
This book is about data analysis. In the social and behavioral sciences we often collect
batches of data that we hope will answer questions, test hypotheses, or disprove theories.
To do so we must analyze our data. In this chapter, we present an overview of what
data analysis means. This overview is intentionally abstract with few details so that the
“big picture” will emerge. Data analysis is remarkably simple when viewed from this
perspective, and understanding the big picture will make it much easier to comprehend
the details that come later.

OVERVIEW OF DATA ANALYSIS

The process of data analysis is represented by the following simple equation:

DATA = MODEL + ERROR

DATA represents the basic scores or observations, usually but not always numerical,
that we want to analyze. MODEL is a more compact description or representation of
the data. Our data are usually bulky and of a form that is hard to communicate to others.
The compact description provided by the model is much easier to communicate, say, in
a journal article, and is much easier to think about when trying to understand phenomena,
to build theories, and to make predictions. To be a representation of the data, all the
models we consider will make a specific prediction for each observation or element in
DATA. Models range from the simple (making the same prediction for every observation
in DATA) to the complex (making differential predictions conditional on other known
attributes of each observation). To be less abstract, let us consider an example. Suppose
our data were, for each state in the United States, the percentage of households that had
internet access in the year 2013; these data are listed in Figure 1.1. A simple model
would predict the same percentage for each state. A more complex model might adjust
the prediction for each state according to the age, educational level, and income of the
state’s population, as well as whether the population is primarily urban or rural. The
amount by which we adjust the prediction for a particular attribute (e.g., educational
level) is an unknown parameter that must be estimated from the data.

The last part of our basic equation is ERROR, which is simply the amount by which
the model fails to represent the data accurately. It is an index of the degree to which the
model mispredicts the data observations. We often refer to error as the residual—the part
that is left over after we have used the model to predict or describe the data. In other words:

ERROR = DATA – MODEL
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The goal of data analysis is then clear: We want to build the model to be a good repre -
sentation of the data by making the error as small as possible. In the unlikely extreme
case when ERROR = 0, DATA would be perfectly represented by MODEL.

How do we reduce the error and improve our models? One way is to improve the
quality of the data so that the original observations contain less error. This involves better
research designs, better data collection procedures, more reliable instruments, etc. We
do not say much about such issues in this book, but instead leave those problems to
texts and courses in experimental design and research methods. Those problems tend to
be much more discipline specific than the general problems of data analysis and so are
best left to the separate disciplines. Excellent sources that cover such issues are Campbell
and Stanley (1963), Cook and Campbell (1979), Judd and Kenny (1981a), Maruyama
and Ryan (2014), Reis and Judd (2014), Rosenthal and Rosnow (2008), and Shadish,
Cook, and Campbell (2002). Although we often note some implications of data analysis
procedures for the wise design of research, we in general assume that the data analyst
is confronted with the problem of building the best model for data that have already
been collected.

The method available to the data analyst for reducing error and improving models
is straightforward and, in the abstract, the same across disciplines. Error can almost always
be reduced (never increased) by making the model’s predictions conditional on additional
information about each observation. This is equivalent to adding parameters to the model
and using data to build the best estimates of those parameters. The meaning of “best

2 Data Analysis: A Model Comparison Approach

FIGURE 1.1 Percentage of households that had internet access in the year 2013 by US state

i US State Percentage i US State Percentage

1 AK 79.0
2 AL 63.5
3 AR 60.9
4 AZ 73.9
5 CA 77.9
6 CO 79.4
7 CT 77.5
8 DE 74.5
9 FL 74.3

10 GA 72.2
11 HI 78.6
12 IA 72.2
13 ID 73.2
14 IL 74.0
15 IN 69.7
16 KS 73.0
17 KY 68.5
18 LA 64.8
19 MA 79.6
20 MD 78.9
21 ME 72.9
22 MI 70.7
23 MN 76.5
24 MO 69.8
25 MS 57.4

