x+2p+3z=2
x+2p+dz=1
2x+4y+72=3 [2.7]

The coefficients of the equations form the matrix

1 23
B=1]1 2 4
2 4 7

Consider the following sequence of elementary row operations on B:

1 Subtract row ] from row 2,
(2) Subtract twice row 1 of the resulting matrix from its row 3.
(3) Subiract the new row 2 from the new row 3.

To perform these operations, the appropriate elementary row oper-
ators are

" 0

E,=|-1 1 0] foroperation (1),
] 0 l-
1 ¢ 0

E:=]| 0 1 0| for operation (2),
-2 0 1]
1 0 0]

E: =10 01 for operation (3).
0 -1 1
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IO -
E({E:B)=|0 0 I

0 0 1p

and ) )
"1 2 3]

Eg(EzE;B) =10 0 1

0 0 0

This last matrix illustrates the concept of an echelon matrix, which is
any n X m matrix with the following properties:

{1) each of the first k rows {0 == & = n) has one or more nonzero
elements;

{2) for each such row, the first nonzero element, when reading from
left to right, is unity;

(3) the arrangement of these rows is such that the first nonzero
element in the i row appears in 2 column to the right of the
column in which the first nonzero element appears in row (i - 1};

(4) after the first k rows, the elements of the remaining rows (if any)
are all zero.

Thus :
0 01 -2 3 1 2 0 5
¢ 0 ¢ 1 2] and |0 1 -2 1
¢ 006 00 00 01

are echelon matrices.

For any given matrix A, it is possible to find a sequence of elementary
row operations that transforms A into an echelon matrix. To illustrate,
consider the matrix Ao in 2.8:

01 1 1 3 -1 1 3 -1 1 3 -1

P 3 -1y, {0 1 tf , {0 1 1|, j0 b 1
1 5 2 1 5 2 0 2 3 0 0 1
0 Ay A, As [2.8]

The characteristic features of echelon matrices suggest that to transform
Ao to anechelon form we may start by interchanging rows 1 and 2, thus
getting A, in 2.8, (Rows 1 and 2 of A, satisfy the characteristic features
of the first two rows of echelon matrices.) I we now subtract the first
row of A, from its third row we get A, in 2.8. Subtraction of twice the
second row of A; from its third row gives As, which is in echelon form.
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Two points should be noted. First, the echelon matrix in no sense is
“equal™ to the given matrix from which it is derived. It is simply the
result of a sequence of elementary row operations on the given matrix,
Second, corresponding to a given matrix, there may be two or more
echelon matrices. To illustrate this latter point, consider the matrix Aqgin
2.8. Suppose we interchange the first row and third row (see B, in 2.9);
then subiract the new first row from the second (B: in 2.9); divide the
second by (-2}, i.e., multiply it by (-14), (B: in 2.9); and finally subtract
the new second row from the third, and, after subtraction, multiply the
resulting row by (-2) (B4 in 2.9); the result is an echelon matrix, which
is not the same as A; in 2.8.

15 1 5 2 P 5 2 1 5 2

I3~1 1 3-1]1,10 -2 -3],1{0 1 3/2},]6 132

152 01 0 1 1 01 1 ¢ 01
1 2 B B

3

The Inverse of a Square Matrix

The matrix operations of addition, subtraction, and multiplication
were introduced in Chapter 1. In arithmetic and ordinary algebra,
however, there is also an operation of division. Can we define an
analogous operation for matrices? Strictly speaking, there is no such
thing as division of one matrix by another; but there is an operation that
accomplishes the same thing as division does in arithmetic and scalar
algebra.

In arithmetic, we know that multiplying by 27 is the same thing as
dividing by 2. More generally, given any nonzero scalar a, we can speak
of multiplying by ¢ instead of dividing by @. The multiplication by a”’
has the property that

g B |

ag =a'a=1 {2.10}

This prompts the question, for a matrix A, can we find a2 matrix B
such that

BA=AB=1I,, [2.11]

where 1 is an identity matrix of order n (the matrix analogue of unity
referred to in 2.10).
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In order for 2.11 to hold, AB and BA must be of order n X s; but ABis
of order n X n only if A has n rows and B has n columns, and BAisof
order n X n only of B has n rows and A has n columns. Therefore, 2.1
holds only if A and B are both of order n X 7. (As mentioned earlier,
matrices having as many rows as columns are called square matrices.)
This leads to the following definition.

Given a square matrix A, if there exists a square matrix B, such that

BA=AB=1 [2.12}

then B is called the inverse matrix (or simply the inverse) of A, and A is
said to be invertible. Not all square matrices are invertible, as we will see
later. (A square matrix that does not have an inverse is said to be
singular. A square matrix that possesses an inverse is sald to be
nonsingular.)

To illustrate the concept of inverse, given a matrix

it is easy to verify that the matrix

N E

satisfies the relations

AB = BA=1
4 -11. . . .

Hence 3 is the inverse of A. Similarly, given
-2 0 1
C=1-31 4
-5 0 2

the matrix
2 0 -1
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satisfies the relations
CD =DC =1
Hence D is the inverse of C.

A Procedure to Calculate the Inverse
of a Matrix H It Exists

Let us first confine attention to finding a matrix B, given amatrix A,
such that the premultiplication requirement BA = [ is satisfied. (For
the moment, we are not concerned with the postmultiplication
requirement that AB should also be equal to L) Our task, then, is to find
a premultiplying matrix B,x, that transforms A,x, into the identity
matrix 1. This reminds us of the procedure described earlier in
connection with deriving an echelon matrix from a given matrix. If we
can find a sequence of row operations that transforms the given matrix
Anxrinto I, then the premultiplying matrix that represents this sequence
must be the Bux, matrix we are looking for. Let us see whethcr the
method works and, if so, how.

Suppose the given square matrix is

11
A=
The first part of our procedure is to find a sequence of elementary row
operations that transforms A into an echelon form. In the present case

this task is easily accomplished: Subtract three times the first row from
the second or, which is the same thing, premultiply A by

N
S EHIREN

This yields
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Note that this echelon matrix does not have any row consisting entirely
of zeros; there are 1's all the way from top-left down to bottom-right of
the principal diagonal; also the elementary row operator created zero
elements everywhere below the principal diagonal. What remains now is
to perform additional row operations so that all entries above the
principal diagonal become zero, In the present case, this is accomplished
by subtracting the second row from the first or, which is the same thing,
premultiplying by

E; =

fr a1l ] o
EEA =10 ] [0 1] [0 1]
The product

_ T 4101 0] [4 =
N P | B R ]

{noting carefully the order in which they are entered—E: on the left of
E1)is the matrix B we are looking for, satisfying the relation BA = LLet

us check this out:
4 -1 1 1{_|1 0
-3 1 3 4 0 1

To consider another example, suppose we are given G = [

giving

5 7
2 3

sequence of operations that transforms G to anidentity matrix is shown
in Table 2.1.

]. The

(3
E = EE:E:E; =
432K -~2 5]
Thus, in this case the matrix that satisfies the premultiplication

reguirement is
3 -7
-2 5

We check this out by taking the product

ERIIEREEH
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TABLE 2.1
Description of Elementary Row
Row Operation Operator Resulting Matrix
[ 5 7
1 - - G=
.2 3
2. Multiply row 1 /5 0] 1 7/8]
of Gy 1/5 E, = G; =
L0 1] 2 3]
3. Subtract twice [ 1 0] K 7/5]
row 1 of G, £, = . G, =
from its row 2 | ~2 1 [ O 1/8
4, Multiply row 2 ™ 1 0] "1 /5]
of G, by 5 Ey = G, =
. O 5 | .0 1.
5. Subtract {7/5)th i -7/5 ™ 0
of row 2 of G, E, = Gy =
from its row 1 0 1 0 1

It is easily verified that in both of the illustrative cases presented
above, the matrix, which satisfies the premultiplication requirements,
also satisfies the postmultiplication requirement:

EESIRE
IR

In fact, it can be shown mathematically that this holds true in
general. That is, given a square matrix A, if its inverse exists, the matrix
B—constructed using elementary row operations on A so as to satisfy
the premultiplication requirement BA = I—also satisfies the postmuiti-
plication requirement AB = I, We shall not present the mathematical
proof here.

There are a number of other ways to compute the inverse of a square
matrix, if it exists. They are not described bere. Computer programs are
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readily available for matrix inversion. Thus, for example, in the matrix
procedure of SAS, the statements

A=-201/314/50%
B = INV (A);
set up the 3 X 3 matrix
-2 0 1
A=1-3 1 4},
-5 0 2

compute its inverse, and print out the result as the matrix B. (The slashes
in the first statement separate one row of A from the next.)

Although numerical methods are not emphasized here, it is important
to know how to characterize square matrices that have inverses. We
shall address this topic in the next chapter. In the remaining part of the
present chapter we shall be concerned with illustrating some of the uses
of the inverse of a square matrix. A conventional notation for the
inverse of a square matrix A is A~ which is read “A inverse” not “A to
the -1 power.”

It may also be noted, before turning to applications, that if a square
matrix has an inverse, then this inverse is unique. That is, if B and C are
two square matrices such that AB = BA = Iand AC = CA = I, each
matrix being of order n X n, then B = C. To see that this is so,
premultiply AB = I by C. This gives CAB = CL. But CI = C and we
are told that CA = L Hence, CAB = ClisequivalenttoIB = Cwhich
is the same as B = C.

HI

Application of the Inverse of a Matrix
to the Solution of a System of Equations

We have already seen that a system of linear equations can be
compactly expressed as a single matrix equation. Thus, the following
two equations in two unknowns

il
[

2x + 3y
4x + 9y

it
b
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(23] BI-L] e

-1
I [i ‘3 ] exists, premultiplication of both sides of 2.13 gives

2 31 [2 3] [x].[2 3] |4
4 9 4 9 | ¥ ] [ 4 9] [ 2 |
1 o] [x].12 3 i
o 1] |yl 74 9] |2

v o _I.

can be written as

that is

or " -
xV_12 3 |

thus giving the solution required.
In the present case it is easy to verify that

9/6 -3/61. . 2 3
[~4/6 2/6]lsthemverseof [4 9].

