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SERIES EDITOR’S INFRODUCTION

The classical regression model is straightforward. Take the usual three-
variable, multiple regression example, with ¥ the dependent variable, X,
and X, the independent variables. We may write Equation 1 as

Y=a+bX +bX,+e {1]

where a, b, and b, are population parameters to be estimated and e repre-
sents the error term. Assuming the necessary assumptions are met, then the
ordinary least squares (OLS) estimator would be the best linear unbiased
estimator (BLUE). This OLS equation appears additive in that the terms
are added up to account for ¥ and none of the variables themselves are
multiplied together. But suppose the independent variables are
multiplied together, forming a product term, X,X,, and the equation is
rewritten as Equation 2,

Y=a+bX +bX,+b(XX,)+e [2]

We now have an equation for which variable values are additive and non-
additive. The product, or multiplicative, term (X X,) is also called an inter-
action term. Its coefficient, b,, estimates the interaction effect. The question
is, what does it mean?

Usually, first-year graduate students in the social sciences find this ques-
tion hard to answer. They understand the interpretation of effects in the addi-
tive model of Equation 1. b, indicates the expected change in ¥ for a unit
change in X|, holding the X, constant. But how do we interpret b,, the coef-
ficient of the nonadditive term in Equation 27 When the effect of X, on ¥
depends on the value of X,, an interaction effect is present. That interaction
effect is estimated by b,. Consider this illustration: ¥ = individual contribu-
tions to political campaigns measured in dollars, X, = income in dollars, X, =
education (scored 0 = no college, 1 = at least some college). If the researcher
makes the plausible argument that the effect of income on contributions is




vi

greater among the college educated, then the interaction specification of
Equation 2 is preferred to Equation 1.

Obviously, there are many times when the interaction hypothesis—the
impuact of one variable depends on the value of another—would merit test-
ing. But in a review of published studies, it does 0ot pop up that often. That,
1 suggest, is because the interaction idea can be hard to grasp and hence the
singular importance of this second edition. Dr. Jaccard and Dr. Turrisi make
the interpretation and estimation of interaction effects in a regression model
crystal clear. As a glance at-the table of contents shows, this volume is sig-
nificantly changed and updated from the first edition, which appeared i
1990. The valuable old points remain. For instance, they emphasize that it
is simply inadequate © examine interactions by looking within the separate
categories of the moderator variable, for example, in our illustration above,
looking at a regression of campaign contributions on income within the
college and noncollege groups. Further, they provide an often forgotien
insight: The true metric is in the data, not the measure. Hence, for testing
interactions with regression, what is important is the extent to which the
measure comes close to an underlying interval property in the data. Also,
there are many new topics, such as interaction models with clustered data
and random coefficient models. Indeed, perusing the hibliography, one can
count 30 references to works appearing since the first edition.

The practicing research worker must be able to posit, interpret, and esti-
mate interaction effects with facility. Careful study of this volume enables
that to happen in the regression context. With regard to the study of inter-
actions in other, perhaps more advanced, research contexts, the reader
should consult the other interaction monographs Professor Jaccard has
authored or coauthored in this series, namely, “ISREL Approaches t0
Interaction Effects in Multiple Regression,” No. 114, and “Interaction
Effects in Factorial Analysis of Variance,” No. 118,

—Michael S. Lewis-Beck
Series Editor




PREFACE

This revised edition of Interaction Effects in Multiple Regression has the
same intent as the first edition, namely, to introduce the reader to the basics
of interaction analysis using multiple regression methods with one or more
continuous predictor variables. The monograph is neither a technical nor an
advanced exposition of this complex topic. Qur goal is to present a nontech-
nical, introductory orientation to the interpretation of traditional interaction
models that use product terms. The monograph is oriented toward the
researcher with rudimentary background in multiple regression. We have
avoided complex formulas, which can be intimidating to applied researchers.
As an alternative, we have provided the reader with simple (but sometimes
cumbersome) computer-based heuristics that permit the calculation of
parameter estimates and estimated standard errors that typically will be of
interest. The first three chapters are elementary, with Chapter 4 touching on
a wide range of more advanced issues. The intent of Chapter 4 is to alert
readers to relevant advanced issues, give them an overview of the advanced
issues, and then provide them with references that permit them to follow up
on the issues in more detail.

We would like to thank the anonymous reviewers who provided us with
feedback on this revision as well as the series editor, Michael Lewis-Beck,
for his perceptive and useful commentary and support.

vii







INTERACTION EFFECTS
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SECOND EDITION

JAMES JACCARD
University ar Albany
State University of New York

ROBERT TURRISI
Boise State University

1. INTRODUCTION

Many theoretical frameworks in the social sciences focus on causal models.
These models specify the effects of one or more independent variables on
one or more dependent variables or outcome variables. At the simplest
level, there are six types of relationships that can occur within a causal
model, as illustrated in Figure 1.1. A direct cavsal relationship is one in which
a variable, X, is a direct cause of another variable, ¥. It is the immediate
determinant of ¥ within the context of the theoretical system. An indirect
causal relationship is one in which X exerts a causal impact on ¥ but only
through its impact on a third variable, Z. A spurious relationship is one in
which X and Y are related but only because of a common cause, Z. There is
no formal causal link between X and Y. A bidirectional or reciprocal causal
relationship 1s one in which X has a causal influence on ¥, which in turn has
& causal impact on X, An unanalyzed relationship is one in which X and ¥
are related but the source of the relationship is unspecified. Finally, a
moderated causal relationship is one in which the relationship between X and
¥ is moderated by a third variable, Z, In other words, the nature of the
relationship between X and Y varies, depending on the value of Z.

This monograph is concerned with the statistical analysis of moderated rela-
tionships and focuses on the case where one or more of the independent vari-
ables (or predictor variables) is continuous in nature. Moderated relationships
often are called interaction effects, although precise conceptualizations of
interaction effects vary across statistical models. Qur focus is on analyzing
moderated relationships in multiple regression. There currently exists confu-
sion about the analysis of moderated relationships involving continuous

1




Direct Causal Relationship Iadirect Causal Relationship

Bidirectional Causal Relationship

Moderated Causal Relationship

]

Figure 1.1 Examples of Causal Relationships

variables using multiple regression-based methods. “Fhe substantive literature
is replete with contradictory advice and admonitions about the best way to test
such models. The major purpose of this monograph is to bring together the
rather diverse literature on this topic and to explicate the central issues involved
in conducting analyses of moderated relationships involving continuous vari-
ables. Our goal is to present a readable and practical introduction for the social
science researcher who has working knowledge of multiple regression.

In this chapter, we briefly review key concepts in the analysis of interac-
tions in social science research. We begin by considering the concept of




interaction in general and then explicate the concept of a simple main effect
and an interaction contrast. We then review basic multiple regression
procedures in order to provide a framework for future chapters, including
the use of dummy variables, the effects of simple transformations on
regression coefficients, and the calculation of predicted scores.

The Concept of Interaction

As noted, there are many ways in which interaction effects have been
conceptualized in the social sciences and there is controversy about the best
way to think about the concept. One popular school of thought conceptualizes
interaction effects in terms of moderated relationships. This perspective can
be illustrated using a three-variable system in which one of the variables
is construed as an outcome variable, a second variable is viewed as an
independent variable, and a third variable is viewed as a moderator variable.
In this system, the outcome variable is thought to be influenced by the
independent variable. An interaction effect is said to exist when the effect
of the independent variable on the dependent variable differs depending on
the value of a third variable, called the moderator variable. For example, the
effect of the number of years of education on income may differ depending
on one’s ethnicity. Education may have a larger impact on income for some
ethpic groups than for other ethnic groups. In the moderator framework,
income is the outcome variable, the number of years of education is the
independent variable, and ethnicity is the moderator variable, As another
example, the effect of social class on how often someone uses a health
clinic may vaty depending on gender. In this case, how often someone uses
a health clinic is the outcome or dependent variable, social ¢lass is the inde-
pendent variable, and gender is the moderator variable. Gender is said to
“moderate” the effect of social class on clinic use.

The moderator approach to interaction analysis requires that a theorist
specify a moderator variable and what we call a focal independent variable.
The focal independent variable is the variable whose effect on the dependent
variable is thought to vary as a function of the moderator variable. Most
formal research questions readily lend themselves to the specification of
one of the predictors as having “moderator” status. For example, a
researcher might want to determine if a clinical treatment for depression is
more effective for males than for females. It is evident in this case that
gender is the moderator variable and the presence versus absence of the
treatment is the focal independent variable.

Situations arise where one theorist’s moderator variable is another theo-
rist’s focal independent variable and vice versa. For example, a consumer




psychologist who studies product quality and product choice might be
interested in the effect of product quality on product purchase decisions and
how this is moderated by the pricing of products. In conirast, a marketing
researcher using the same experimental paradigm as the consumer psycholo-
gist might be interested in the effect of product pricing on product purchase
decisions and how this is moderated by product quality. In both cases, the
designation of the moderator variable follows from the practical and theo-
retical orientations of the researchers. Neither specification is better than
the other, and, as we will see, statistically, the results of an interaction
analysis will be the same in the two conceptualizations. The two designa-
tions simply represent different perspectives on the same phenomena and
guide the researchers to emphasize different aspects of the data.

Situations also arise where the theorist is unsure which variable should
have moderator status. Suppose a researcher is examining the effects of
gender and ethnicity on attitudes toward abortion. He or she might want to
characterize how gender differences in such attitudes vary as a function of
ethnicity. In this case, gender is the focal independent variable and ethnic-
ity is the moderator variable. The researcher also might be interested in
characterizing ethnic differences in attitudes toward abortion and how these
ethnic differences vary as a function of gender. In this case, ethnicity is the
focal independent variable and gender is the moderator variable. There is
nothing to prevent the researcher from characterizing the data from both
perspectives in such scenarios. It is all a matter of what is of substantive
interest. We return to this issue in more depth in Chapter 4.