26 MT 72.1
27 NC 70.8
28 ND 72.5
29 NE 72.9
30 NH 80.9
31 NJ 79.1
32 NM 64.4
33 NV 75.6
34 NY 75.3
35 OH 71.2
36 OK 66.7
37 OR 77.5
38 PA 72.4
39 RI 76.5
40 SC 66.6
41 SD 71.1
42 TN 67.0
43 TX 71.8
44 UT 79.6
45 VA 75.8
46 VT 75.3
47 WA 78.9
48 WI 73.0
49 WV 64.9
50 WY 75.5
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estimate” is clear: we want to set the parameters of the model to whatever values will
make the error the smallest. The estimation of parameters is sometimes referred to as
“fitting” the model to the data. Our ideal data analyst has a limited variety of basic models.
It is unlikely that any of these models will provide a good fit “off the rack”; instead, the
basic model will need to be fitted or tailored to the particular size and bulges of a given
data customer. In this chapter, we are purposely vague about how the error is actually
measured and about how parameters are actually estimated to make the error as small
as possible because that would get us into details to which we devote whole chapters
later. But for now the process in the abstract ought to be clear: add parameters to the
model and estimate those parameters so that the model will provide a good fit to the
data by making the error as small as possible.

To be a bit less abstract, let us again consider the example of internet access by
state. An extremely simple model would be to predict a priori (that is, without first
examining the data) that in each state the percentage of households that has internet
access is 75. This qualifies as a model according to our definition, because it makes a
prediction for each of the 50 states. But in this model there are no parameters to be
estimated from the data to provide a good fit by making the error as small as possible.
No matter what the data, our model predicts 75. We will introduce some notation so
that we have a standard way of talking about the particulars of DATA, MODEL, and
ERROR. Let Yi represent the ith observation in the data; in this example Yi is simply
the percentage of households that have internet access for the ith state. Then our basic
equation:

DATA = MODEL + ERROR

for this extremely simple model becomes:

Yi = 75 + ERROR

We can undoubtedly improve our model and reduce the error by using a model that
is still simple but has one parameter: predict that the percentage is the same in all states,
but leave the predicted value as an unspecified parameter to be estimated from the data.
For example, the average of all 50 percentages might provide a suitable estimate. We
will let �0 represent the unknown value that is to be estimated so that our slightly more
complex, but still simple, model becomes:

Yi = �0 + ERROR

It is important to realize that we can never know �0 for certain; we can only estimate it.
We can make our model yet more complex and reduce the error further by adding

more parameters to make conditional predictions. For example, innovations reputedly
are adopted on the east and west coasts before the middle of the country. We could
implement that in a model that starts with a basic percentage of internet use (�0) for all
states, which is adjusted upward by a certain amount (�1) if the state is in the Eastern
or Pacific time zones and reduced by that same amount if the state is in the Central or
Mountain time zones. More formally, our basic equation now has a more complex
representation, namely:

Yi = �0 + �1 + ERROR if the state is in the Eastern or Pacific time zones

Yi = �0 – �1 + ERROR if the state is in the Central or Mountain time zones
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In other words, our model and its prediction would be conditional on the time zone in
which the state is located.

Another slightly more complex model would make predictions conditional on a
continuous, rather than a categorical, predictor. For example, we might make predictions
conditional on the proportion of college graduates in a state, presuming that college
graduates are more likely to be internet users. We again start with a basic percentage of
internet users (�0) for all states, which is adjusted upward by a certain amount (�1) for
each percentage point a state’s proportion of college graduates is above the national
average and reduced by the same amount for each percentage point a state’s proportion
of college graduates is below the national average. More formally, letting Xi represent
the amount a state’s proportion of college graduates is above or below the national
average:

Yi = �0 + �1Xi + ERROR

In words, the percentage of college graduates is the condition in this model on which
we base our differential or conditional prediction of a state’s internet use.

We can continue making our model yet more complex by adding parameters to make
similar adjustments for income, urban versus rural population, etc. By so doing we will
be adding still more implicit hypotheses to the model.