Hence, the required solution is

1 _| 9/6 -3/6 Iy _f1/2

¥ ~4/6  2/6 2 0
or x= 15: y= 0. If we check this answer by direct substitution in the initial
set of equations, we get

1+06=1
2+0=2

thus demonstrating that this is indeed a solution of the system.

As another example, consider the following system of three equations
in three unknowns:

x+2y+3z=1/2
x+3y+5z=1
2x+5p+9z=3/2
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Writing this system as a matrix equation, we have

12 3} [x 1/2
13 5] |ly]=}1
25 95 |z 32

I we premultiply both sides of this equation by the inverse of

1 2 3 2 -3 1

I 3 5|,namely,{ I 3 -2

2 509 -1 -t 1
we get

3 17Tt 231 0x1 [2-3 1 1/2
R 1 st lyb=11 3 -2 I
a1 -1 13 {2 5 9f |lz] Lt -1 1 3/2

'1 0 0] §x] '-uz]

(9% ]

which is

01 0f |lyi=} 12
o 0 1jlz)] L O

giving the solutionx=-1/2;y =1/ 2; z=0, which on direct substitution in
the original equations yields

_1j2+ 1 +0=1/2
~1/2+3/2+0= 1
-1 +5/2+0=3(2

thus proving that x=-1/2;y=1/2;2=0 isindeed a solution to the given
system of equations.

Generalizing from these examples, if A isannX nmatrix, and xand b
are both column vectors having # elements, the former consisting of
unknowns and the latter of known constants, then a solution to the
system of equations Ax = b can be obtained by premultiplying both sides
of the equation by A, if it exists. This is so because

AAx = A7
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is the same as
Ix = A,

. " . - L. .
by virtue of the definition of the inverse (A " A =1), and this in turnis the
same as

Xx=A'b

by virtue of the definition of the identity matrix. That x = A™'b satisifies
the given equation system can be seen by substitution: A(A"'b)=Ib=b.
Application in Regression Analysis
Consider the following data on the height and weight of children:
Child number i 2 3 4 5

Weight: ¥V 64 53 67 S8 51

Height: X 57 50 61 52 45
Suppose we are interested in determining by the method of least squares
the linear regression relationship giving weight in terms of height. The

observational equations are

64 = bo+5Th + &y

53 = bo+ 50b; + ez
67 = bot61by+ ey
58 = bo+532by+ e
51 = bot+45b; + es

or typically
¥i = botxibite

The least-squares method of determining the linear relationship giving y
in terms of x involves determining bo and b, such that

Sdyi - bo - xib1)?

is the smnallest, the summation being over the observed cases (the five
children in the present instance). It can be shown that this minimization
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process results in a system of two linear equations in bo and b, called
normal equations. These equations are as follows:

n n
b, +§ £ x. } b= T ¥
(ko S )T

n n 2 M
i§1 % ) bo * f§1 ) bt E; 1

where n stands for the total number of cases observed (= 5, in the present
instance). In matrix form these equations become

n Sxi bo| - { Zyi
[Ex:‘ Ex;?] [bl] [ﬁxm] [2.14]

The 2 X 2 matrix on the left of 2.14 can be seen as the following product
of the two matrices:

I x1
11 ... I x
X1 X2 ... Xpn : _

1 xn

Similarly, the matrix on the right of 2.14 can be seen as the following
product of two matrices:

1 1 ...1
X1 X2 ... %n

We may therefore write the normal equations in a compact form as
follows:

y2
¥n

X’Xb = X'y
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where
1 Xi V2
1 X2 5
X = = 0 =
ve[2] vl
: ¥
1 x, "

and X’ is the tranpose of X (that is, the /™ row of X’ is the transpose of
the i'"® column of X and vice versa).
For the data given above

n =5

n

3, x; = 265
=1

n

3, x? = 14199
=1

n

E Vi = 293
fd

H
'Ei xyi = 15696
I:

Hence the normal equations are

293
15696

(S)bo+  (265)by
(265)bo + (14199)b,

which in matrix form become

5 265 boi . 293
265 14199 b 15696
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The solution is

bo| I 5 268"} 293
bl 265 14199] 15696

14199 265
770 770 293
-265 5| 115696
770 770 '
_[1.1260
" | 1.0844

or bo = 1.1260 and b: = 1.0844.
We have thus seen that when fittinga straight-line regression model

p=bo+txbh+e

to a set of data consisting of n pairs of observations on the variables X
and ¥, we can characterize the problem under consideration in terms of

y, the n X1 vector of observations on Y;

X, thenX 2 matrix of independent variables, including the constant
term;

b, the 2 X 1 vector of parameters; and
e, the n X 1 vector of random errors.

We have also seen that the normal equation can be written com-

‘pactly as

X'’Xb = X'y

where X’ is the transpose of X.
In the multiple regression context, the matrix X and the vector b
reflect the presence of two or more regressors, in addition to the
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constant term, and the corresponding number of parameters (regression
coefficients). Thus, with p regressors :

1 xu ... Xip
Xosgprry =
_1 Xnt ... Xnmp
and
-bo
b
b =
by

model
The observational equations are

Hles X yuxt = Xexprbpenxi + enxi

rms of . L . .
which summarizes in a single compact statement the » equations

yi = bﬂ+3€i1bi+...+Xipbp+€i

nstant
i=12,... ,n This equivalence results from the matrix operations

o bo .
I oxu ... xip by el
1 com_“ Xb + e = » ) . + -
. |1 Xm ... Xmp bp €n
bo+ xuby t ...t xipbp €l
+ )

ctor b
to the
i _bﬂ  xpibt+ . L+ Xppbp €n
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bo+ xubi + ...t xpbpt e

bo+ Xmiby t. .. * Xnpby t €5

The normal equations can be compactly written as
X'Xb =Xy

where X’ is the transpose of X. The least-squares estimates are ob-
tained as

b = (X’X)7'X%y
if (X"X)™ exists.

Application in Input-Output Analysis

Input-output analysis was invented by Wassily Leontief more than 50
years ago. The basic tool of the analysis is a table that shows the inputs
(purchases) and outputs (sales) of various industries in a system. A
two-industry table is shown in Table 2.2.

On the left side of the table is a list of industries, one in each row. The
figures in the rows represent sales (outputs) of the respective industries.
Across the top of the table, the same set of industries are listed, one per
column. The figures in a column under an industry show the purchases
of that particular industry. There are two additional columns. The first
one shows what is called the final demand, which includes purchases by
households and by government, exports, and accumulation to inventory.
The last column shows total output. Thus, in the table shown above,

TABLE 2.2

Purchases (inputs}
in Miliions of §

- Final Total
“Industry 1 Industry 2 Demand Qutput

Sales [outputs)
in millions of

Industry 1 560 1080 1160 2800
industry 2 280 1440 1880 3800
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2800
3600
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reading across row 1, we notice that industry 1 had a total output of
$2800 million, of which intraindustry sales accounted for $560 million,
sales to industry 2 accounted for $1080 million, and sales to households
etc., accounted for the rest ($1160 million). Column 1 shows that
intraindustry purchases (inputs) accounted for $560 million, and pur-
chases from industry 2 accounted for $280 million.

From this table, one calculates what are known as technological
coefficients by dividing the inputs to each industry by the total output of
the given industry. The technological coefficients calculated thus from
the data shown above are

Industry 1 Industry 2

560 _ 1080 _
Industry 1 2800 ° 0.2 3600 - 0.3
Industry 2 280 _ 1440 _

2800 - &1 g0 7 04

These coefficients can be interpreted as follows: Each dollar worth of
production inindustry | requires $0.2 worth intraindustry purchase and
30.1 worth purchase from industry 2; similarly, each dollar worth of
output from industry 2 requires $0.3 worth purchase from industry 1
and $0.4 worth intraindustry purchase.

The determination of new output levels required of all industries to
meet a change in the final demand is one of the main problems in
input-output analysis.

Let us write the technological coefficients calculated above in matrix

form
A - ai: a1z - 0.2 0.3
@ dn 0.1 04

and the total output given above as

_ [ 2800
*° [3600]

If the final demand is represented as

1160
d = |30
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we immediately see that the follo
and d:

wing relationship holds between A, X,

x = Ax+d

This is simply a com
relationships:

Total outpu

The question is, what must X be,

X =
can be written as
Ix =
which is equivalent to
(I-A)x =

pact form of expressing the set of industry-specific

t = interindustry and intraindustry needs + final demand

given A and d? The equation

Ax+ 4

Ax+d

d

If (1 - A)™ exists, the required solution is readily obtained as

X =

Thus, if A =

i@

1880

02 03
0.1 04

(I-A)y'd

] as calculated above, and d is given to be

, then the total output should be

_ . Ta-02 ©-03f"
x = {I-AVd =100 (1-0.4)] d
0.8 -03]" |1160
=|-01 06 1880
Tag3 243} (1160
T 129 1649 1880
_T2s00
T 13600
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which is the same as those given in the original data. Given any expected
level of final demand, one can forecast the required output, provided A,
the matrix of technological coefficients, is known. We simply pre-
muitiply the final demand vector by the inverse of (I - A). Thus, if

_[ 900
d= [2700]

{473 23] [ 9007 _ [3000
X = 1219 16/9] {2700 | 5000

3. MORE ABOUT SIMULTANEOUS
LINEAR EQUATIONS

This chapter introduces two important concepts, that of linear
dependence among a collection of vectors, and that of the rank of a
matrix. The latter concept is used in discussing equation systems with no
solution, one unigue solution and infinitely many solutions. The
concept of generalized inverse is introduced in connection with Linear
equation systems with infinitely many solutions.