Other approaches for conceptualizing statistical interaction are discussed
in Jaccard (1998) and Jaccard and Dodge (2003). The moderator approach
is commonly invoked in substantive research domains, even though
researchers sometimes do not even realize they are doing so. Interaction
effects can be difficult to imbue with substantive meaning in an applied
research sefting, and most researchers who do so successfully ultimately
fall back on the moderator framework. Given its popularity and concepiual
ease, we adopt the framework in this monograph. In Chapter 4, we revisit
alternative frameworks for thinking about interactions.

Simple Effects and Interaction Contrasts

'Two important concepts in moderator analysis are simple effects (also called
simple main effects) and single degree-of-freedom interaction contrasts.
These concepts are best illustrated using qualitative predictor variables in a
factorial design. Suppose a social scientist identifies 300 married individuals,
half of whom are male and half of whom are female (but they are not




TABLE 1.1
Attitudes Toward Abortion as a Function
of Gender and Religion
Catholic Frotestant Jewish
Females 50. 6.0 7.0
Males 3.0 3.0 3.0

married to one another). One third of the individuals are Catholic, one third
are Protestant, and one third are Jewish, This yields a 2 > 3 factorial design
that crosses gender by religion. The researcher is interested in how gender
and religion are related to attitudes toward abortion, which is measuredon a
0 to 10 scale, with higher scores indicating more favorable attitudes. The
mean values for each subgroup are presented in Table 1.1. Suppose that, in
this particular case, the researcher decides to conceptualize religion as the
moderator variable and gender as the focal independent variable.

Simple Effects

There are many questions that the researcher can pose of these data. One
common question is whether the focal independent variable (gender) has an
effect on the outcome variable at each level of the moderator variable con-
sidered separately. Answering this question involves comparing the mean
for males with the mean for females just for Catholics, doing so again just
for Protestants, and then doing so again just for Jews. That is, the researcher
conducts three significance tests, one at each level of the moderator vari-
able. These contrasts are commonly called simple effects or simple main
effects. They focus on the effect of the focal independent variable on the
outcome variable at a given level of the moderator variable. For the data in
Table 1.1, the simple effect of gender for Catholics is a test of significance
of the mean difference of 5.0 -3.0=2.0.

Another way of thinking about simple effects is that they are conditional
effects. A simple effect is the effect of the independent variable on the out-
come variable conditioned on the moderator variable being equal to a
particular value (e.g., conditioned on the moderator variable being equal to
the value “Iewish™).

Interaction Contrasts

Simple main effects often are of conceptual interest, but they have little
to do with interaction effects (even though some researchers think they




do-—a point to which we return later). For an interaction effect to exist in
the moderator framework, the effect of the focal independent variable on
the outcome variable must differ depending on the tevel of the moderator
variable. For example, the gender difference between males and females
must be different for Catholics than it is for Protestants or different for
Catholics than it is for Jews or different for Protestants than it is for Jews.
For the data in Table 1.1, the gender difference for Catholics s the female
mean minus the male mean focusing on just the Catholics, or 5.0 -3.0 =
2.0. The gender difference for Protestants is the female mean minus the
male mean focusing on just the Protestants, or 6.0 — 3.0 = 3.0. The gender
difference for Catholics (2.0} 18 ‘smaller than the gender difference for
Protestants (3.0), and this suggests an interaction effect; that is, the effect
of gender on attitudes toward abortion depends on the religion of the indi-
vidual. This effect can be captured in a single number by caleulating the
difference between the two mean differences, 2.0 — 3.0 = 1.0. The fact that?
this estimated interaction parameter is not Zero Suggests that an interaction
effect is present. Of course, the nonzero value may simply reflect sampling
error, so a formal significance test of the estimated parameter would need
to be performed.

The above example illustrates what is called a single degree-of-freedom
interaction contrast. It is an interaction contrast because it explicitly com-
pares the effect of the focal independent variable on the outcome variable
at one level of the moderator variable with the corresponding effect at
another level of the moderator variable. The gender difference for Catholics
(2.0) was formally contrasted with the gender difference for Protestants
(3.0}, Because the statistical test of the contrast has only a single degree of
freedom in the numerator, it is called a single degree-of-freedom interaction
contrast. For greater discussion of such contrasts, see Jaccard (1996).

Single degree-of-freedom interaction contrasts are at the heart of interaction
analysis. They represent focused tess of the interaction. They are distin-
guished from omnibus interaction tests, which can involve more than a single
degree of freedom. Omnibus interaction significance tests are global tests of
interaction that focus on the independent variable and the moderator vatiable
in their entirety rather than on subgroups within them. In the factorial design
of Table 1.1, the omnibus test of interaction focuses on the overall interaction
between gender and religion, which in this case has 2 degrees of freedom (df).
By contrast, the example we used for a single degree-of-freedom interaction
contrast focused on a 2x2 subtable of the overall design. In practice,
researchers rarely are content to make statements only at the omnibus level.
Usually, more focused questions are pursued that turn to single degree-of-
fresdom interaction contrasts.




We can now make explicit why simple main effects do not elucidate the
dynamics of statistical interaction. Interaction contrasts formally compare
the effect of an independent variable on a dependent variable at one level of
the moderator variable with that at another level of the moderator variable.
By contrast, simple main effects make no such comparison. A simple main
effect focuses on only one level of the moderator and asks if the indepen-
dent variable has an effect at that particular level. For example, is there a
gender difference for just Catholics? But the test of significance of this
simple effect does not compare the effect with any other group (i.e., it does
not compare the effect with that for Protestants or Jews). It simply does not
address the issue of statistical interaction.

We can illustrate the point another way using a correlation example.
Suppose that two variables, X and ¥, are correlated .24 for males and .22 for
females. Suppose that the correlation is statistically significant for males
(p < .05) but not for females { p > .03). The significance tests within each
group are analogous to simple effect tests. Can we conclude from these
tests that the correlation between X and Y is stronger for males than it is for
fermales? Of course not. Even though the correlation is statistically significant
in one group but not in the other group, we can only say that the correlations
differ if we directly test the difference between the two correlations. This
test of the difference between the two correlations (which in this case is
not statistically significant) is analogous to a test of interaction in the
moderator framework.

In sum, our discussion of interaction analysis in later chapters will consider
simple effects (which also are called conditioned effects), single degree-of-
freedom interaction contrasts, and omnibus tests of interaction. All three types
of tests potentially are of conceptual interest and all manifest themselves in
interaction models using multiple regression. Although we have used qualita-
tive variables and a simple factorial design to illustrate these concepts, we will
see their counterparts in regression models with continuous predictors.

A Review of Multiple Regression

This section assumes that the reader is familiar with the basics of multiple
regression. The intent is to introduce terminology and a frame of reference
from which future discussions follow. For useful introductions to multiple
regression, see Berry and Feldman (1985}, Cohen and Cohen (1983), Lewis-
Beck (1980), or Schroeder, Sjoquist, and Stephan (1986). As is traditional,
we will use Greek notation and letters to refer to population coefficients
and population data and Arabic letters to refer to sample estimates of the
coefficients and sample data.
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The Linear Model

Consider the case of three continuous variables, where the investigator is
interested in the effects of two independent variables, X, and X,, on a
dependent variable, ¥. The analysis in a set of sample data typically takes
the form of a least squares regression equation such that

Y=a+bX, +bX;+e

where g is the least squares estimate of the population intercept, b, and b, are
the least squares estimates of the population regression coefficients for X,
and X,, respectively, and e is a residual term. In this approach, several
assumptions about the structure of the population data are required in order
to apply ordinary least squares (OLS) analysis and its inferential tests in
a strict sense: (1) The linear model being tested is the true modet for all
members of the population, (2) the residual terms in the population are
independently distributed with a mean of zero, (3) the predictor variables
are fixed in nature and have positive vartance, (4) the rank of the sample
data matrix equals the number of columns and is less than the number of
observations (i.e., there is not complete multicollinearity), and (5) the
residuals at a given fixed set of values of the X are normally distributed and
have a variance that is equal to the residual variance at any other fixed set
of vatues of X. When these assumptions are satisfied, an QLS estimator is
said to be the best linear unbiased estimator (BLUE) in that it is linear,
unbiased, and has minimum variance in the class of all linear unbiased esti-
mators. Inferential tests are straightforward when these assumptions are
met. Some of these assumptions can be relaxed with minor consequences
to inferential tests or parameter estimation, whereas other assumption viola-
tions are problematic. For example, although many research applications
rely on cases where the predictors are stochastic rather than fixed, OLS
remains a viable approach if one assumes stochastic predictors conditional
on the actual sample of observed Xs. We discuss issues of assumption
violation in greater depth in Chapter 4.

The sample multiple correlation coefficient, R, is an index of overall
model fit in the sample, and the regression coefficients often are interpreted
as the “effect” of an X variable on Y partialing out atl other X variables in the
equation. Specifically, a given b represents the number of upits that ¥ is pre-
dicted to change given a one-unit increase in X while “holding all other Xs
constant.” If all variables are standardized, then the intercept always equals
zero and the b represent standardized regression coefficients. The interpre-
tation of these coefficients is the same except that all units are expressed in




terms of standard scores. Thus, a standardized » value of 1.5 for a predictor
variable X implies that for every one standard score that X increases, Y is
predicted to change 1.5 standard scores. Some social scientists prefer the
use of standardized scores to unstandardized scores in multiple regression
analysis because all of the variables are then thought to have a common
metric and 1t supposedly is easier to make substantive comparisons of the
magnitude of the coefficients for different independent variables. We discuss
this issue in more detail in Chapter 4.