It might appear that the best strategy for the data analyst would be to add as many
parameters as possible, but this is not the case. The number of observations in DATA
imposes an inherent limit on the number of parameters that may be added to MODEL.
At the extreme, we could have separate parameters in our model for each observation
and then estimate the value of each such parameter to be identical to the value of its
corresponding DATA observation. For example, our prediction might contain statements
such as, if the state is Kentucky, then estimate its parameter to be 68.5, which is the
percentage of households in Kentucky that have internet access. That procedure would
clearly reduce the error to zero and provide a perfect fit. But such a model would be
uninteresting because it would simply be a duplicate of data and would provide no new
insights, no bases for testing our theories, and no ability to make predictions in slightly
different circumstances. A paramount goal of science is to provide simple, parsimonious
explanations for phenomena. A model with a separate parameter for each observation
is certainly not parsimonious. Our ideal model, then, is a compact description of the
data and has many fewer parameters than the number of observations in data.

We now have an obvious conflict. The goal of reducing the error and providing the
best description of DATA leads us to add parameters to the model. On the other hand,
the goal of parsimony and the desire for a compact, simple model lead us to remove
parameters from the model. The job of the data analyst is to find the proper balance
between these two conflicting objectives. Thus, the ultimate goal is to find the smallest,
simplest model that provides an adequate description of the data so that the error is not
too large (“too large” will be defined later). In still other words, the data analyst must
answer the question of whether it is worthwhile to add yet more parameters to a model.

Returning to the example of internet access, we will want to ask whether the extra
complexity of making predictions conditional on time zone, educational level, income,
urban versus rural population, etc. is worth the trouble. By so doing, we will simul -
taneously be asking whether the hypotheses implicit in the more complex models are
true. For example, if we decide that conditioning our prediction of internet access on
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the percentage of college graduates is not worthwhile, then we will have effectively
rejected the hypothesis that college education is related to higher internet access. This
is the essence of testing hypotheses.

Although we are still being vague about how to measure the error, we can be more
precise about what we mean by: “Are more parameters worthwhile?” We will call the
model without the additional parameters the compact model and will refer to it as Model
C. The alternative, augmented model, Model A, includes all the parameters, if any, of
Model C plus some additional parameters. The additional parameters of Model A may
reduce the error or leave it unchanged; there is no way the additional parameters can
increase the error. So it must be that:

ERROR(A) � ERROR(C)

where ERROR(A) and ERROR(C) are the amounts of error when using Models A and
C, respectively. The question of whether it is worthwhile to add the extra complexity
of Model A now reduces to the question of whether the difference between ERROR(C)
and ERROR(A) is big enough to worry about. It is difficult to decide based on the absolute
magnitude of the errors. We will therefore usually make relative comparisons. One way
to do that is to calculate the proportional reduction in error (PRE), which represents
the proportion of Model C’s error that is reduced or eliminated when we replace it with
the more complex Model A. Formally:

The numerator is simply the difference between the two errors (the amount of error
reduced) and the denominator is the amount of error for the compact model with which
we started. An equivalent expression is:

If the additional parameters do no good, then ERROR(A) will equal ERROR(C), so PRE
= 0. If Model A provides a perfect fit, then ERROR(A) = 0 and (assuming Model C
does not also provide a perfect fit) PRE = 1. Clearly, values of PRE will be between 0
and 1. The larger the value of PRE, the more it will be worth the cost of increased
complexity to add the extra parameters to the model. The smaller the value of PRE, the
more we will want to stick with the simpler, more parsimonious compact model.

For example, ignoring for the moment how we calculate the error, assume that total
ERROR = 50 for the simple model that says that internet access is the same in all states
and that ERROR = 30 for the model with the additional parameter for the percentage
of college graduates. Then, ERROR(C) = 50, ERROR(A) = 30, and:

That is, increasing the complexity of the model by considering educational level would
reduce the error by 40%.

Let us review where we are. We have transformed the original problem of the
conflicting goals for the model (parsimony and accurate representation of data) into a

PRE =
ERROR(C) − ERROR(A)

ERROR(C)

PRE = 1 −
ERROR(A)

ERROR(C)

PRE = 1 −
30

50
= .40
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consideration of the size of PRE for comparing Model C and Model A. Unfortunately,
we have still not solved the problem of the conflicting goals for the model, because 
now we must decide whether a given PRE (e.g., the 40% reduction in the previous
example) is big enough to warrant the additional parameter(s). The transformation of
the original problem has moved us closer to a solution, however, for now we have a
PRE index that will be used no matter how we finally decide to measure the error. More
importantly, PRE has a simple, intuitive meaning that provides a useful description of
the amount of improvement provided by Model A over Model C.