Linear Dependence Among a Set of Vectors

In Chapter | it was mentioned that a matrix with only ene row or only
one column is called a vector and that, consistent with this notion, we

. may think of a (column) vector with n elements as an n-tuple of numbers

arranged as a column

a;

n

Linear combination. A sum of scalar multiples of vectors in a
collection of vectors, all containing the same number of elements, is
called a linear combination of vectors in the collection, Thus, given

5] e[l
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any sum such as
_ kia+ kb

where ki and k: are any itwo scalars, not both zero, is a linear
combination of a and b.

Linear combinations of what are known as unit vectors are worth
special mention. An n-tuple is called a unit vector if all except one of its
elements are zero and one element is unity. Thus

1 0 0
0 1 0
0 0 i

are all 3-element unit vectors. 1t is easy to see that among n-tuples there
are n unit vectors. Among 4-element vectors there are 4 unit vectors;
among 3-element vectors, there are 5 unit vectors; and so on. Any
n-tuple can be written as a tinear combination of the corresponding set
of unit vectors. Thus

3 i 0 0
2l=3jot+12f1}-510
-5 0 0 1

Linearly dependent set of vectors. A collection (set) of n-tuples is said
to be linearly dependent if at least one vector in the set can be expressed
as a linear combination of the remaining vectors. For exampie, the
collection (set) of vectors - :

1 2 8
3 6 4
5 10 2

is linearly dependent because one of them is twice another:

2 i
6j=213
10 15
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Linear dependence is more commonly defined as follows. A collection
of vectors ar, . . . ,an is said to be linearly dependent, if there exist
numbers (scalars) k1, k2, . . ., kn, not all zero, such that k,a, + . . . + kna,
equals a zero vector (one consisting entirely of zeros). The two
definitions are equivalent.

Suppose there exist ki, . . .k, such that kjas * keap + . .. + k3, = 0,
where 0 denotes a zero vector. Subtracting kia; from both sides we get

~kiay = kamp + .t kna,

If &1 # 0, we may multiply both sides by (~1/k.), and this gives

-k ~ky
a = ja;+t... .+ a;
ki ki

which expresses a) as a linear combination of a, . . . ,a,. We could have
carried out these steps by subtracting any ka, for which k, 3¢ 0.
One way to check whether a given collection of vectors is linearly

dependent is the following: Suppose we want to check whether [i]
and [ ;] are linearly dependent. [f they are, we know that there exist, by

definition, numbers k1 and k3, not both zero, such that

Pl e

But this vector equation is equivalent to the following two equanons in
two unknowns (k; and ka):

21+ k=
Ak + 3k; =

1 H
[ o

solving which we find k1 = k2 = 0.

Thus, in the present instance, there are no k: and &z, not both zero,
such that 3.1 is satisfied. We therefore declare that the two given vectors
are not linearly dependent, or that they are linearly independent, which is
the same thing. (A collection of vectors is either linearly dependent or
linearly independent.)




52

TABLE 3.1
1 5/3 1 5/3 1 5/3 1 5/3
2 1 o -7/3 0 1 0 1
-3 2 0 7 0 7 0 0
A, A, Ay A,

Another way of checking whether a given collection of vectors is
linearly dependent is the f ollowing. Concatenate the given collection of
vectors into a matrix; derive an echelon form from it; if the echelon form
has one OT mMOre TOWS containing nothing but zeros, declare the
collection as linearly dependent. To illustrate, suppose we want to
determine whether the following vectors are linearly dependent:

HEONE

Stacking the transposes of these vectors we get the following matrix:

3 35
Az}l 2 1
-3 2

Table 3.1 shows the transformation of A into echelon form. Notice
that row 1 of A equals (1/3) times row I of A;row 20f Az=row2of A; -
(2) times row 1 of Ay; row 3 of A, = row 3 of Ay + (3) times row 1 of A}
row 2 of A; = (=3/7) times row 2 of Ay; and row 3of As=row3of As-(7)
times row 2 of Aa.

Ay is in echelon form. Its third row consists entirely of zeros. We
therefore declare that the rows of the original matrix, A, are linearly
dependent. To show that there exist numbers ki, k2, and k3, not all zero,
such that in A

(k) (row 1) + (k2)(row 2) + (ks)(row 3) =0,

all we need to dojnow is to express the third row of As in terms of the
rows of A. To do this we retrace the steps that led to As from A.

row 3 of As — (T)(row 2 of As)

K

row 3 of A4

row 3 of As - (~ %) (T)(row 2 of A2)
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= [row 3 of A, + (3)(row 1 of A1)]
+(Brow 2 of A1 - (2)(row 1 of A1)

{row3 of A+rowl of A]
+{(3) row 2 of A -~ (2){row 1 of A)]

row3of A+ (3)row2of A) ~row 1 of A,

It

Thus
[0 0f=1[-3 2]+(3)2 1]1-{3 3] ' [3.2]

from which it follows that any row of A can be written as a linear
combination of the remaining rows: For example, by adding [3 5]to
both sides of 3.2, we get

3 51=03 21+03)M2 1]

which expresses row 1 of A as a linear combination of rows 2 and 3.
Similarly,

-3 21=3 51-32 11
and

2 1J=0a/33 51-a/3)-3 21

The point we have illustrated is that when a given matrix is
transformed into an echelon form by means of elementary row
transformations, if we get one or more rows containing only zeros, then
the rows of the original matrix satisfy a relationship of the form

Zkirowi=0
where not all ks are zero.

The Rank of a Matrix

When a matrix is transformed into an echelon matrix by elementary
row operations, the number of nonzero rows in the resulting echelon
matrix is known as the rank of the original matrix. It is possible to show
that no matter what particular elementary row operations we use in
deriving an echelon matrix from a given matrix, the number of nonzero
rows in the echelon matrix will be the same. The usual notation for the
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rank of a matrix A is 7(A). The rank is zero only forazero (null) matrix.
All other matrices have positive (greater than zero) rank.

EXAMPLES

1. Therank of [; 2] is 2, as can be verified by deriving anechelon

matrix from it
1 2 1 2 1 2
35 0 -1 o 1

2. The rank of [ :lz i] is 1 because there is only one nonzero row in

the echelon form:
P2 1 2
2 4 0 0

1 2 3 4f. .
3, The rank of [2 3 4 5] is 2
1 2 3 4 i1 2 3 4 1 2 3 4
2 3 4 5 0 -1 -2 -3 01 2 3
1 27
2 3F. .
4. The rank of 45 is 2:
6 7
12 1 2 1 2 1 2
2 3 0 -1 0 1 0 1
4 5 g -3 0 -3 0 0
6 7 LO -5 0 -5 0 0

In these examples we have been looking at given matrices as
concatenations of row vectors. Let us see whether we would get
equivalent results if we were to treat a matrix as a concatenation of a

number of column vectors. Thus, instead of treating the matrix ; p
astwo vectors [ 2]and [3 5] stacked up, suppose we were to treat it

as a concatenation of [;] and [?] .
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Elementary column operations give the foliowing results:

3L B

The number of nonzero columns in By is 2, which is equal to the rank of
A obtained earlier (Example 1} using elementary row operations. Thisex-
ample illustrates the point that the rank of a matrix is the same whether
we treat the matrix as a concatenation of rows or as one of columns. To
give another illustration, consider the matrix used in Example 3 above:

1 2 3 4
2 3 45

Elementary column operations give the following results:

23 4711t 0 ¢ 0f 1 0 ¢ 0] |1 0 0 0
2 3 4 5 2 -1 -2 -3 21 -2 -3 21 6 4

The number of nonzero columns in the last matrix is the same as the
rank obtained eartier by elementary row operations.

Referring to echelon matrices derived by means of elementary row
operations as row-echelon forms (matrices), and those derived by
elementary column operations as column-echelon forms (matrices), we
may now define the rank of a matrix as the number of nonzero rowsina
row-echelon form of the given matrix or as the number of nonzero
columns in a column-echelon form. We immediately notice that the
rank of an # X m matrix exceeds neither n nor m.

There are other equivalent definitions of the rank of a matrix, which
will not be explored in this paper. Interested readers may refer, for
example, to Ben Noble’s Applied Linear Algebra (1969,

The rank of a square matrix determines whether the matrix has an
inverse. A square matrix of order # X n is said to be of fill rank if its rank
is n. A square matrix of full rank has an inverse; such matrices are said to
be nonsingular. Square matrices with less than full rank are said to be
singular, and they are not invertible,

Simultaneous Linear Equations

Using the ranks of two matrices associated with simultaneous Hnear
equations, it is possible to say whether the equations have no solution,
one solution, or infinitely many solutions.
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Consider the following two equations in two unknowns:

3x+y=7
x+ty=3 E33]

Let us try the substitution method for solving these equations. From the
second equation we have y = 3 - x, and on substitution for yin the first
we get 3x + (3 - x) = 7, which leads to the solution x= 2, y = 1. That these
values satisfy 3.3 is easily verified. Thus we have shown that a solution
exists in this case. The question whether this is the only sclution possible
remains to be answered. Before addressing this question, let us consider
the equations 3.4:

Ix+ y= 7 -
6x+2y=10 {3.4]

Casual inspection tells us that there is a problem here: While the left-
hand side of the second equation is twice the left-hand side of the first,
this relationship does not hold between the right-hand sides of the two
equations. The two equations in the system are therefore inconsistent.
No vatues can be found for x and y which satisfy both equations; any
values that satisfy one will not satisfy the other.