Consider the following example: A sociologist is interested in the extent to
which overall satisfaction with one’s marital relationship can be predicted
from satisfaction or dissatisfaction with six distinct components of the refa-
tionship. Three hundred thirty-nine individuals rate how satisfied or dissatis-
fied they are with their overall marital relationship, using an 11-point, ~5
to + 3, rating scale ranging from very dissatisfied to very satisfied (with higher
numbers indicating greater satisfaction). In addition, the individuais rate (on
an identical scale) how satisfied they are with the following six aspects of their
relationships: the amount of communication, the way affection is expressed,
the amount of emotional support, the level of shared interests, the amount of
time spent together, and the way conflict is resolved. The investigator performs
a multiple regression anatysis in which overall marital satisfaction is regressed
onto the six components. Table 1.2 presents the results of the analysis using
abbreviated versions of a computer printout from SPSS.

The squared multiple correlation was .663, which indicates the proportion
of variance in the ratings of overall marital satisfaction that could be
accounted for by the linear combination of the six component parts in the
sample data. The null hypothesis that the population multiple correlation
equals zero is tested by means of an F test, reported underneath the first table.
The F is statistically significant [F(6, 332) = 108.70], leading us to reject the
nuil hypothesis. The standardized and unstandardized regression coefficients
are presented in the lower part of Table 1.2. As noted above, an unstandard-
ized coefficient reflects the nuraber of units that overall satisfaction is pre-
dicted to change given a one-unit increase in the X variable in question,
holding all other X variables constant. For example, for every one rating scale
unit that satisfaction with the amount of emotional support increases, the
overall satisfaction with the marital relationship is predicted to change 0.307
rating scale units, holding all other satisfaction variables constant. By con-
trast, a one-unit increase in satisfaction with the amount of time spent
together is associated with only a 0.005-unit predicted increase in overall sat-
isfaction, holding all other components constant. The standardized coeffi-
cients are subject to the same form of interpretation but in terms of standard
scores rather than raw scores.
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Each unstandardized regression coefficient has associated with it an
estimated standard error (see the column labeled “Std. Error™). These
statistics represent estimates of how much sampling error is operating when
estimating the regression coefficients in the population. More specifically,
the estimated standard error indicates (roughly speaking) the average devia-
tion of sample estimates from the true value of the population patameter
across all possible random samples of size N. The larger the standard error,
the greater the amount of sampling error that is operating, everything else
being equal, and the less confidence we have in the accuracy of the sample
estimate.

The column labeled " indicates the ¢ test for the null hypothesis that a
given regression coefficient equals zero. The value of ¢ equals the value
of the regression coefficient divided by its estimated standard error. The
column labeled “Sig.” presents the p value for the 7 statistic. In this example,
all the regression coefficients are statistically significant (p < .05) except the
one asscciated with satisfaction about the time spent together.

Finally, additional insights into the relationship of each predictor to
the criterion can be gained by examination of the zero-order correlations
between each predictor and the criterion (see column labeled “Zero-
Order™) and the semipartial correlations between a given predictor and the
criterion with all remaining predictors partialed out of the predictor (see
the column labeled “Part”™). The former statistic, when squared, reflects the
proportion of explained variance in overall marital satisfaction that is
accounted for by a given predictor when all other components of satisfaction
are free to vary. The latter statistic, when squared, indicates the proportion
of variance in overall marital satisfaction that is uniquely associated with
a given component of satisfaction holding constant all other compo-
nents, For example, satisfaction with emotional support accounts for
(100%0.72)(0.72) = 51.5% of the variance in overall marital satisfaction.
This predictor uniquely accounts for (100)(0.24)(0.24) = 5.8% of the vari-
ance in marital satisfaction over and above that which is accounted for by
the other five predictors.!

Hierarchical Regression

Often, researchers perform hierarchical multiple regression. In these
cases, the investigator is interested in whether adding one or more predic-
tor variables to an existing regression equation will significantly increase
the predictability of the criterion, The amount of incremental explained
vaniance is typically evaluated by subtracting the squared multiple correla-
tion in the original equation from the squared multiple correlation in the
expanded equation. The difference in the squared multiple comrelations is
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the amount of incremental explained variance due to the additional predictors.
For example, if the difference equals .10, then an additional 10% of
explained variance in the criterion has resulted by the inclusion of the addi-
tional predictors. A test of the null hypothesis that the incrernent in the
squared multiple correlation is zero in the population is yielded by the
following equation:

F (R§ - Rlz)"'(k:z - k})
T (1~ RYIN k- 1)

[1.1]

where R, is the multiple R for the expanded equation, R, is the multiple R
for the original equation, k, is the number of predictors in the expanded
equation, k, is the number of predictors in the original equation, and N is the
total sample size. The resulting F is distributed with k, — k, and N~ k, ~ 1
degrees of freedor.

The hierarchical test often is framed in terms of the effects of adding
predictors to a base equation, as above. However, sometimes it is framed in
terms of deleting predictors from an equation. Suppose we have a regres-
sion equation with six predictor variables and we want to determine the effect
on the squared multiple correlation if we drop two of them from the model.
The change in the squared Rs between the two equations reflects the pro-
portion of explained variation that is lost by dropping the two predictors. A
test of the statistical significance of the drop in explained variance uses
Bquation 1.1, where R, is the multiple correlation for the model with the -
greater number of predictors and R, is the multiple correlation for the model
with the fewer numbet of predictors.

Categorical Predictors and Dummy Variables

Regression analysis often inchudes categorical variables as predictors,
such as gender, ethnicity, and religious affiliation. Such variables are repre-
sented in the equation using dummy variables. A dummy variable is a vari-
able that is created by the analyst to represent group membership. For
example, in the case of gender, we can create a dumnmy variable and assign
a 1 to all males and a O to all females. This method of scoring is called
“dummy coding” and involves assigning a 1 to all members of one group
and a 0 to everyone else. When a qualitative variable has more than two lev-
els, it is necessary to specify more than one dummy variable to capture
membership in the different groups. In general, one needs m — 1 dummy
variables, where m is the pumber of levels of the variable. Suppose we had
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as a predictor variable a person’s party affiliation that could take on three
values, Democrat, Republican, or Independent. In this case, we need
3 —1=2 dummy variables to represent party affiliation. For the first dummy
variable, Dy, we assign all Democrats a 1 and everyone else a (. For the
second dummy variable, Dy, we assign all Republicans a | and everyone
else a 0. Although we could create a third dummy variable for Independents
and assign them a 1 and everyone else a 0, such a variable is completely
redundant with the other two dummy variables. Once we know whether
someone is a Democrat and whether someone is a Republican (by means of
the first two dummy variables), we know by definition whether he or she is
an Independent. The reasoning behind this is more evident if ore considers
a dummy variable for gender. We create a single dummy variable to
discriminate the two groups, whereby males are assigned a score of 1 and
females a score of 0. If we create a second dummy variable that assigns a
score of 1 to females and a score of O to males, it is perfectly negatively
correlated with the first durnmy variable and hence redundant. With dummy
coding, the group that does not receive 2 1 on any of the dummy variables
is called the reference group for that variable. In the examples above, the
reference group for gender is females and for party affiliation the reference
group is Independents. The choice of which group is the reference group is
arbitrary from a statistical point of view.

Suppose that we regress a measure of attitudes toward abortion onto a
categorical variable of religion. The attitude variable ranges from 0 to 100,
with higher scores indicating more positive attitudes. The religion variable
has three groups, Catholic, Protestant, and Jewish. It is represented by two
dummy variables, one in which all Catholics receive a 1 and everyone else
receives a 0 (D) and the other where all Protestants receive a I and every-
one else receives a 0 (D). The Jewish respondents are the reference group.
Suppose that the regression analysis yielded a squared muitiple correlation
of .30. This indicates that religion accounts for 30% of the variance in the
attitudes toward abortion. The F test of significance for the multiple correla-
tion tests the nuil hypothesis that religion has no effect on attitudes toward
abortion in terms of mean differences between the three groups. The unstan-
dardized regression coefficients for the two dummy variables are meaningfully
interpreted. Each coefficient reflects a mean difference. Specifically, the
coefficient is the mean difference between the group scored 1 on the dummy
vatiable minus the reference group. Suppose that the regression coefficient
for D was —1.0. This indicates that the mean for Catholics minus the mean
for Jews is —1.0, or that Catholics, on average, have an attitude toward abortion
that is 1.0 unit Jower than that of Jews. The regression coefficient for D,
was —.5, indicating that Protestants, on average, have an attitude toward
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abortion that is one half a unit Jower than that of Jews. The significance tests
for the regression coefficients are tests of significance of the mean difference
in question.

If the above analysis was repeated but a continuous predictor was added
to the regression equation, then the interpretation of the regression coeffi-
cients associated with the dummy variables stitl focuses on mean differ-
ences, but they are mean differences holding constant the other variables
(i.e., the continuous variable) in the model. For example, if a measure of
social class was added to the equation and the regression coefficient for D,
became —.8, then this is the predicted mean difference between Catholics
and Jews holding constant of covarying out social class.

There are many ways in which scores can be assigned to dummy
variables. As noted, we used a method called “dummy scoring” that
relies on ones and zeros. Hardy (1993) discusses the logic of different
coding schemes. Dummy coding is useful becanse it maps well onto the
moderator conception of interaction effects, as will be shown in later
chapters.

Predicted Values in Multiple Regression

Suppose a set of data is analyzed in which dollar contributions to an
environmental group promoting the cleanup of a river are predicted from
gender and a measure of ideology that reflects conservatism-liberalism.
The ideology measure ranges from —3 to + 3, with zero representing a
neutral point and increasingly negative scores representing greater levels
of conservatism and increasingly positive scores representing greater
ievels of liberalism. Gender is represented by 4 dummy variable, with
males scored 1 and females scored 0. The outcome measure is in units
of dollars. Suppose that the apalysis yielded the following regression
equation:

¥’ = 10.00 + —5.50Gender + 1.001declogy 1.2

where Y is the predicted amount of money that the individual donates.
We can calculate a predicted value of ¥ for any given profile of predictor
variables by substituting the values for the predictors into the equation.
For example, the predicted donation for males who have ideology scores
of +2 is

¥’ = 10.00 + —5.50(1) + 1.00(2) = 6.50




15

What is the predicted donation for males who have an ideology score of 27
By substitution, we obtain

Y =10.00+-5.50(1) + 1.00(-2)=2.50
We will make use of such predicted values in later expositions.