Deciding whether a PRE of, say, 40% is really worthwhile involves inferential
statistics. An understanding of inferential statistics must await the details of measuring
the error, sampling distributions, and other topics that are developed in Chapters 2, 3,
and 4. We can, however, now specify two considerations that will be important in
inferential statistics. First, we would be much more impressed with a PRE of, say, 
40% if it were obtained with the addition of only one parameter instead of with four or
five parameters. Hence, our inferential statistics will need to consider the number of
extra parameters added to Model C to create Model A. PRE per parameter added will
be a useful index. Second, we noted that n, the number of observations in DATA, serves 
as an upper limit to the number of parameters that could be added to the model. We will
be more impressed with a given PRE as the difference between the number of parameters
that were added and the number of parameters that could have been added becomes
greater. Hence, our inferential statistics will consider how many parameters could have
been added to Model C to create Model A but were not. In other words, we will be more
impressed with a PRE of 40% if the number of observations greatly exceeds the number
of parameters used in Model A than if the number of observations is only slightly larger
than the number of parameters.

The use of PRE to compare compact and augmented models is the key to asking
questions of our data. For each question we want to ask of DATA, we will find
appropriate Models C and A and compare them by using PRE. For example, if we want
to know whether educational level is useful for predicting the percentage of households
that have internet access, we would compare a Model C that does not include a parameter
for educational level to a Model A that includes all the parameters of Model C plus an
additional parameter for educational level. If Model C is a simple model (i.e., a single-
parameter model that makes a constant prediction for all observations), then we are asking
whether educational level by itself is a useful predictor of internet access. If there are
other parameters in Model C, then we are asking whether educational level is a useful
predictor of internet access over and above the other parameters. (We discuss this at
length in Chapter 6.) As another example, if we want to ask whether several factors,
such as time zone, educational level, urban versus rural population, and income, are
simultaneously useful in predicting internet access, we would use PRE to compare a
Model C that did not have parameters for any of those factors to a Model A that did
have those parameters in addition to those in Model C.

In the usual language for statistical inference, Model C corresponds to the null
hypothesis and Model A corresponds to the alternative hypothesis. More precisely, the
null hypothesis is that all the parameters included in Model A but not in Model C are
zero (hence, the name “null”) or equivalently that there is no difference in error between
Models A and C. If we reject Model C in favor of Model A, then we reject the null
hypothesis in favor of the alternative hypothesis that is implied by the difference between
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Models C and A. That is, we conclude that it is unreasonable to presume that all the
extra parameter values in Model A are zero. We discuss this fully in Chapter 4.

NOTATION

To facilitate seeing interrelationships between procedures, we use consistent notation
throughout. Yi represents the ith observation from DATA. The first observation is
numbered 1 and the last is n, for a total of n observations in DATA. Ŷi represents the
Model’s prediction of the ith observation. Y will always represent the variable that we
are trying to predict with our model. Other variables giving information about each
observation on which we might base conditional predictions will be represented by X.
In other words, X will always be used to represent the predictor(s) of Y. So, Xij represents
the value of the jth predictor variable for the ith observation. For example, in the internet
access example the 50 percentages would be represented as, Y1, Y2, . . . Y50, with n = 50.
Xi1 could be 1 if the state is in the Eastern or Pacific time zones, and –1 if the state is
in the Central or Mountain time zones. In this example, we could use Xi2 to represent
the proportion of college graduates, in which case the value of Xi2 would be the proportion
of college graduates for the ith state.