Now consider the equations

Ix+ y= 17
6x+2y = 14 [3.5)

Here the left-hand sides of the two equations have the same relation as
the right-hand sides; i.e., the second equation is double the first. Thus, in
effect, we have only one equation. But if there is only one equation
involving two unknowns we can have an infinite number of solutions.
Thus, in the present case it is easy to verify that the values

x =8
y=T7-38

H]

satisfy the equations 3.5, whatever the value of 6.
Writing the equation systems in matrix form, we find that 3.3, 3.4,
and 3.5, respectively, are equivalent to

HoIeRE
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With each of these equation systems, we can associate two matrices, the
coefficient matrix and the augmented matrix, the latter having the
vector of constant terms as its last column, and the coefficient matrix for
the rest. Thus the coefficient matrix and the augmented matrix
associated with 3.6 are, respectively,

3 and 31 7

1 1 i1 3
The corresponding ones associated with 3.7 are

31 d 31 7

6 2] M 16 2 10
And those associated with 3.8 are

3 1 and 31 7

6 2 6 2 14

In the case of 3.6 we notice that both the coefficient matrix and the
augmented matrix are of rank 2:

31 1 1/3 1 13 1 1/3

1 1 1 0 2/3 0 1
[3 1 7] [1 1/3 7/3] [1 1/3 ?/3] [1 1/3 7/3]
11 3 1 1 3 0 2/3 2/3 0 1 1

In the case of 3.7, however, the coefficient matrix is of rank 1, while
the augmented mairix is of rank 2:

H RS Y

31 7 I 1/37/3 1 1/3 7/3 1 1/3 7/3
6 2 10 6 2 10 0 0 -4 0 0o 1
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And in the case of 3.7 both matrices are of rank 1:
31 1 1/3 1 1/3
6 2 6 2 0 0
3t 7 1 1/37/3 1 1/3 7/3
6 2 14 6 2 14 0 0 0
Thus (1) the coefficient matrix may be of full rank or less than fuil
rank, and (2) the rank of the coefficient matrix may be less than or equal
to but never greater than that of the augmented matrix. Equation
systems in which the coefficient matrix and the augmented matrix differ
in their rank are said to be inconsistent, Such equation systems do not
have any solution, and these systems will not be discussed further in this
paper. An equation system that is consistent and whose coefficient
matrix is of full rank has a solution, which can be shown to be unique. i
the equation system is consistent, but the rank of the coefficient matrix

is less than full, then the equation system has an infinite number of
solutions.

THE FULL-RANK CASE

Since in the full-rank case the coefficient matrix is nonsingular, we
can get asolution by premultiplying both sides of the equation in matrix
version by the inverse of the coefficient matrix, as we have already seen
in Chapter 2. That is, if the equation is AX = b, a solution isx=A"b.

‘Thus, in the case of 3.3 a solution can be obtained as

G0 BI-L ] L

or x = 2; ¥ = 1, which is the same as the solution obtained earlier by the
method of substitution. That the solution of Ax = b is unique if A™'
exists follows from the fact that if x; and X; are two solutions of Ax=h,
then on substitution Ax; = b and Ax; = b, which gives on subtraction
A(x: - X2) = 0, a zero vector, which, in turn, gives, on premultiplication
by A, (xi — %2) = 0, implying that X, = Xa.

Before we discuss the case of less than full rank for the coefficient
matrix, let us get acquainted with a solution procedure that can be
adapted to both the full-rank case and the less than full-rank case.

The method consists of carrying out elementary row operations on
the augmented matrix so as to obtain an identity matrix in the colurans
corresponding to the coefficient matrix. An illustration is shown in
Table 3.2, using the equation system 3.3.
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TABLE 3.2
3 1 7
Step O
1 1 3
1 13 743
Step 1
1 1 3
1 Y3 3]
Step 2
0 22 A3
K 13 73]
Step 3
) 1 1
L Jd
i
1 o 2
Step 4
0 1 1

The solution appears in the final column in step 4. This method
combines the two steps, finding A™' and then obtaining the product
A”'b. Note that in preparing Table 3.2 at each step we get a transformed
matrix from the one in the preceding step, by means of the familiar row
operations. For example, the matrix in step 1 is obtained from the
original matrix by roultiplying the first row by (1/3); the onein step 2 is
obtained by subtracting the first row from the second row of the one in
step 1; and so on; finally, row 1 in step 4 is obtained by subtracting (1/3)
times row 2 in step 3 from row 1 in step 3. In step 4 we notice that the
columns corresponding to the original coefficient matrix form an
identity matrix. At this step the final column gives the required solution.

THE LESS THAN FULL-RANK CASE
AND THE GENERALIZED INVERSE

Let us now apply the same method to the equation system 3.5. (See
Table 3.3.) We cannot go beyond step 2 in the table. The transformed
matrix obtained in this step tells us that the original system of equations
is equivalent to a single equation:

x+(1/3)y=7/3
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TABLE 3.3
[ 3 1 7
Step
6 2 14
. .
1 13 /3
Step 1
6 2 14
E 12 73]
Step 2
o 0 0

which can be written as
x=(13)-(1/3)y

In effect we have solved the equation system. We notice that if we let y
take any value we can then determine x accordingly. We may therefore
treat y as a parameter, say ¢ where ¢ is any number—positive, negative,
or zero. In terms of ¢, the solution to the original equation system is

x=(7/3)-(1/¢
y=¢ {3.9

For example, one solution occurs if ¢ = 0, which gives x=7/3,y=0;
another, if ¢ = 1, which yields x = 2, y = I; and so on. More generally, we
can convince ourselves that x=(7/3) - (1/3)¢, y = ¢ is a solution whatever
be ¢, by substituting these values in the original equation:

O -] +¢ = 7
6((7/3) -~ (1/3)¢] + 2¢ = 14

The point to note is that in this case the solution is not unique and that,
since ¢ may take any value, we have an infinite number of solutions.

Earlier we obtained by the method of substitution the following
solution to the equation systemn 3.5:

x =0
y=7-30 {3.10]
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TABLE 3.4

. [ 1 5]
Step 0 I 2 -1 0
2 3 0 5

N .
1 1 1 5
Step 1 0 1 -2 -5
2 3 0 Y

[ 4 1 1 5 |
Step 2 0 I; -2 ~5
0 1 -2 -5
[ 1 1 1 5
Step 3 o] 1 -2 -5
o 0 0 0

[ 4 0 3 10 ]
Step 4 ] 1 - -5
: 0 0o .0 0

At first glance it may appear that the solation 3.9 is different from
3.10. But in fact the two are equivalent, since any value of § corresponds
to a single value of ¢ and vice versa. If we write ¢ = 7 —36, 3.10 becomes
the same as 3.9. To give a numerical example, suppose we give ¢ the
value 0, then8=7/3 and, according to 3.9, the solutionis x = (7/3), y = 0;
which is the same as the solution according to 3.10.

Let us consider another example involving the less than full-rank
case. Suppose we want to solve the equation system

X+ yp+z =35
x+2y-z =0
2x + 3y =5 3.1

This is a less than full-rank case because the third equation is the sum
of the first two. Carry out the computations precisely in the manner as
before. Remember that our objective is to transform the columns
corresponding to the coefficient matrix into those of an identity matrix
as far as possible. Table 3.4 shows the computations. The matrix in step
1 is obtained from the original augmented matrix (shown in step 0) by
subtracting row 1 from row 2. Row 3 of the matrix in step .1 minus (2)
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times its row 1 gives row 3 of the matrix in step 2. Row 3 of the matrix in
step 2 minus its row 2 gives row 3 of the matrix in step 3. And row 1 of the
matrix in step 3 minus its row 2 gives row 1 of the matrix in step 4.

Step 4 is as far as we can go. The matrix in this step tells us that the
original equation system is equivalent to the following:

1 0 3 X 10
0 1 =2 yi=]-5
00 0 z 0
or
x+3z = 10
y-2z=-5

Assigning parametric value z = 6, we get the general solution

x1 [10-30
= §-5+28
7 2 [3.12)

(Check for yourself that this solution satisfies 3.11: (10 -38) + (-5+ 20)+
g = 5, whatever be 8. (10 ~ 36) + 2(-5 + 28) - 6 = 0, for all values of 6.
2(10 - 38) + 3(=5 + 20) = 5, irrespective of the value of 8.)

In these computations we did not explicitly make use of the fact that
the third equation in the initial set is the sum of the first two. Suppose we
decide to use the fact right from the start. Thus, suppose we decide to
ignore the third equation on the ground that it is redundant, given the
first two. This means we are left with just two equations (in three
unknowns):

x+t y+z =5
x+2p-z=0 [3.13]

Let us carry out the computations as before. Referring to Table 3.5,
the matrix in step 2 tells us that the original equation system is

equivalent to
x
y = 10
z -3 [3.14]

x+3z = 10
y-2z = -5 {3.15])

or
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TABLE 3.5
1 1 1 5
Step O
[ 1 2 -1 0
E 1 1 5]
Step 1
0 1 -2 -5
[ 4 0 3 10
Step 2
) 0 1 -2 -b ]

Parameterizing z (= 6) now gives the general solution

X 10 - 36 '
y|=1-5+26 [3.16]
2 6

Verify for yourself that you would have obtained these same general
solutions if you had started with any other pair of equations from 3.11.
Also of interest is to write a general solution, treating y (= ¢) as a
parameter. From 3.15 showthatif y=¢,z=(5+¢)/2and x= (5-34)/2,
and verify that these values satisfy the original equations, whatever be ¢.

Another interesting point is that if we had parameterized z to begin
with, equation system 3.3 would have been

x+ p=5-8
x+2y=8

and instead of Table 3.5 we would have had Table 3.5a, leading straight
to the solution

x=10-30, . yp=-5+28 z=@
which is the same as 3.16.