Transformations of the Predictor Variables

1t is possible to perform aigebraic manipulations on the predictor vari-
ables prior to performing a regression analysis to force the coefficients to
reflect parameters that are of theoretical interest. The utility of doing so will
be illustrated in later chapters, but we establish the basic logic here.
Suppose that, prior to conducting the regression analysis in the previous
example, we subtract a constant of 1 from the ideology scale. Whereas the
original scale ranged from: -3 10 +3, the new scale ranges from —4 to +2,
as each score is shifted down one unit. The results for the regression analy-
sis using this transformed score are as follows:

¥ =11.00 + —5.50Gender + 1.00ldeology,

Note that the only parameter affected by this transformation is the inter-
cept, with the other coefficients being identical to the original analysis,
The intercept is the predicted value of ¥ when gender is 0 and when
the transformed ideology value is 0. But a 0 on the transformed ideology
variable represents a +1 on the original ideology variable. The intercept in
this second analysis should equal the predicted value for females who have
an ideology score of +1 in the original analysis. This is indeed the case. In
the original equation,

Y =10.00 +-5.50(0) + 1.00(1) = 11.00

which is the same as the intercept in the second analysis. Why would one
want to perform such transformations? Almost all computer packages
report not only the parameter estimates for a regression equation but also
the estimated standard errors and confidence intervals for a given estimate,
Using transformations such as the above represents a simple (but cumber-
some) way for calculating the confidence interval for the predicted mean ¥
value of any predictor profile. Simply transform each predictor by adding
or subtracting a constant so that a score of zero on the transformed variable
represents the predictor value on the original scale that you are interested
in. The intercept term from the equation using the transformed predictors
will then provide the predicted mean Y value for that particular profile, and
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the confidence interval for the predicted mean will be those associated with
the intercept term. In the absence of transformations of this nature, the
intercept term sometimes has Hmited interpretational value because it may
reflect the predicted mean Y for the case where values of zero on the
predictors are nonexistent of outside of the range of the values being studied.
We make use of the transformation strategy and variants of it in later chapters,
and it will be a key strategy used to isolate a variety of significance tests
and confidence intervais.

Overview of the Book

In the remainder of this book, we discuss a range of issues pertinent to
interaction analysis. Our focus is primarily on the analysis of continuous
predictor variables and mixtures of continuous and qualitative predictor
variables because excellent treatments already exist for the case of all
qualitative predictor variables (e.g., Cohen & Cohen, 19%83). In Chapter 2,
we focus on two-way interactions and introduce traditional product term
analysis as a means of analyzing bilinear interaction effects. In Chapter 3,
we consider three-way interactions. Chapter 4 focuses on assorted tOpICs
that have emerged in the formal literature on interaction analysis and that
will assist the applied researcher in thinking about fundamental issues
when using interaction models.

2. TWO-WAY INTERACTIONS

In this chapter, we first consider general issues with the specification of
interaction models in multiple regression. We then consider the analysis of
two-way interactions where both of the predictor variables are continuous
in form. Finally, we discuss the case where one of the predictors is qualita-
tive and one is continuous.

Regression Models With Product Terms

Consider the case of three continuous variables, where the investigator is
interested in the effects of two independent variables (X and Z) on a depen-
dent variable (¥). To use a concrete example, suppose that an investigator
is interested in understanding why some teenagers engage in sex without
using birth control although other feenagers tend to use birth control. A
sample of 125 sexually active female teenagers is studied, and for each teen,
a measure of their intention to use birth control is obtained. The measure
consists of a rating scale with endpoints “definitely do not intend to use birth
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control” to “definitely intend to use birth control” Scores can range from 0
to 30, with higher scores indicating a stronger intention to use birth control.
The researcher hypothesizes two classes of factors that influence this inten-
tion. The first is the individual’s personal feelings or attitude toward using
birth control, that is, how favorably or unfavorably the individual person-
ally feels about birth control. The second factor is the perceived peer pres-
sure to use birth control. Each of these factors, attitudes and perceived peer
pressure, is measured on a 5-point scale ranging from 1 to 5. For the atti-
tude measure, the higher the score, the more favorably the individual per-
sonally feels about using birth control. For the peer-pressure measure, low
scores imply relatively little peer pressure to use birth control and high
scores imply increasingly higher levels of pressure.

As noted in Chapter 1, the test of an additive (or “main-effects”) model
for predicting ¥ from X and Z typically takes the form of a least squares
regression equation, where the population model is

Y=a+BX+B,Z+e [2.11

Application of Equation 2.1 involves regressing the measure of intention onto
the measures of attitudes and peer pressure, respectively. Suppose that the
investigator was interested in exploring the presence of an interaction effect.
Specifically, the researcher hypothesized that the relationship between atti-
tudes and intention is moderated by the amount of peer pressure that is
present: When peer pressure is minimal, personal attitudes will exert a strong
effect on intentions. However, when peer pressure is strong, the influence of
attitudes will be less, In this case, the focal independent variable is the attitude
toward using birth control (X} and the moderator variable is peer pressure (Z).

The most common approach to modeling interactions in regression
analysis is to use product terms. We can illustrate the basic logic of product
terms in interaction models by simple algebra. If the effect of attitedes on
intentions is reflected by {, in Equation 2.1 and if Z is thought to moderate
the effect of attitudes on intentions, then it follows that as Z varies, the
value of 3, also should vary. One way of expressing how B, might vary as
a fanction of Z is in terms of a linear function:

B=a+B2Z [2.2]
According to this formulation, for every one unit that Z changes, the value
of 3§, is predicted to change by P, units. We now substitute the right-hand

side of the above expression for B, in Equation 2.1, yielding

Y=o+ (o' +B20X+BZ+e
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Multiplying this out yields
Y=o+ X+PBXZ+P2+e

and after assigning new labels to the coefficients and rearranging terms, we
obtain an interaction model with a product term:

Y=o+ X+BZ+BXZ+re [2.3]

This exposition is an oversimplification because other types of interaction
models lead to the same equation and other equation forms evolve from dif-
ferent interaction models. OQur goal here is merely to provide the reader
with a sense of the rationale behind the use of a product term to reflect
an interaction where the effect of the focal independent variable on the
outcome variable is said to be a linear function of the moderator variable.

Two Continuous Predictors

The Traditional Regression Strategy

We illustrate crucial points in the analysis of interaction effects using the
prior example predicting intentions from attitudes and peer pressure. The
data for this example are in Table 2.1. They are hypothetical and have been
constructed to have unrealistically systematic properties in order to illus-
trate later points in our discussion. For pedagogical purposes, the data can
be arranged into a factorial table, with mean ¥ scores represented at each
combination of X and Z. This has been done in Table 2.2. This table is
essentially a 5 x 5 factorial design.

The most popular approach to analyzing the interaction effect in muitiple
regression uses a strategy recommended. by Cohen and Cohen (1983). It
involves forming the product term, XZ, which is said to encompass the inter-
action effect, and then to calculate two R? values, one for the “main-effect-only”
model (Bquation 2.1) and another that adds the product term to the main-
effect model, yielding the three-predictor equation for a set of sample data:

Y=a+bX+bZ+bXZ+e [2.4]

If an interaction effect is present, then the difference between the two
R values should be statistically significant (barring a Type i error). The
formal significance test of this difference uses the hierarchical F test of
Equation 1.1.




TABLE 2.1
Hypothetical Data for Interaction Example
I ¥y X Z D ¥y X Z D b4 X Z
1 3 1 1 43 7 2 4 85 19 4 2
2 4 1 1 4 8§ 2 4 86 12 4 3
35 1 1 45 9 2 4 87 13 4 3
4 6 1 1 46 4 2 3 88 14 4 3
5 07 1 1 47 5 25 8 15 4 3
6 3 1 Z 48 6 2 5 20 16 4 3
7 4 1 2 49 7 25 91 9 4 4
8 5 1 2 50 8 2 5 92 10 4 4
9 6 1 2 51 13 3 1 93 11 4 4
w7 1 2 2 14 3 1 94 12 4 4
I1 3 1 3 53 15 3 1 95 13 4 4
2 4 1 3 54 16 3 1 % 6 4 35
13 5 1 3 55 17 3 1 97 7 4 5
4 & 1 3 56 11 3 2 9% 8 4 5
15 7 1 3 57 12 3 2 99 9 4 3
% 3 1 4 58 13 3 2 0w 10 4 5
17 4 1 4 % 14 3 2 1 23 5 1
18 5 1 4 80 15 35 2 1w 24 5 1
19 6 1 4 61 9 3 3 103 25 53 1
20 7 1 4 62 10 3 3 04 26 5 i
210 3 15 63 11 3 3 105 27 5 i
2 4 1 5 64 12 3 3 ws 19 5 2
23 5 1 5 65 13 3 3 07 2w 5 2
24 6 1 5 66 i 3 4 108 21 5 2
25 7 1 3 67 8 3 4 109 22 5 2
26 8 2 1 68 9 3 4 116 23 3 2
2709 2 1 69 10 3 4 1m 13 5 3
2% 10 2 1 01l 30 4 1z 6 5 3
2 11 2 1 71 3 3005 13 17 5 3
3 12 2 1 77 6 3 5 114 18 5 3
31 7 2 2 37 35 s 1 53
32 8 2 2 74 8 3 5 il6 i1 5 4
33 9 2 2 59 3 5 117 125 4
34 10 2 2 7% 18 4 1 118 13 5 4
3 1 2 2 7719 4 1 i 4 5 4
3% 6 2 3 78 2 4 1 2 15 5 4
3w 7 2 3 79 21 4 1 121 7 5 5
38 8 2 3 & 22 4 1 i22 8 5 5
39 9 2 3 81 i5 4 2 123 9 5 3
40 10 2 3 82 16 4 2 124 10 5 5
44 5 2 4 8 17 4 2 5 11 35 5
2 6 2 4 8 18 4 2
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TABLE 2.2
Cell Means as a Function of X and Z
Peer Pressure (Z)