For model parameters we will use �0, �1, . . ., �j, . . ., �p–1, for a total of p parameters.
Even if we were to know the values of these parameters exactly, we would not expect
the model to predict the data exactly. Instead, we expect that some random error will
cause the model to predict less than perfectly. We let �i represent the unknown amount
by which we expect the model to mispredict Yi. Thus, for the simple model, the basic
equation:

DATA = MODEL + ERROR

can be expressed in terms of the true parameter �0 and the error �i as:

Yi = �0 + �i

We can never know the true � parameters (or �) exactly. Instead, we will have
estimates of � that we will calculate from the data. These estimates will be labeled, b0,
b1, . . ., bj, . . ., bp–1, respectively. We use Ŷi to represent the prediction for the ith
observation based on the calculated b values. We then let ei represent the amount by
which the predicted value or Ŷi mispredicts Yi; that is:

ei = Yi – Ŷi

The Greek letters � and � represent the true but unknowable parameters and the Roman
letters b and e represent estimates of those parameters calculated from DATA. For the
simple model, the model part of the basic data analysis equation is:

MODEL: Ŷi = b0

and we can express that basic equation in terms of our parameter estimates as either:

Yi = Ŷi + ei

or

Yi = b0 + ei
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Either of the two previous equations are estimates for the basic equation expressed in
terms of the unknown parameters as:

Yi = �0 + �i

The quantity �jXij tells us how much we should adjust the basic prediction for the
ith observation based on the jth predictor variable. For example, if Xij equals the
proportion of college graduates in a state, then �j specifies how much to adjust, upward
or downward, depending on the sign of �j, the internet access prediction for particular
states. A more complicated model involving more parameters can be expressed as:

Yi = �0 + �1Xi1 + �2Xi2 + . . . + �jXij + . . . + � p–1Xi,p–1 + �i

Ŷi, the MODEL portion of the data analysis equation, is then represented in terms of the
parameter estimates as:

MODEL: Ŷi = b0 + b1Xi1 + b2Xi2 + . . . + bjXij + . . . + bp–1Xi,p–1

The equation:

DATA = MODEL + ERROR

can again be expressed in two ways:

Yi = Ŷi + ei

or

Yi = b0 + b1Xi1 + b2Xi2 + . . . + bjXij + . . . + bp–1Xi,p–1 + ei

Note that when � values are used on the right side of the equation the appropriate symbol
for the error is always �i and when b values (i.e., estimates of �s) are used on the right
side of the equation the appropriate symbol for the error is always ei. The reason is that
in the first instance the error �i is unknown, while in the second instance an estimated
value ei can actually be calculated once Ŷi is calculated.

We will have to develop a few special symbols here and there, but in general the
above notation is all that is required for all the models we consider in this book.

SUMMARY

The basic equation for data analysis is:

DATA = MODEL + ERROR

The data analyst using this equation must resolve two conflicting goals: (a) to add
parameters to MODEL so that it is an increasingly better representation of DATA with
correspondingly smaller ERROR, and (b) to remove parameters from MODEL so that
it will be a simple, parsimonious representation of DATA. Resolving this conflict is
equivalent to asking whether the additional parameters are worth it. We use PRE, the
index of the proportional reduction in error, to answer this question by comparing
appropriately chosen Models C and A. In the traditional language of statistical inference,
this is equivalent to comparing a null hypothesis and an alternative hypothesis. The next
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several chapters provide the information necessary to judge when PRE is large enough
to warrant rejecting Model C in favor of Model A.

We use consistent notation throughout the book to specify our statistical models. Y
represents the variable that we are trying to predict (“y-hat,” that is, Ŷ, represents a
predicted value of Y) and X represents a predictor variable. Lower-case Greek letters
represent true, but unknown, characteristics of the population and Roman letters represent
the estimates of those characteristics. Thus, � represents a true, but unknown, population
parameter and b represents an estimate of that parameter, which is calculated from DATA.
Similarly, �i represents the true, but unknown, error of prediction and ei represents an
estimate of that error, which is calculated from DATA. The same statistical model might
therefore be expressed using unknown population parameters, for example, Yi = �0 +
�1Xi1 + �i, or using symbols that represent estimates that are calculated from DATA, for
example, Yi = b0 + b1Xi1 + ei. Finally, we may also express the model in terms of predicted
values, for example, Ŷi = b0 + b1Xi1.
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