This latter computation suggests the following strategy for solving
simultaneous linear equations in the less than full-rank case,

(1} Delete redundant equations. If there are n equations in n
unknowns, and the rank of the coefficient matrix A is 7(A) then
there are n - r(A) redundant equations.
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TABLE 3.5a
1 i )
Step O
% p ]
[y 1 5-9 1
Step 1
|0 1 (-5 + 26
”1 ¢ {10 -3
Srep 2
Lo 1 -5 +28)

(2) Parameterize n - r(A) unknowns, and rewrite the retained, r(A),
equations as equations in r(A) unknowns, and solve by the
method of solving the full-rank case.

Let us apply this latter technique to another equation system.

Suppose we want to solve

x-—-y+3z
x+ytlz

2
4
3x-y+82 =8

il

[3.17

First we want to determine whether thig is a less than full-rank case.
The coefficient matrix is

I -1 3
1 1 2
3 -1 8

Subtracting the first row from the second and three titnes the first row
from the third, we get

i -1 3
0 S |
o 2 -1
which leads to the echelon form
1 -1 0
0 1 -1/2

0 0 0
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revealing that the rank of the coefficient matrix is 2. We have thus aless
than full-rank case here.

Let us treat the third equation in 3.17 as redundant, and parameterize
z(= 8). This yields the following equation system:

1 1] [x]_[2-36
| i
| al [2-36
N 4-20
{2 2] f2-30
172 1j2] [4-26

_f3-¢528
1+ (1728

whose solution is

(3.19]

so that the general solution is

x 3-(5/2)8
yl=11+(1/2)8
z g [3.20]

If we set 6 = 0 in 3,20, we get a particular solution

ot

which can be expressed in the form

x = Gb [3.22]

% L1 0 o0 2
x=1y|l G=1}f1 1t 0]=1~% % 0| and h= |4
z 6 0 0 0 0 8
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Notice the connection between G and

1 -1 3
A=l 1 1 2
3 -1 8

the coefficient matrix of the original system of equations 3.17. (To get G
from A we apply a three-step procedure. First we delete the third row
and third column of A, then invert the resulting matrix, and finally
border the resulting inverse with a row and a column of zeros
corresponding to the row and column deleted from A in the first step.)

‘We may think of G as a matrix derived from the coefficient matrix A,
such that x = Gb is a solution of Ax = b. We call G which has this
property {namely that x = Gb is a solution to Ax = b) a generalized
inverse of A. The label “generalized inverse” is apt because it is
applicable to the full-rank case as well as the less than full-rank case. In
the former case, of course, the three-step procedure described above
becomes a single-step procedure, because the original matrix is invertible,

At first the concept of generalized inverse may appear difficult to
grasp, but familiarity with it is quite useful. With thisin mind a few more
examples are given below,

- Suppose we want to solve the following equation system:

3 2 1 x 5
2 3 - v =
1 -1 2 z ~1 {3.23]

It is not difficult to see that the rank of the coefficient matrix is 2. (The
third equation is the difference between the other two.) Let us discard
the third equation and set z = ) in the remaining equations. This gives

EHIHEH pan

which is a full-rank case. The solution of 3.24 is

E S R U R ] e
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which can be written as shown below:

x 0.6 -04 0.0 5
yli=1-04 06 00 6
z 0.0 00 00 -1 [3.26]

giving x = 0.6, y = 1.6, and z = 0 as a solution of 3.23. (Verify that this
indeed is a solution to the equation system.) In this case the 3 X 3 matrix
on the right-hand side of 3.26 is a generalized inverse of the coefficient
matrix of 3.23.
In the foregoing exercise we deleted the third equation in the system
"3.23 and set z= 0. If instead we delete the first equation and set x = 0, we

get from 3.23
3 -1 yi-i 6
-1 2 z -1

which is a full-rank case. Its solution is
yl-| 3 -1 |6
z -1 2 -1
.]04 02 61_122
0.2 0.6 -1 0.6

which is the same as

x 0.0 00 0.0 5 0.0
»1=100 04 02 61=122
z 0.6 02 06 -1 0.6 £3.27]

It is readily verified that the solution 3.27 does satisfy the original
equation. According to our definition, the 3 X 3 matrix in 3.27 also
qualifies to be called a generalized inverse of the coefficient matrix of
3.23. This illustrates the point that a given coefficient matrix can have
more than one generalized inverse, of the kind defined above.

As another example, let us consider the system of equations

xtyp+ z=2
x+ y+2z=1
x+y+3z=0 [3.28]




68

The coefficient matrix is of rank 2. So we retain two equations and set
one of the unknowns to zero. Let us retain the first and second
equations. We may set equal to zero x or y, but not z. (If we set zequal to
zero, the two-equation system thus obtained will not be of full rank. The
decision as to which unknown is to be set equal to zero should be guided
by this consideration. The objective is to derive a two-equation system in
two unknowns with a unique solution.) Let us set y = 0. This gives

x+ z=2
x+2z=1

the solution of which is

H]
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This is the same as

x 2 -1 0 2

z{=1{-1 1 0 I

¥ 0 0 0] [0 £3.29]
which can be rearranged as

X 2 -1 0 2

yi=10 0 0O !

z -1 10 0

This rearrangement can be obtained by premultiplying both sides of
3.29 by the elementary matrix

e
H
O D
_—
o= D
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In this case, obviously, according to our definition

2 -1 0
0 00
-1 10

is a generalized inverse of

The application of the generalized-inverse approach to the solution
of a system of linear equations thus involves the following steps:
Suppose the given equation system is Ax = b. Let A be of order n X n,
and let its rank be r{A) or, more simply, r. The rank of the coefficient
matrix is not affected by any rearrangement of the equations. The same
istrue of any alterations of the order in which the unknowns are written
inthe equations. If necessary, we can rearrange the equations and/ or the
order in which the unknowns appear in them, so that after the
rearrangements we have an equation system, say, A;x; = b;, whose
coefficient matrix has its top-left r by r submatrix invertible. Let this
submatrix be B, and let B be its inverse. We now border B! with n—r
columns of zeros on the right and n—-r rows of zeros at the bottom 3o as
to produce a matrix of order » X n. The matrix thus produced is a
generalized inverse of A, and by postmultiplying it by by we get a
solution to A;x; = by. Premultiplying the generalized inverse of A,
obtained above by the elementary matrix E, which is sach that Ex; = x,
we get a generalized inverse of A,

A usual notdtion for a generalized inverse of a given matrix A is A",
The general solution to an equation system Ax = b in terms of a
generalized inverse of A is

x=Ab+(I-A A [3.30]

where @ is an arbitrary column vector.
To apply the formula 3.30 to, say, the equations system 3.17, we have
from earlier calculations

o0
A=l 40
0 o0
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and, consequently,
W h o 2 3
Abh=]-% 1% 0 4f =11
0 00 8 1]
and
W % 0 1 -1 3 1 0 5/2
AA=]- K O 1 1 21=t0 1 -1j2
0 00 3 -1 8 0 0 0
so that
[3- (5/2) 6
Ab+(I-AAg = |1+ /e
| 8 [3.31]
where
[ &
8=\id
0
Notice that the solution 3.31 is the same as the one derived in 3.20.

The most common application of the generalized inverse in statistical
analysis is in connection with linear models. Thus, in regression analyses
involving categorical variables as regressors that are represented by
dummy variables, the coefficient matrix of the normal equations has less
than full rank. In the discussion of the solution to the normal equations
in such circumstances, the concept of generalized inverse is invoked.

Homogeneous Equations

We now turn to a brief discussion of what are known as homogeneous
linear equations. The equation system Ax = 0, where A is the familiar
coefficient matrix, x a vector of unknowns, and 0 avector of zerosis a
homogeneous system. Its name derives from the property that all
nonzero terms in the system are similar in that each involves an
unknown (variable) raised to the power one. Clearly, x = 0 (i.e., a zero
value for each unknown) satisfies the system of equations. Thus, given

x+ty=0
2x-y=0

it is immediately clear that x=y=01sa solution to the system. Such a
solution is usualily called the trivial solution. An interesting guestion is
whether there are circumstances under which a system of homogeneous
equations has a solution other than the trivial one. ‘
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Consider the system of equations

x+y=0
2x-y=0
4x + y=0 [3.32]

The coefficient matrix is

an echelon form of which is

Pl
0 1
¢ 0

indicating that the rank of the coefficient matrix is 2, The echelon form
also tells us that the original equation system is equivalent to

x+y=0
y=0 [3.33]

leading to the only solution x = y = 0. It can be shown in general that a
homogeneous system of linear equations Ax = @ involving n unknowns
(variables), has one and only one solution—the trivial one, x = 0-—if the
rank of the coefficient matrix is equal to the number of unknowns
involved.

Now consider the following system of equations

xty+ z=0
x-y-2z=90
3x-p-32=0

The coefficient matrix is

I 1 1
I -1 -2
3 -1 -3
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an echelon form of which is

1 11
0 1 15
0 0 0

indicating that the coefficient matrix in the present instance is of rank 2.
The echelon form also tells us that the original equation system is
equivalent to the following:

0
0

xtytz
y+15z

Inon

Setting z = @ as a parameter, this pair of equations can be written as-

x+ty= -8
y = ~1.58
or
11 x| _ -0 :
o 1 y -1.59 [3.34]
Premultiplying both sides by the inverse of [é : i ] , we get
1. [ [-e
¥ [0 | -1.50
_fr -l -0
0 1 -1.58
_] o6
| ~1.50
Therefore, the general solution is
x 0.58
ypl=1-158
B 8 [3.35]

This case is illustrative of the general result that a system of m linear
homogeneous equations Ax = 0 involving » unknowns (variables) has an
infinite number of solutions if the rank of A is less than n.
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Notice that the parameter # occurs multiplicatively on the right-hand
side of 3.35. This means that if we set 6 = 0, we get the trivial solution.
Another implication of the same feature is that each nonzero particular
solution is a constant multiple of each other nonzero solution. For
example, if we set @ = 2 and 8 = 4, we get the following solutions

1 2
-3 ~6
2 4

Clearly the second solution is twice the first. In general, in circumstances
such as the one illustrated above, if x* # 0 is a solution of Ax = 0, then
any scalar multiple of x* must also be a solution. (The circumstance
under which this result holds is when the rank of the coefficient matrix is
just one less than the number of unknowns involved.)