Attitude (X) 1 2 3 4 bl
5 25 21 17 13 9
4 20 17 14 11 8
3 i3 13 11 9 7
2 10 9 8 7 6
1 5 5 5 3 5

Analyzing the data in Table 2.1 via standard multiple regression proce-
dures without the product term yields a multiple R for the two-term
additive model of .00139. The regression equation is

Y=80+3.0X+-20Z+e¢ 2.5

The multiple R for the three-term interaction model is 96825, and the
regression equation is

Y=—10+60X+1.0Z+-1.0XZ+¢ [2.6]
Applying Equation 1.1 yields the following:

F (0.96825% — 0.90139%/(3 — 2)

= =1242.26
(1 — 0.96825%/(125 -3 - 1)

For 1 and 121 df, the F is statistically significant, implying the presence
of statistical interaction. The hierarchical F' test yields the same p value as
that of the t test for the statistical significance of b, in Equation 2.4. For
our data, the ¢ for b, was 15.56. The square of this is the same as the
observed F, namely (15.56)(15.56) = 247 26. Thus, instead of conducting
the hierarchical test to determine statistical significance of the interaction
effect, one simply can examine the significance test for b,.

We now consider selected issues central to this analysis. We use the birth-
control example to discuss these issues. Afterward, we apply the concepts {0
a new example in order to illustrate typical analytic strategies in practice,
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The Form of the Interaction

As noted, simple product terms permit the investigator to test for the
presence of a moderated relationship. In principle, there is a wide variety
of moderated relationships that can characterize an interaction effect
between continuous variables. For example, one functional form is when
the slope between ¥ and X changes as a linear function of scores on Z. This
is called a bilinear interaction, and the data in Table 2.2 have this form.
When peer pressure is low, equaling a score of 1, the slope of intentions
on attitudes is high, namely 5.0: For every one unit that attitudes change,
intentions are predicted to change five units. As peer pressure increases,
the slope decreases, For example, when peer pressure equals 3, the slope
of intentions on attitudes equals 3.0: For every one unit that attitudes
change, intentions are predicted to change three units. Note that there is a
simple linear reiationship between changes in peer pressure and changes
in the slope of intentions on attitudes. Every time peer pressure increases
by one unit, the slope decreases by one unit. This orderly, monotonic,
linear relationship bhetween changes in the stope and changes in the
moderator variable is the essence of statistical interaction as measured by
traditional product terms.

Other types of functional forms are possible. For example, it might be the
case that changes in the intention-attitude slope are relatively large as one
moves from Jow peer pressure to moderate amounts of peer pressure.
However, as one progresses from moderate to high peer pressure, the
changes in slopes may become less dramatic until they reach a point of
minimal change. Alternatively, the relationship between intentions and atti-
tudes may be nonlinear in form. The shape (rather than the slope) of the
curve between the independent variable and dependent variable may
change as a function of peer pressure. The number of possible functional
forms of moderated relationships involving continuous predictor variables
is infinite. An important point to remember is that simple product terms as
used in HEquation 2.4 test for only one functional form, namely, a bilinear
interaction. Failure to obtain a statistically significant interaction using
traditional product terms may reflect the presence of an alternative functional
form rather than the absence of a moderated relationship. In Chapter 4, we
discuss strategies for identifying alternative forms of interactions and
strategies for testing them. In the ideal situation, a theory will predict the
presence of a specific functional form and then the data analyst will
construct the appropriate model to test for that functional form. In the
remainder of this section, we restrict our attention to the analysis of bilinear
interactions.
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Interpreting the Regression Coefficient for the Product Term

All of the regression coefficients yielded by Equation 2.4 are subject to
meaningful interpretation. We first consider b, the regression coefficient
associated with the product term. b, is a single-degree-of-freedom interac-
tion contrast that conveys information about the nature of the interaction. It
indicates the number of units that the slope of ¥ on X changes given a one-
unit increase in Z. In our example, the value of by is ~1.0. This means that for
every one unit that peer pressure increases, the slope of intentions on attitudes
is predicted to decrease by one unit. That this is indeed the case is apparent
from inspection of Table 2.2.

The data in Table 2.2 are hypothetical, and the slope of Yon X at 4 given
value of Z is evident from visual inspection of the data. However, rarely will
data be so orderly in practice. As it turns out, it is possible to calculate the
estimated effect of X on ¥ for any given value of Z using the regression
coefficients from the three-term regression equation. All that is required is
some algebraic manipulation.

We begin by specifying a value of Z (peer pressure) where we want 0
analyze the relationship between Y and X, Let us begin with the lowest
score possible on Z, namely, a value of 1. Using the three-term equation, we
substitute the score of 1 wherever Z occurs. This yields

¥ =10+ 60X +(1.0}1) + (-1LOX)(D) + e

We can rearrange the right side of the equation to group all of the terms
with an X to the right: '

¥=-1.0 + (LOY1) + 6.0X + (~1L.OYX)(1) + e
Then we can factor X out of the relevant terms:
X=-10+10(1+160+ ~1OHMX +e
which yields
Y=00+50X+¢
The result is the linear equation describing the relationship between ¥ and

X when Z equals 1. Let us now perform the same calculations using the
highest Z score of 3. Substituting a score of 5 for Z yields

¥ =-1.0 + 6.0X + (1L.OYS) + (~1L.OYXOOG) + e
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Performing the same calculations produces the following result:
Y=40+10X%e¢

These calculations reveal how the relationship between ¥ and X varies
across the range of Z: At low values of Z (i.e., 1), a one-unit increase in X
is associated with a five-unit predicted increase in Y. At high values of Z
(i.e., 5), a ope-unit increase in X is associated with a one-unit predicted
increase in ¥, We can formally state an equation for calculating the slope of
the predicted effects of X on ¥ at any particular vatue of Z. It is

batZ=b +bZ [2.7]
To illustrate from our example, the slope of ¥ on X when Z equals 4 is
b at4=60+(-1.0)4) =20

If we were to calculate the vatues of the slope of ¥ on X at each of the five
values of Z, we would find the foliowing:

byatascoreof lonZ=5.0
b atascore of 2onZ=4.0
byatascoreof 3onZ=3.0
b, atascoreof4donZ=2.0
byatascoreof SonZ=1.0

Notice that for every one unit that Z increases, the value of the slope
decreases by 1.0, which is the value of b,. Again, the value of the product-
term coefficient reveals how the slope is predicted to change given a one-unit
change in the moderator variable.

Interpreting the Regression Coefficients for the Component Terms

Some social scientists have argued that including a product term in
an equation yields regression coefficients for the component parts (X and
Z} that are difficult to interpret. Researchers have noted that these coeffi-
cients often change dramatically when compared with the corresponding
coefficients from a “main-effects-only” model. Indeed, the coefficients
may even reverse themselves in sign. Such “contradictions” supposediy
make interpretation of the regression coefficients difficult in a model with
product terms.
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In actuality, the regression coefficients yielded in the three-term equation
are subject to meaningful interpretation. Differences such as those noted
above occur because the coefficients in the two equations estimate different
concepts. In the two-term “main-effects-only” model, a regression coeffi-
cient estimates the effect of a predictor variable on the dependent variable
taking into account each level of the other predictor variables. Speaking
somewhat informally, in the two-term model, b, reflects the trends of
change in ¥ given a unit change in X at each level of Z; b, reflects the trends
of change in ¥ given a unit change in Z at each level of X. In contrast, for
the model with a product term, the regression coefficients for X and Z
reflect conditional relationships for a specific value of Z ot X- b, reflects the
influence of X on ¥ when Z equals 0, and b, reflects the influence of Z on
Y when X equals 0. Differences in the values of the b, and b, coefficients in
the two models result from the fact that in the “main-effects” model, the
coefficients estimate “general” relationships averaging across the levels
of the other predictor variable, whereas in the product-term model, they
estimate conditional relationships focused on a specific value of the other
predictor involved in the product tern.

Stated another way, in the product-term model, the regression coefficients
for X and Z do not represent main effects, as they are traditionally thought
of. Rather, the coefficients represent simple effects. The coefficient for X
estimates the effect of X on ¥ when Z is at a specific value, namely, when
7 = 0. The coefficient for Z estimates the effect of Z on Ywhen Xisata
specific value, namely, when X = 0. Some researchers mistakenly interpret
these coefficients as if they were main effects, They are not. 1t is important
to keep in mind the nature of these coefficients.

For the example on birth control, the coefficient for X represents the
estimated effect of attitudes on intentions when peer pressure corresponds
to a Z value of 0. The value of the coefficient is 6.0, so that when peer
pressure corresponds to a score of 0 on Z, a one-unit change in attitude is
predicted to yield a six-unit change in intention.