Consider now the following example:

x+ y+ﬁ+v=0
x-3y-u-v=0
3x- prutv=90 [3.36]

Here we have three equations in four unknowns (x, 3,2, v). The coefficient
matrix is

1 1 1 1
1 -3 -1 -1
|3 -1 1 1
with an echelon form i
1 1 1 1
0 1 1/21)2
000 0

telling us that the rank of the coefficient matrix is 2, and that the original
equation system is equivalent to

x+y +u +y=0

y+ (1/2u+(1j2Qv=0 [3.37]
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Treating u and v as parameters (say, #= § and v = ¢b), we can write 3.37 as

o] Bl Lom 23]
0 1] |» ~(1/2) 9+ ¢)
solving which we get
x{_]1 -1 (8 + )
¥ 0 1 ~-(1.2) (B8 + ¢)

RIEULECEE ]
«1/2) 6+ )

The general solution we are looking for is therefore

~(1/2) (8+ ¢)
-(1/2) 8+ ¢)
0

¢ [3.38]

< B oW o

Notice that in this case each nonzero particular solution is not a scalar
multiple of each other nonzero particular solution.

4. EIGENVALUES AND EIGENVECTORS

This chapter introduces the concepts of eigenvalues and eigenvectors.
The application of these concepts in the principal component analysis is
briefly discussed. To prepare the background, the concept of deter-
minants is introduced first,

Determinants

The early development of determinants was connected with pro-
cedures for solving simultaneous equations. Consider the following two
equations in two unknowns {x and y):

axtby=e
cxtdy=sf f4.1]
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Let us solve these equations by the method of elimination. Multiply the
first equation by ¢ and the second by a and then subract one from the
other; we get (ad ~ be)y = af - ce; hence, if (ad - be) 0,

y = (af - ce)/(ad ~ bc) [4.2]

Similarly, if we multiply the first equation in 4.1 by d and the second by
b, and then subtract one from the other, we get (ad - bo)x = de - bf:
hence, if (ed ~ bc) # 0,

x = (de - bf)/(ad - be) [4.3]
Notice that 4.2 is a ratio of two quantities, the denominator being a num-
ber calculated from the elements of the coefficient matrix A = | ¢ Z

and the numerator a similar number calculated from the elements of

¢ f
the usefulness of introducing a procedure by which a unique scalar
(ordinary number) is associated with a square matrix. The procedure
should be such that its application to the coefficient matrix of 4.1 yields
the scalar (ad - bc) and must be generalizable to higher-order matrices.
With this in mind, let us consider taking a welghted sum of the elements
of the first or the second row of

b

A=|?

such that in either case we get (ad — be). Obviously, in order to get (ad -
bc) as a weighted sum of @ and b, we must weight a by d and b by (-¢),
and to get the same result as a weighted sum of ¢ and d, we must weight ¢

by (-b) and d by a. Let us put these suggested weights in matrix form as
shown below

{“ e] - A parallel feature is characteristic of 4.3 also. This suggests

with the proposed weight for the (i,/) element of A appearing as the (i,/)
element of W. It so happens that if we omit the i row and the /* ¢column
of A and then attach the sign (1) to the remaining element we get the
(1)) element of W. Thus, if we remove the first row and second column of
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A and attach to the remaining element the sign (~1)*2, we get ~¢, which is
the (1,2) element of W. Also, we notice that

s wia < | lad=be) 0
AW'= WA [ 0 (ad—bc)]

which means that the weighted sum of the elements of any row (column)
of A using as weights the corresponding elements of W is the unique
scalar we are looking for, namely (ad - bc). We call this quantity the
determinant of A, written det(A), or more commoniy | A|, with vertical
lines on either side. The (i,j) element of W is called the cofactor of the (i,5)
element of A. This label is apt, since the reference is to a weighting factor
in the computation of |Al. _

Let us stipulate that the determinant of a (1 X I) matrix is the
numerical value of the sole element of the matrix. The cofactor of the
(i,j) element of A may now be defined as (~1)* times the determinant of
the submatrix formed by omitting the i row and the J® column of A.
Having defined determinants of (2 X 2) matrices in terms of determinants
of (1 X 1) matrices, it is possible to define the determinant of a (3 X 3)
matrix in terms of determinants of (2X2) matrices as the weighted sum
of the elements of any row or column of the given (3 X 3) matrix, using as
weights the respective cofactors—the cofactor of the (i,f) element of the
(3 X 3) matrix being (-1)* times the determinant of the (2 X 2) submatrix
formed by omitting the i*" row and /" column of the original matrix. This
definition is readily generalizable. A (3 X 3) case is examined below.

Consider the matrix

2 3 1
F={4 7 2
3 1 1

The following matrix, G, has for its (i, ) element the cofactor of the (i.f)
element of F.

5 2 -17
G=1|-2 -1 7
-1 0 2

Notice that the (1,1) element of G is (-—1)"ri times the deterrainant of the

(2 X 2) submatrix [’i ?] formed by omitting the first row and first
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column of F, the (3,2) element of G is (~1)°"* times the determinant of the
submatrix formed by omitting the third row and second column of F,
and so on.

It is easy to verify that

FG' = GF = (-Dk {4.4]

demonstrating, among other things (see below), that the weighted sum
of the elements of any row (column) of F, using as weights the respective
cofactors, is the same as the weighted sum of the elements of any other
row (column) similarly obtained, this unique number being (~1) in the
present case. We thus have [F| = -1.

Computer programs are available for the calculation of determinants.
If one uses SAS, for example, the following statements will produce the
determinant of F given above:

PROC MATRIX PRINT:
F=2 3 1/4 7 2/3 1 1
DELTA = DET(F):

The second statement sets up the matrix F (the slashes separating one
row from the rest). The next statement calls for the calculation of | 4
and for assigning the value to the variable DELTA.

Determinants do provide a method, albeit an inefficient one from the
computational point of view, for inverting nonsingular, square matrices.
The logic of the method rests on the interesting result that if M,,,, =
((my)}is any (n X n) matrix and C,, = ((c,)) is such that ¢ is the cofactor
of my(fori=1,...,mj=1,...,n),then

MC = CM = M|, [4.5]

which we have already found to hold in a particular example (see 4.4
above). This implies, among other things (see below), that if we multiply
each element of C’ by the reciprocal of | M|, provided, of course, | M| #
0, the resulting matrix is M™'. Verify this using the matrix ¥ examined
above. Applying this technique to the matrix A given earlier (the
cocfficient matrix of 4.1), we get

a bl _ 1 d b
c d| (ad- bd] |- «a
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if (ad - be) 3 0. This suggests the following easy-to-remember steps for
inverting any (2 X 2) matrix that can be inverted:

Step 1. Calculate the determinant of the matrix. If the determinant is
not equal to zero, go to the next step.

Step 2. Interchange the (1,I) element with the {2,2) element, and
change the signs of the other elements.

Step 3. Divide each element of the matrix created in Step 2 by the
determinant (if it is not equal to zero). The result is the
inverse of the original matrix.

To illustrate, consider the matrix

2 3

1 3
Its determinantis (23X 3 - 1 X 3)=3540. Interchanging the (1,1) and (2,2)
elements and changing the signs of the other elements of the given

matrix, we get
3 -3
-1 2
Dividing each clement of this matrix by 3, the determinant of the
original matrix, we get
S |
~1/3 2/3

which is the inverse of the given matrix, as can be easily verified.
Note that if the determinant of a square matrix M, = ({my)) is zero,
then from 4.5 :

MC =CM =10

where C = ((c;)) is such that ¢ is the cofactor of my(i=1,.. ., myj=1,...,
7). This means that the rows (columns) of such matrices are linearly
dependent. Such matrices, as we have already seen, cannot be inverted,
and are called singular. We may now define a singular matrix as one
whose determinant is zero. This is an alternative definition of singularity.

Determinants have several interesting properties, but we shall not
examine them here. Interested readers may refer to Martin (1969},
Noble (1969) and the references cited therein.
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Eigenvalues and Eigenvectors

Associated with a square matrix are numbers called eigenvalues and
vectors called eigenvecrors. Consider the matrix

_Joe 04
M =103 07 [4.6]
An eigenvalue of M is any number A such that MM is singular. In the

present case it is easily verified that the numbers Ay = { and A»=0.3 have
this property:

A= |06 -10) 04 .[-04 04
M- 03 (0.7 - 1.0) 03 -0.3

which is singular, and

_Jos-03) 04 T_[o3 04
“aal = | € =
M- 0.3 (0.%0.3)] [0.3 0.4]

which is also singular. Hence 1.0 and 0.3 are eigenvalues of

0.6 04

0.3 0.7
To obtain the eigenvalues we solve the determinantal or characteristic
equation |M ~Al} =0, in which A is treated as an unknown scalar, In the

present case
0.6 04 10
- = —-A
M- M l[o.s 0.7] [0 1”

0.6 - A 0.4
03 07 -A

Hence the determinantal equation just mentioned is

0.6 — A 0.4
03 07 -x

-0

which is the same as

(0.6-A)(0.7-\) ~ (0.3)(0.4) = 0
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or on simplification,
A - (13N +(0.3) =0 [4.7]

This equation, being a quadratic, has two and only two roots: A =19
and A = 0.3, which are the eigenvalues (or sometimes called the latent
roots or the characteristic roots) of the original matrix M. In the case of
a 3 X 3 matrix, the determinantal equation is a cubic; hence it has three
roots (eigenvalues). In general, an # X r matrix has n eigenvalues.
Sometimes some of the eigenvalues may be repeated. Thus, for the

matrix
3 0
0 3

the eigenvalues being the roots of the equation (3 - A)? = 0 are repeated
(= 3); we say A = 3 is of multiplicity 2 in this instance.
In some instances the eigenvalues may not be real-valued. For
example, in the case of
1 -3
R =

the characteristic equation is

=0

1-x -3
4 F-A

that is,
(1-AP+12=0

giving A1 = 1+./-17 and A2=1~/_12 as the eigenvalues, which are
obviously not real-valued, as the presence of the square root of a
negative number signifies.

It should be emphasized that solving characteristic equations is not
.always a simple matter. Fortunately, computer programs are available
for the purpose. If one uses the Matrix Procedure of SAS, for example,
the matrix is specified and its eigenvalues are created, using the
following statements:

PROC MATRIX PRINT;
A=1 2/4 3
M = EIGVAL {A);
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The second statement specifies the matrix, using the slash to separate
one row from another. The next staterment calls for the eigenvalues. The
printout shows the eigenvalues as a vector M.

If A, is an eigenvalue of a given matrix A, it is possible to find a vector
¢ such that

Ac= A [4.8]

Any cthat satisfies equation 4.8 is called an eigenvector associated with
the eigenvalue in question (= A;). If ¢ is an eigenvector, so is ke, where k is
a scalar.

For the matrix M given in [4.6], an eigenvector associated with the
eigenvalue 0.3 can be computed by solving the following equations for
the unknowns ¢; and ¢z

0.6 04 C1] . [ 5]
[0.3 047} [c;] ©0.3) [62] [4.9]
This system of equations is the same as

(0.6)(c;) + (0-4)(cy) = (0.3)(cy)
(0.3)(cp) + (0.7)cy) = (0.3)(cy)

When the terms on the right-hand side are brought to the left-hand side,
these equations become

(0.3)(c) + (0.4)(c2) = 0
(0.3)(c1) + (0.4)(c2) = 0 [4.10]

Immediately we notice that we have a system of homogeneous equations
{in two unknowns) and that the rank of the coefficient matrix is I, which
is one less than the number of unknowns. Put differently, we have only
one equation connecting the two unknowns ¢; and ¢z; an infinite number
of solutions exist, each a constant multiple of the others; and the general
solution is (treating ¢ as a parameter)

c

1= @8
<2 .

756 [4.11]

# being arbitrary (any number, positive, negative, or zero), One
particular solution is of special interest, and that is the one for which the
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sum of squares of the values is equal to unity. In the present case it is
easily seen that this particular solution is

= 08
2= -0.6 [4.12]

(To obtain these, set 8 equal to any non-zero value in4.11, then divide
cach value by the square root of the sum of squares of the values. Thus, if
fissetequal to 1, the two values are ¢; = 1 and ¢, = ~0.75; the sum of the
squares of these values is 1.5625, the square root of which is 1.25;
division now gives ¢1 = 1/1.25 = 0.8 and ¢; = (-0,75)/1.25 = -0.6.)

A particular form of 4.9 is thus

0.6 04 0.81 _ 081 .
[0.3 0.7] [4).6:1 ©.3) {«—0.6} [4.13]
(Verify by multiplication that this indeed holds.) Corresponding to the
eigenvalue 1.0 of M, we similarly obtain the eigenvector

1/ 2
i\ 2
which satisfies the equation

o3 53] [vA3]- oo i3]

Putting 4.13 and 4.14 together we get

0.6 04 [1/v/2 o08].[1/v/2 08] {10 00
03 07] |yV2 -06 1/v/2 06| |00 03

[4.14]

[4.15]

Postmultiplying both sides of 4,15 by

[z o]
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gives

0.6 04f_|{1/v/2 o8} [1.0 co] [1yv/2 O...S E
03 0.7 172 -06f {00 03] {1/V/2 -06

[4.16]

which expresses the original matrix M as a product PAP™ where Aisa
diagonal matrix (i.e., one with nonzero elements only in the principal
diagonal). Expressing a (square) matrix in this form is known as
diagonalization.

Not all square matrices can be diagonalized. An example will make
this clear. Consider the matrix '

i

This matrix has A = 3 and A; = 3 as its eigenvalues, (Notice that the
eigenvalue is repeated.) To obtain an eigenvector corresponding to A = 3
we solve for ¢; and ¢; from

28] [2]-2[¢]

3e1 = 3e
d¢) + 3¢ = 3¢,

that is, from

The solutionis ¢; = 0, ¢; = 6, where #is arbitrary. The eigenvector of unit
norm (i.e., one with the sum of squares of its elements equal to unity)
corresponding to A; = 3 is thus

(Of course, one could choose -p; instead.) We now search for an
eigenvector of unit norm corresponding to Az = 3. Obviously, p1 ob-
tained above (or -p1) qualifies to be an eigenvector associated with A, =
3. If we associate with both A; = 3 and A; = 3 the same eigenvector, say,
p1, obtained above, we get '

HENERH IS
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which is of the form

SP = PA
where P = ? ? and A = 3 g . But in this case P! does not

exist and consequently S cannot be expressed in the form 8 = PAP™. The
same is true if we associate p; with A, and ~-p; with As, or vice versa. Soit
is unproductive to associate with A; = 3 and A, = 3 eigenvectors that are
multiples of each other. We should look for an eigenvector correspond-
ingto Az =3, which is not a multiple of the eigenvector already associated
with A, = 3. This means that we should search for ¢ and d; that satisfy all
of the following conditions:

3 o] Ja]., [a
4 3] l&| "la [4.17]

where A= 3;

di 0
[dz_ ﬁk[z] [4.18]

whatever be k; and
d&i+ds =1 [4.19]

The only d: and d that satisfy 4.17 are dy = 0 and &> = 8, where 8 is
arbitrary. If the chosen d; and &» must also satisfy 4.19, # must be 1

{or —1). This leads to
0 0
HE®

as our choice for the eigenvector to be associated with A2 = 3. But neither
of these satisfies 4.18, In fact it is impossible to find 4, and & that satisfy
all the conditions laid out above. We thus have a case in which it is
impossible to find a P such that 8§ can be expressed in the form PAP™,

Another important point worth noting is that some matrices with
repeated eigenvalues have an infinite number of diagonal forms. To give
an example, consider the matrix

4 -1 -1
X=]-1 4 1
-1 1 4
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It is not difficult to verify that A, =6, A2 = 3, and A\s= 3 are the eigenvalues
of this matrix. (Notice that 3 is of multiplicity 2.) To find an eigenvector
associated with A, = 6, we solve for ¢1, ¢z, and ¢; from

4 -1 -1 4] €1
-1 4 <2 6|
-1 1 4 C3 €3
A S | Ci
-1 -2 1 €2
-1 1 -2 €3

The solution of this system is

1a -0
Vi =l | = i}
e 0 [4.20]

where £ is arbitrary. To get an eigenvector of unit norm we divide each
element of v, by the square root of the sum of squares of its elements
(after giving # a nonzero value). We get by this process

that is, from

I
[ |
< oo
[

1/v/3

13

{Notice that —p. also would be appropriate.} We now search for an
eigenvector associated with Az = 3, by solving for d, ds, and s from

4]
m=

[4.21]

4 -1 -171 [4:] d
-1 4 1 d|=3]d
-1 1 4 ds | ds

-3 L .

[4.22]

that is, from

I -1 -l di ] 0
-1 1 1 di=10
-1 1 1] |ds) 0
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the solution of this system is of the form

7]

where & and @ are both arbitrary. Not that we have a “doubly” infinite
number of choices here; we may give any value for § and any value for 6.
Suppose we give § the value 0; this leads to the following vector of unit
norm

V2
0
1jv2

(It is, of course, all right to choose -p; instead). To get an eigenvector
associated with A3 = 3 we proceed in the same way as was done in the case
of A, = 3, and find that the choice is of the form

[4] 8+ 8
o1 g | [4.24]

where 8 and 6 are arbitrary. We may choose any vector of this form that
is not a constant multiple of p, already chosen. Thus one choice may be
to set @ equal to zero. This leads to

1V 2
p = | V2
0

B -

[4.23]

We thus have the following as one of the many possible diagonalizations
of X:

X = PAP”

where
BINERRINEIRTNG) 6 0 0

p=| V3 0 1/3/2} andA={0 3 0
V3 1yJ2Z o 00 3
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Verify that

SYNEERINVEERYNEY
Pl=| V2/3 /2/3 2/2/3
V2/3 2213 V273

and that PAP™! indeed reproduces X.
It may be of interest to note in passing that

1/V6
2/ 6 [4.25]
“1\/6 '

is also a possible choice for an eigenvector of unit norm corresponding
- to A3 = 3. (This vector was arrived at by requiring, to begin with, that
when 4,24 is premultiplied by p2’from 4.23 we get 0. The motivation for
doing so will become clear later. The vector thus obtained when trans-
formed to one of unit norm yielded 4.25.) With 4.21, 4.23, and 4.25 the
diagonalization becomes X = QAQ’ where

-1V3 UV2Z e
Q= {1/V3 0 2/vé
V3 YV2Z -1y6

and QQ° = I. We return in section 4.4 to matrices that can be
diagonalized in this latter fashion. We close this section by pointing out
that diagonalization of a matrix facilitates obtaining higher powers of
the matrix.