However, theré is a problem with this interpretation. The coefficient
reveals the estimated effect of X on ¥ when Z = 0, but a score of 0 on the
measure of peer pressure does not exist! The values of Z range from 1 to 5,
so characterizing the effect of attitudes on intentions when Z = 0 does not
make substantive sense. One solution to this problem is to transform Z so that
a 0 value is meaningful. For example, the mean score on Z 15 3.0. Suppose we
subtract a value of 3.0 from the Z score of each individual. Instead of ranging
from 1 to 5, the transformed Z variable, Z, will range from —2 to +2. Instead
of the mean value of 3.0 on Z the mean value for Z, will be 0. The act of
subtracting the mean from a variable to form a new scale for that variable is
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called mean centering. Suppose we mean center Z, recalculate the product
term by forming XZ, and then estimate the regression equation:

Y=a+bX4+bZ+bX7 +e [2.8]
The original equation using Z as the predictor was

Y=10+60X+1.0Z+-1.087+¢
The regression equation when Z, is used in place of Z is
Y=20+30X+1.0Z +~1.0XZ +¢

There are several features of the two analyses worth noting. First, the
squared multiple correlation predicting Y from X, 2, and XZ and its significance
test is identical to that for predicting ¥ from X, Z, and XZ. The multiple
correlation (and its significance test) is invariant to the transformation that we
performed. Second, the value of b, and its significance test also is invariant to
the transformation. Exactly the same characterization of the interaction effect
will resuit in both analyses. Note, however, that the coefficient for X has
changed from 6.0 in the original analysis to 3.0. In the new analysis, the
coefficient for X is the predicted effect of X on ¥ when Z = 0. In this analysis,
a score of 0 on Z, corresponds to a score of 3 on the untransformed Z. So the
coefficient actmally reflects the effect of X on Y when Z = 3. In ather words,
when peer pressure is moderate, as reflected by a score of 3 on Z, the effect
of X on Y as reflected by the slope of Y on X is 3.0. By transforming the value
of Z so that the transformed variable score of 0 is meaningful, the coefficient
associated with X becomes meaningful. In the new analysis, b, is the
predicted effect of X on ¥ when Z equals its sample mean.

We now have two ways of calculating the effect of X on ¥ at a given value
of Z for an interaction model. One strategy is to use Equation 2.7, which we
repeat here:

batZ=b, +bZ

For example, the value of b, when Z=2 is 6.0+ 1.0(2) = 4.0. The second
strategy is to transform Z so that the score of 0 on Z corresponds to the
value of interest on the original metric, form the product term using Z, and
then calculate the regression equation accordingly. For example, if we
subtract 2 from each value of Z, then Z, ranges from —1 to 3 and a score of
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0 corresponds to & SCOI® of 2 on the original metric. The value of b, in the
regression of ¥ onto X, Z, and XZ, will yield a b, value of 4.0. Although this
latter strategy scems cumbersome as a way of estimating the effect of X
on ¥ at a specific value of the moderator variable, it has advantages that
manifest themselves in fater sections.

Significance Tests and Confidence ntervals

Multiple regression programs in all of the major statistical computer
packages routinely provide estimated standard exrors, significance tests, and
confidence intervals for the regression coefficients in the model, The signifi-
cance test for by is a test of the null hypothesis of no bilinear interaction. A8
noted earlier, this ¢ test yields the same p value as that of the more traditional
hierarchical F test for adding a product term to 2 main-effect model, s0 itis
not necessary to condoct the hierarchical analysis for this purpose.

For the “main-effect” terms of the interaction model, the conditional

nature of the regression coefficients also applies to the estimated standard
errors of the coefficients. The estimated standard errors for the regression
coefficients associated with Xand Zinthe interaction model are conditional
and reflect sampling error when the other predictor in the product term
equals 0. Thus, the standard error for b,in Equation 2.4 estimates sampling
error for the regression coefficient of Yon X when Z equals 0. Similarly, the
standard ervor for b, in Equation 2.4 estimates sampling error for the regres-
sion coefficient of Y on 7 when X equals 0.

In the previous section, we showed how one could caiculate the slope of ¥
on X for any given value of Z by using Equation 2.7. 1t also is possible to
calculate an estimated standard error for this coefficient. From the equation
that includes the product term, the estimated standard error is

SE(b, at 2) = [(vax(b,) + Z*var(by) 27 cov(b,, b1" 12.91

where var(b,) is the variance of the b, regression coefficient, var(b,) is the
variance of the by regression coefficient, and cov(b,, by is the covariance of
the b,, b, regression coefficients. The variance and covariance terms ot the
right-hand side of the equation are abtained from standard computer Out-
put, although these values are typically not reported as default options. The
significance test of b, at a given value of Z takes the form of a t test that

divides the coefficient by its estimated standard ervor, guch that

1= (b, at Z)ISE(b, at 2) (2.10)
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where Z is the value of Z at which the effect of X on ¥ is to be tested.
The ¢ value in Equation 2.10 is diseributed as ¢ with N — k ~ 1 degrees of
freedom, where & is the number of predictor terms in the interactive model
(in this case, k = 3).

A far easier strategy to calculating the relevant estimated standard error,
confidence interval, and significance test for b, at any given value of Z is to
use the transformation strategy discussed earlier. One performs a simple
transformation of Z by subtracting a constant from it so that the score of 0
on Z, corresponds to the original Z value of interest. Then use a computer
program to regress Y onto X, Z, and XZ. The value of &, will be the coeffi-
cient for the slope of ¥ on X when Z = 0, and its estimated standard error,
significance test, and confidence interval will all be the desired parameters
for that conditional coefficient. We illustrate the application of these ideas
in a later section.

To summarize thus far, the traditional interaction model involving two
continuous prediciors is tested in sample data using the equation

Y=a+bX+bZ+bXZ+e

The coefficient b, in this mode! is a single-degree-of-freedom interaction
contrast and indicates by how many units the slope of ¥ on X is predicted
to change given a one-unit change in the moderator variable, Z. The signifi-
cance test of by tests the null hypothesis of no bilinear interaction. The
coefficient b is a simple effect and reflects the effect of X on ¥ when Z =
0. A researcher may be interested in characterizing the effect that X has on
Y at selected values of Z, and the transformation strategy can be used to do
s0. This strategy also yields relevant estimated standard errors, significance
tests, and confidence intervals for these simple effects.

Multicollinearity

Some researchers are wary of interaction analysis with product terms
because the product term often is highly comrelated with the component parts
used to define the product term. If XZ is highly correlated with either X or Z
or both, the fear is that the evaluation of the interaction effect will be under-
mined dute to problems of multicollinearity. This fear usually is misguided.

We noted earlier that the significance test of the interaction, that is, the
significance test of b,, is invariant to a simple transformation that subtracts
a constant from Z, one that subtracts a constant from X, or one that subtracts
constants from both X and Z. Although the value and ¢ test of the interaction
coefficient is unaffected by these transformations, the transformations do
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affect the correlations between X7 and X and between X7 and Z. Sometimes
the transformations will increase these correlations, and sometimes they
will decrease the correlations. If X and 7 are normally distributed, then
mean centering both X and Z prior 10 forming the product term will result
in a product terra that is uncorrelated with both X and Z (see Cronbach,
1987, for elaboration). Yet despite this, the result of the significance test of
b, and the confidence intervals for b, are identical to the case where no
transformation is made and the correlation of %7 with its component parts
is substantial!

The statistical dynamics underlying this result need not concern us here,
and interested readers are referred to Priedrich (1982) and Cronbach
(1987). The major point is that high levels of collinearity between a product
term and its component parts generally will not be problematic for interac-
tion analysis unless the collinearity is so high that it disrupts the computex
algorithm designed to isolate the televant standard efrors in a standaxd
computer statistical package. If this turns out to be the case (as reflected by
an error message in the computer output), one ¢an simply mean center X
and mean center Z, recalculate the product term using the mean-centered
scores, and rerun the analysis. In most cases, this will reduce dramatically
the collinearity and eliminate the computational problem.

Although high collinearity between XZ and X and between XZ and Z
usually is not problematic, this is not true of collinearity between X and Z.
High collinearity between X and Z can lead to serious complications.

Strength of the Interaction Effect

The sirength of the interaction effect can be evaluated by numerous sta-
tistics, either in the form of unstandardized measures of effect size OF stan-
dardized measures of effect size. The most popular unstandardized index is
simply the value of b,. As b, deviates from Zero, the interaction effect i8
stronger, everything else being equal. The most popular standardized effect-
size measure is the sqquared semipartial correlation for the product term
holding constant its comgponent parts. This value reflects the proportion of
variance in the dependent variable that is accounted for uniquely by the
interaction effect. It can pe calculated by computing the difference in
squared multiple correlations for the “main-effect-only” model as compared
with the interaction model. In the birth-control example, the two-term addi-
tive model yielded a squared pultiple correlation of 811, whereas the three-
term interaction model yielded a squared multiple correlation of 937, The
“strength” of the interaction effect was therefore 937~ 811= 126, The
interaction effect accounted for 12.6% of the variance in intentions to Use
virth control in the sample data. This index is positively biased, but the bias
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TABLE 2.3
Means and Standard Deviations for Variables
Variable Mean SD
Desired family size 4 444 2.748
Family size in which raised 2960 1601
Income 34.933 14,220

tends to decrease with larger sample sizes and higher values of R For
potential pitfalls in the interpretation of standardized effect-size measures,
see McClelland and Fudd (1993) and Jaccard (1998),

A Numerical Example

At this point, a concrete example will help to sunumarize the major points
of our discussion. In a sociological study, 100 religious Catholics from a
Midwestern community were administered a scale measuring their inten~
tion to have a large family (¥). Values could range from 0 to 15, with higher
numbers indicating stronger intent to have a large family. In addition,
respondents were asked to indicate the number of children there were in the
family in which they were raised as well as their current family income
measured in units of $1,000 (e.g., a score of 15 = $15,000). The means and
standard deviations for the fhree measures are in Table 2.3.