Thus, if

"M = PAP
we noticé that

M’ = MM

(PAP)(PAPT)
PA(P'P)AP™
PA’P™

1&

and similarly

M® = PA’P!
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and in general
M" = PA"P
The attractiveness of this result is that since A is diagonal we can find
its powers easily (by simply raising the diagonal elements to the desired

power).
From 4.16 we thus have

06 04F _[1//2 o8] {10 00 1/v/2 o8l
0.3 0.7 1/v2 -06] [00 ©3)] |1j/2 06

For large n we know that (0.3)" is practically equal to zero. Hence, for
large n ,

[0-5 0-4]”: (12 o.s] [1.0 0.‘0] [1;\/'2‘ g.g]—i

03 0.7 12 06 0.0 00 /v 2 0.6

_Tyv2 00] fuvz2 os]’
[ 1/V/2 00 12 -06

37 47
| 3/7 4)7

Principal Components

Principal component analysis is a multivariate technique for ex-
amining relationships among several quantitative variables. It is often
used for summarizing data. Thus given, for each county in the United
States, data on per capita income, median years of education, percentage
unemployed, homicide rate, percentage of women in correctional
institutions, and so on, the analyst might be interested in exploring the
possibility of summarizing the given data in terms of as few linear
combinations of the data as possible with as little sacrifice of informa-
tion as possible.

Given a data set with p quantitative variables, p principal compo-
nents may be computed, each of which is a linear combination of the
original variables, using as weights the elements of the eigenvectors of
the correlation or covariance matrix or the matrix of sum of squares and
products (corrected for the mean). The eigenvectors are customarily
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TABLE 4.1

Person Test 1 Test 2 Person Test 7 Test 2
i 0.9 0.2 7 0.0 -1
2 0.8 0.4 g ~0.2 -0.7
3 0.5 0.4 9 -0.2 -0.6
4 0.2 0.6 10 -0.5 0.4
5 0.2 0.7 tt -(.8 -0.4
6 0.6 0.1 12 -0.9 -0.2

taken with unit-norm (i.e., with the sum of squares of elements equaling
unity). The principle behind the method can be illustrated in a simple
example.

Suppose we are given the datashown in Table 4.1. Imagine that these
are test scores, of 12 persons on two tests, expressed as deviations from
the respective means.

The matrix of sums of squares and products computed from these
figures is :

Test1  Test2

1356 1.92 Test 1
T 1192 2.44 Test 2

The first step in the principal component analysis is the computation of
the eigenvalues and their associated eigenvectors of the correlation
matrix, the variance-covariance matrix, or, very infrequently, of the
matrix of sums of squares and products. I will focus on the last-
mentioned. The corresponding results for the variance-covariance
matrix can be easily obtained from those based on the sums of squares
and products.

The determinantal equation giving the eigenvalues of Wis {W-Al} =
0, that is

356 -A 192

=0 4,
1.92 244 - A [4.2€]

which is the same as

(3.56 — A)(2.44 - A) - (1.92)° = 0
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or, on simplification,

M-B6A+5=0 [4.271
Solving this quadratic equation, we get A; = 5 and A» = 1 as the eigen-

values. Now, to obtain the eigenvector associated with the eigenvalue 5,
we solve the equation system

356 192 al. sl
1.92 2.44 2 2 [4.28]
which is equivalent to

144 +1.92¢,=0
192 ¢ ~2.56 2= 0 [4.29]

The coefficient matrix in 4.29 is of rank 1, hence the number of
solutions is infinite. [Verify that both of the equations in 4.29 are
equivalent to (-0.75) c1* ¢2 = 0.] The general solution is, treating ¢; as a
parameter,

ca=8
o = 0,758

and the particular solution with unit-norm is

¢ =08
c2=0.6 [4.30]

Similarly, corresponding to the eigenvalue 1 we have the eigenvector

[3‘ ] given by the solution to the equation
2
3.56 1.92] {di]|_ d
[ 1.92 2.44] [dz] =0 [d;] 14.31]
This equation system is equivalent to

256d1+1.92d:=0
1.92d1+144 d4,=0 [4.32]
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for (4/3)d\ + d2 = 0 repeated], with the general solution (treating 4, as a
parameter)

d=8
dy = -{4/3) 8

leading to the solution with unit-norm

di= 0.6
d = -08 [4.33}

The eigenvector 4.30 provides the weights for forming one linear combi-
nation of the original variables, and the eigenvector 4.33 provides
another set of weights. We can thus form the following linear combina-
tions of the test scores of person I:

[0.9 0.2] [0-8]

0.9 02 [_g-g]

The former is the score on the first principal component and the latter
the score on the second principal component. The scores thus calculated
for all the cases in Table 4.1 are shown in Table 4.2.

Notice that the sum of squares (corrected for the mean = 0) of the
scores on component 1is 5, and that the sum of squares of the scores on
component 2 is 1, these being equal to the corresponding eigenvalues.

The strategy usually followed in the principal component analysis is,
as was done above, to sort the principal components by descending
order of the eigenvalues. This is to help decide which components
collectively capture most of the information in the data. In the
iHustrative material presented above, we may, for example, declare that
the given data can be effectively summarized in terms of the first compo-
nent, since the corresponding eigenvalue is five-sixths of the sum of the
two eigenvalues. The following model for the data lies behind this
approach:

Y=XB+E {4.34]
where (speaking in general terms)

Y isann X p matrix of centered, observed variables(n=12andp=2
in our illustrative case);
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X isthen X k matrix of scores on the first & principal components (in
the illustrative case k = 1, and X is the vector in column 2 of Table :
4.2); "

B isthe k X p matrix of eigenvectors (in our illustrative case B =[0.8
0.6], the eigenvector corresponding to the larger of the two
eigenvalues); and

E isan#n X p matrix of residuals (in our illustrative case Eisa 12X 2
matrix).

It is possible to show that the first k principal components give a
least-squares fit of the model 4.34, minimizing the sum of squares of ali
the elements in E. For the illustrative material presented above, the
various parts of 4.34 are as shown below:

0.9 02 0.672  0.504 0.228 -0.304
0.8 04 0.704  0.528 0.096 -0.128
0.5 04 0.512 038 |- | -0.012 0.016
0.2 0.6 0.416 0312 -0.216  0.288
0.2 07 0.464  0.348 -0.264  0.352
0.0 01| = | 0048 0036 ]+ | -0048 0064
0.0 -0.1 -0.048 -0.036 0.048 -0.064
02 07 ~0.464 -0.348 0.264 -0.352
02 -0.6 0416 -0.312 0.216 -0.288
05 041 [-0512 -0384 0.012 -0.016
08 0.4 -0.704 -0.528 -0.096  0.128
.09 -02) [-0672 -0504] [ -0228 0304
[4.35]

Verify that the first matrix on the right of 4.35 results from postmulti-
plying the column vector of scores on component 1 (Table 4.2) by
[0.8 0.6], and that the second matrix on the right results from
postmultiplying the column vector of scores on component 2 by
0.6 -0.8]. Verify also the following for the representation in 4.35.

—The sum of squares of the elements in the first matrix on the right
is equal to 5, and the sum of squares of the elements in the second
matrix on the right is equal to 1.

—When the two sums of squares mentioned above are added
together the result equals the sum of squares of the elements in the
matrix on the left.
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TABLE 4.2
Person Component 1 Component ?
-1 0.84 0.38
2 0.88 .18
3 0.64 -0.02
4 0.52 —-0.36
5 0.58 -0.44
8 0.06 -(.08
7 -0.06 0.08
8 ~0.58 0.44
9 -0.52 - 0.38
10 -0.64 0.02
11 -0.88 -0.16
12 -0.84 -0.38
Sum of squares 5.00 1.00
Sum of products 0.0

The decomposition 4.35 suggests that we may think of the principai
component method as one that decomposes a given matrix of centered
observations into two parts, one of which pertains to k of the larger
eigenvalues of the matrix of sum of squares and products and the other
pertains to the remaining smaller eigenvalues.

Symmetric Matrices

In the preceding section, as we discussed the matrix of sums of
squares and products of observations on two or more variables, we
failed to take particular note of the point that such matrices are symmet-
ric in that their (i,/) element is equal to their (7,i) element, for all / and I
Obviously this notion applies only to square matrices. We do come
across symmetric matrices frequently in our research. The variance-
covariance matrix, the correlation matrix, and the identity matrix of
any order are examples of symmetric matrices.

Symmetric matrices whose elements are all real numbers (as distin-
guished from imaginary or complex numbers) are called real symmetric
matrices. A few of their properties are mentioned below.

In the preceding section we saw that the real symmetric matrix

. [356 192
W [1.92 2.44]
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has A: = 5 and Az = | as its eigenvalues and that [gg] and { g‘g]are

eigenvectors with unit-norm corresponding to these eigenvalues. To

make it more interesting, let us use instead of 0.6

~(.8
{'gg] as the eigenvector associated with Az = 1. Diagonalization of W

using these eigenvalues and eigenvectors gives
w = |08 -0.6 50 08 06"
0.6 08 o ! 06 038

. {08 0.6 50 0.8 06
06 08 0 1 -0.6 0.8

which is of the form PAP’, where A is a diagonal matrix and P satisfies
the relationship PP’ = P'P = 1. This result holds in general for real
symumetric matrices.

iIf A is an 1 X n real symmetric matrix with eigenvalues A, ..., An,
including repetitions (multiplicities), there exists a matrix P such that A
= PAP’, where A is a diagonal matrix whose /™ diagonal element is A;and
an eigenvector corresponding to A; forms the i column of P, with P
satisfying the relationship PP’ = P'P = L. (In passing, we note that any
matrix P that satisfies the relationship PP’ = P'P = 1 is called an
orthogonal matrix.)

it can be shown that real symmetric matrices have only real numbers
for their eigenvalues and that corresponding to any eigenvalue of a real
symmetric matrix, it is possible to find a real eigenvector.

Furthermore, it can be shown that real symmetric matrices of the
form X’X (e.g., the matrix of sums of squares and products) have only
real nonnegative numbers for their eigenvalues. You might have guessed
that this should be so, when the correspondence between the eigenvalues
of W and the sums of squares of scores on principal components was
mentioned in the preceding section.

Symmetric matrices have several other interesting properties, but
space limitation prevents any discussion of them here.

] its negative, Le.,
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