The researcher hypothesized that individuals who were raised in larger
families would have more positive attitudes toward large families than
individuals raised in smaller families and hence would have a stonger
intent to have a large family. She also hypothesized that this effect of the
family size in which the individual was raised on family-size intentions
would be moderated by family income. Her logic was that when individ-
uals are relatively poor, they will be less likely to translate their desires for
a larger family into reality because of the costs of raising children. For
wealthier families, such costs are not a constraint. Thus, the researcher
expected to see a stronger relationship between the family size in which
the individual was raised and the intent to have a large family when
people were wealthy as opposed to when people were poor. In this study,
the iniention to have a large family is the outcome variable (¥), the size of
the family in which one was raised is the focal independent variable (X),
and income is the moderator variable (Z).

For the analysis, the X and Z scores were mean centered to avoid
problems with multicollinearity and to make the b, and b, coefficients more
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interpretable. The product of the centered scores was computed for each
respondent. A multiple regression analysis was then conducted using SPSS
that regressed Y onto X, Z, and XZ (note: hereafter, X and Z refer to centered
scores). The correlations between the product term and its centered COmMpo-
nent parts were trivial (r = ~.01 and 019, respectively).

The multiple correlation for the interaction model was 725, and the
regression equation was

Y = 4.4279 + 0.81324X + 0.0997Z + 0.0149XZ + ¢

The estimated standard exrors for b, b,, and by were 0.098, 0.045, and 0.007.

The t test of the by coefficient yielded a statistically significant result
(t=2187,p< .04), suggesting the presence of an interaction effect. The
95% confidence interval for b, was 0.001 to 0.029. The strength of the inter-
action effect, as indexed by the squared semipartial correlation for the product
term, was .017. This was calculated by taking the difference in squared
multiple correlations for the “main-effects-only” model and the interactive
model, For the former, the squared multiple correlation was .509, and for
the latter, it was .526. This yields .526 — 500 = .017. The interaction effect
accounts for 1.7% of the variance in desired family size.

The nature of the interaction effect is captured in the value of b, The
value of b, indicates how the relationship between family size intentions
(FSY) and family size in which one was raised (RAISE) varies across
income. For every $1,000 that income increases (which corresponds to “one
unit” on 7, the slope of FSI on RAISE is predicted to increase 0.0149 units.

To provide the reader with an intuitive sense of how the slope of FSI on
RAISE differs depending on the value of the moderator variable, we calcu-
lated a simple effect for predicting FSI grom RAISE at three different vaiues
of income, a “low” income value, a “mediuny’” income value, and a “high”
income value. Let a “low” income be represented by an income thatis 1 8D
below the mean income, 2 “medivm” income be represented by an income at
the mean, and a “high” income be represented by an income that is 1 SD
above the mean income. The standard deviation on income was 14.220. A
“ow” income corresponds 1o 14933 — 14.220 = 20713, or $20,713; a
“medium” income corresponds to 34933, or $34,933; and a “high” income
corresponds o 34933 + 14220 = 49.153, or $49,153. The slope of FSI on
RAISE when income is “medium” is obtained directly from the output
because the data for X and Z were mean centered. It corresponds to b, and
equals 0.813. The estimated standard error for b, as reported in the output is
0.098 and the ¢ value for the test of significance is 443 (p < 05). The 95%
confidence interval for b, is 0.620 to 1.009. Although we could perform all the
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necessary calculations using the equations presented earlier to isolate the
corresponding statistics for “low” and “high” income values, we used the
transformation strategy. For the “low” income value, we subtracted 20.713
from the original income scores, multiplied this transformed score by the
original X scores, and then regressed ¥ onto the relevant predictors (X, Z, and
XZ,). We then noted the values associated with b,. We repeated this process
using the “high” income score (34.933 + 14.220 = 40.153, or $49,153), in
which the value 49.153 was subtracted from the original income scores. The
results for b, for these analyses are summarized below:

Income Level b, SE 95% CI H p Value
Low 0.602 0.136 0.333 to 0.873 4.43 <001
Average 0.815 0.098 0.620 to 1.009 8.33 <.001
High 1.026 0.136 0.757 to 1.267 7.55 <.001

At “low” levels of income, each additional child in the family in which
one was raised translates into an additional increase of 0.602 in one’s intention
to have a large family. At “medium” levels of income, each additional child
in the family in which one was raised translates into an additional increase
of 0.815 in one’s intention 1o have a large family. At “high” levels of income,
each additional child in the family in which one was raised translates into an
additional increase of 1.026 in one’s intention to have a large family. The
effects of previous family size on the intention to have a large family were
statistically significant at all three of these values, It can be seen from these
analyses that the effects of RAISE get larger as income increases, which is
in accord with the value of b, and the hypothesis of the investigator. These
exemplar simple effects help provide readers with an intuitive sense of the
interaction, but they do not represent a formal test of the interaction. The test
of the interaction resides in the significance test for b,

Graphical Presentation

Some researchers like to convey interactions using graphs. One approach
is to plot the three regression lines for the regression of ¥ on X at the “low,”
“medium,” and “high” values of Z, as calculated above. The relevant slopes
were 0.602, 0.815, and 1.027, respectively. To generate such plots, we also
need the value of the intercept for each regression line. These can be
calculated from the original regression equation using the following formula:

interceptfor Yon X at Z=a + b,Z [2.11]

where a is the intercept in the regression equation for the interaction model
and b, is the regression coefficient associated with the moderator variable
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Figure 2.1 Regression Lines Predicting Family-Size Intent From Family Size
in Which One Was Raised at Three Levels of Income

in that equation. Because We used a regression equation with mean-centered
¥ and Z scores, the “ow” score on Z is -14.22, the “medium” score is 0,
and the “high” score is 14.272. Substituting the relevant values into Equation

2.11 yields

intercept at —14.22 = 44279 + 0.0997(-14.22) = 3.0102
intercept at 0 = 44279 + 0.0997(0) = 4.4279
intercept at 14.22 = 44279+ 0.0097(14.22) = 5.8456

Figure 2.1 presents three tegression lines that conform to the three equa-
tions ¥ =3.0102 + 0.603X, ¥ =4.4279 + 0.815%, and Y= 5.8456 + 1.026X
for the “low,” “medium,” and “high” values of 7, respectively. Keep in mind
that the X in these equations refers to the mean-centered X sCOTes- If there
were 1o interaction effect, the three lines would be parallel. it is evident that
this is not the case.

A Qualitative Predictor and a Continuous Predictor

1o illustrate the case of a gualitative and a continuous predictor, we use a
hypothetical example where 2 researcher investigates the relationship
between how satisfied adolescents are with their relationships with their
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mothers, the gender of the adolescent, and the amount of time that the
mother and adolescent spend together. The outcome measure, adolescent
safisfaction, was measured on a 21-point scale ranging from 0 to 20 and
asked adolescents how satisfied they were with their relationship with their
mother. Higher scores indicated higher levels of satisfaction. Gender of the
adolescent was represented by a dummy variable scored as 1 = male and
0 = female. The amount of time the mother and child spent together was
based on a self-report measure from the mother, who reported the number
of hours the two spent together during a typical week. The mean number
of hours spent together was 24.06, with a standard deviation of 4,62, The
sample size was 100. We consider first the case where the number of hours
spent together is conceptualized as the focal independent variable and
gender is the moderator variable. Then we repeat the analysis reversing the
role of the two predictor variables.

A Qualitative Moderator Variable

In this framework, we are interested in whether the effect of the amount
of time the mother and adolescent spend together on adolescent relation-
ship satisfaction is different for males and females. Stated more formally,
we are interested in whether the regression coefficient when regressing
adolescent satisfaction onto time spent together for males is different from
the corresponding regression coefficient for females. If the two slopes are
identical, then the effects of tite spent together on adolescent satisfaction
are the same for males and females and there is no interaction effect.
However, if the slopes differ, then gender moderates the impact of time
spent together on adolescent relationship satisfaction,

We first mean center the time predictor and then regress the satisfaction
ratings (¥) onto the mean-centered self-reports of time spent together (X),
the dummy variable for gender (Z}, and the product term (XZ). Note that
dummy variables are not centered. The squared rmultiple comelation was
784, which was statistically significant [F(3, 97) = 116.07, p < .01]. The
regression equation was

¥ =17.645 + 0.247Time, + ~5.270Gender
+ =0.260(Time Y Gender) + ¢

The regression coefficient for the interaction term, —0.260, had an esti-
mated standard error of (.113 and a 95% confidence interval of ~0.484 to
-0.036. The ! test of the coefficient was statistically significant (¢ = 2.30,
p < .05), suggesting the presence of an interaction. The squared semipart
correlation for the product term was 012, indicating that the interaction
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effect accounted for 1.2% of the sample variance in the outcome variable.
We consider the interpretation of b, shortly.

The regression coefficient associated with the Time, predictor, 0.247, is
the effect of time spent together on adolescent relationship satisfaction
when Gender = 0. Because a score of 0 on the gender variable corresponds
to females, the coefficient is the effect of time spent together on adolescent
relationship satisfaction for fermales: For every additional hour that a mother
spends with her daughter, adolescent relationship satisfaction is predicted
to increase 0.247 scale units on the satisfaction measure. The estimated
standard error for this coefficient (taken directly from the computer output)
was 0.070 and the 95% confidence interval was 0.108 to (0.386. The  test
for statistical significance was ¢ =3.53, p < 0L

The above yields information about the effects of time spent together on
satisfaction for females, bat we also would like the information for males.
A simple way of obtaining this information is to rescore the dummy vari-:
able so that ferales = 1 and males = 0, then multiply this new value by the
centered time variable and rerun the analysis using these newly created
variables. The resulting regression equation is

Y = 2.375 + —0.013Time,_ + 5.270Gender,
+ 0.260(Time N Gender,) + €

Note that the coefficient for b, is unchanged in magnitude but is opposite
in sign. This is a result of the reverse scoring, and the reason for it will be
made explicit shortly. The coefficient for Time, —0.013, is the effect of time
spent together on adolescent satisfaction when the reversed-scored gender
variable equals 0. Because a score of 0 on this variable corresponds to
males, it is the effect of time spent together on adolescent relationship
satisfaction for males: For every additional hour that a mother spends with
her son, adolescent relationship satisfaction is predicted to change trivially,
namely, 0.013 scale units on the satisfaction measure. The estimated standard
error for this coefficient (taken from the computer output) was 0.089 and
the 95% confidence interval was 0.189 to 0.163. The 7 test for statistical
significance was nonsignificant (¢ = 0.15, p > .88).

The analyses of these simple effects reveal that the slope of adolescent
satisfaction regressed onto time spent together for males is -0.013, whereas
for ferales, it is 0.247. If we calculate the difference between these two
slopes, we obtain —0.013 — 0.247 = —0.260, Note that this is the value of the
coefficient for the product term in the original analysis, that is, by = ~0.260.
In a traditional product-term analysis where the product term involves a
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Figure 2.2 Regression Lines for Adolescent Relationship Satisfaction

as a Function of Time Spent Together for Males and Females

continuous variable (X) and a dummy variable (Z), the coefficient for the
product term will equal the slope difference for the regression of Y onto X
between the group scored I on the dummy variable minus the reference
group on the dummy variable. The significance test associated with b, is
a test of slope differences and represents a single-degree-of-freedom
interaction contrast. The reason the b, coefficient reversed itseif in sign
when gender was recoded was because in the first analysis, b, corresponded
to ~0.013 — 0.247 = ~0.260, whereas in the second analysis, b, corre-
sponded to 0.247 — (-0.013) = 0.260.

In sum, we used product-term regression to calculate the slope of ¥ on X
for females and then, through rescoring of the dummy variable, the slope of
Y on X for males. We characterized the significance tests and confidence
intervals for each of these slopes. We also formally tested the difference
between the slopes through the regression coefficient associated with the
product term.

Graphical presentations of the interaction can be displayed by plotting
the regression lines for ¥ on X for each group defined by the moderator
variable on the same graph. This has been done in Figure 2.2. An inter-
action effect is indicated by nonparallel lines. The intercept for the linear
equation of a given group (e.g., males) is the intercept from the full equation
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where that group was the reference group on 7 For females, it is 7.645, and
for males, it is 2.375. (Note that the intercepts in Figure 2.2 occur at the
value of X = 0, in the middle of the graph, because the Y axis has been
“moved” to the left for aesthetic purposes.)

In the applied research literature, scientists sometimes approach such
group comparisons by calculating separate regression equations for each
group and testing for the significance of the slope of Y on X in each group
separately. A group difference is said to occwr if the slope is statistically
significant in one group but not in the other. This usually is poor analytic
practice. Most important, the analysis does pot result in a formal test of the
difference in slopes between the two groups and such a test is necessary if
one is going to speak of group differences. A slope may be statistically
significant in one group but not in the other and still yielda nonsignificant
slope difference when the groups are formally compared. Or both slopes
might be statistically significant and the test of slope difference might be
statistically nonsignificant. Or the two stopes could both be statistically
nonsignificant but the slope difference could be statistically significant.
One needs to conduct a formal comparison of slope differences to speak
of group differences in slopes, and the product-term strategy does $0. A
second difficulty with the separate group strategy is that it ignores available
information when estimating the variance of the residuals, that is, when
estimating error terms for the significance tests. In the product-term analysis,
the pooled estimate of the residual variance at given values of the predictor
variables is based on data from all groups involved in the analysis. In the
separate group steategy, it is based on only a single group.

A Continuous Moderator Variable

Suppose that the investigator conceptualized the analysis differently,
reversing the roles of the focal independent variable and the moderator
variable. Now the concern is with gender differences in adolescent rela-
tionship satisfaction and whether these differences vary as a function of
ow much time the mother spends with her child. This analysis uses the
same regression equation as above, where we regressed adolescent satis-
faction onto the centered time variable, gender, and the product of the two.
We just focus on different aspects of the mode] when characterizing the
interaction and conceptualize things a bit differently. Recall that the regression
equation was

Y =7.645 + 0.247Time, + —5.270Gender
+ ~0.260(Time N Gender) + e




37

As before, the b, coefficient contains information about the interaction,
that is, how the gender difference varies as a function of time spent together.
We return to its interpretation shortly. First, examine the coefficient for
gender, Because gender is a dumeny variable, the coefficient associated with it
represents a mean difference, namely, it is the mean relationship satisfaction
for males (the group scored | on the dummy variable) minus the mean rela-
tionship satisfaction for females (the reference group) when Time, = 0.
Because Time,_ is the mean-centered Time variable, a score of 0 on Time,
corresponds to the sample mean on the original Time variable (which was
24.06 hr). Our estimate of the mean difference in relationship satisfaction
between males and females (—5.270) is for the case where the amount of
time that mothers spend with their children equals 24.06 hr. This gender
difference is statistically significant based on the  test of b, yielded by the
computer output (¢ = 10.28, p < .01). The estimated standard error of the
difference is 0.513 and the 95% confidence interval is —-6.288 to ~4.253.
The intercept term, 7.645, is the estimated mean value of ¥ when all predic-
tors equal 0. If Time, = 0 and Gender = 0, all terms in the equation become
0, 50 7.645 is the mean satisfaction for females when Time equals its sample
mean. If the difference between the male mean and the female mean is
~3.270 and if the female mean is 7.645, then simple algebra allows us to
calculate the value of the male mean, It is the difference plus the female mean,
or —5.270 + 7.645 = 2.375. Note that 2.375 (the male mean) minus 7.645 {the
female mean) equals the mean difference, ~5.270.

‘What happens to the estimated value of the gender difference in relation-
ship satisfaction at a different value of time spent together? From the above
analysis, we know that the gender difference is 5.270 when the time spent
together is 24.06 hr. What is it at some other value? For the sake of pedagogy,
let us calculate the gender difference at a value of 25.06 hr; that is, let us
increase the hours spent together from the previous analysis by one unit. We
c¢an do so using our transformation strategy. We first transform the Time vari-
able so that a score of 0 on the transformed variable corresponds to a score of
25.06 on the original time variable. This is accomplished by subtracting the
value of 25.06 from Time. The transformed time variable, Time,, is then mul-
tiplied by the dummy variable for gender, and the three terms are entered into
4 regression equation. The results are

¥Y=17.892 + 0.247Time, + —5.530Gender
+ «0.260(Time (Gender) + ¢

The coefficient for gender is —5.530, which reflects the gender difference
in mean relationship satisfaction when Time, = 0. This means that when




Time = 25.06 hr, the gender difference is —3.530. Compare this with the
previous analysis: When the time spent together was 24.06 br, the gender
difference was —3.270. When we increased the time spent together by one
unit to 25.06 hr, the difference changed by ~0.260 units to a value of
_5.531. Now examine the value of by It equals —0.260, which is the amount
that the mean difference changed when we increased the moderator vati-
able by one unit. [n @ traditional product-term analysis where the product
term involves @ continuous variable (Z) and a dummy variable {X), the
1 coefficient for the product term reflects how much the mean difference
; between the group scored 1 on the dummy variable minus the reference
group is predicted to change given a one-unit increase in the continuous
variable. In this second analysis, the intercept term, 7.892, is the mean
satisfaction for females when Time = 95.06. We can calculate the mean
satisfaction for males in this case using algebra. It is the mean difference
plus the female mean, —5.531 + 7.892 = 2.361. ¢

Although the regression equation contains all of the relevant information
one desires, some investigators will report not only the regression equation
and its associated statistics but also the estimated mean difference for the
focal independent variable at two or three selected values of the continuous
moderator variable. This helps give the reader an intuitive feel for the inter-
action effect. For example, we used the transformation strategy 10 derive the
following illustrative statistics: '

Male Female Mean 95% C1I for
Time Together — Mean Mean  Difference Difference t  p Value
20 hr per week  2.43 6.64 -4.21 55410298 675 <001
25 hy per week 2,36 7.88 -5.52 _659 to —4.44 1018 <.001
30 hr per week  2.30 9.11 -682  ~8.6310-5.00 7.46 <001

At 20 hr per week spent together, the gender difference in relationship
satisfaction was —4.21 (with females being 4.21 units more satisfied than
males). When the amount of time spent together increased to 25 hr per week,
the gender difference grew 1o —5.52 units. At 30 hr per week, it increased
even more, to ~6.82. These illustrative statistics provide an intuitive sense
of the interaction, as one sees varying mean differences depending on
the value of the moderator variable. However, it should be kept in mind
that these simple effects are not the crux of the test of the interaction. The
formal test of the interaction is captured in b;.

e
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Figure 2.3 Predicted Mean Relationship Satisfaction as a Fundtion of Gender

at Selected Values of Time Spent Together

Graphical Displays, The results of these analyses can be presented
graphically using bar graphs. This is illostrated in Figore 2.3. If there was
no interaction, the difference in bar height between males and females
would be the same at each level of time spent together. Lack of uniformity
of such differences suggests an interaction. It can be seen in the graph that
as the amount of time spent with their children increases, the gender dif-
ference in relationship satisfaction widens. As an alternative graphical pre-
sentation, one can plot the separate regression lines for ¥ on Z for the
different groups defined by the focal independent variable. This was done
in Figore 2.2 in the previous section. The distance between the two regres-
sion lines at any given point on the horizontal axis for the moderator vari-
able reflects the mean difference in ¥ at that point. This graphical display
contains more information than that of Figure 2.3, but some researchers find
the former more intuitively appealing.

More Than Two Groups for the Qualitative Variable

Some applications involving qualitative and continuous predictors
include qualitative variables with more than two levels. The principles
described above generalize directly to these situations. Consider the case
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where the outcome variable is income (Y) and the two predictor variables
are the number of years of education and ethnicity. Suppose that ethnicity
has three levels, African American, European American, and Latino. It is
represented by two dummy variables. Let the first dummy variable, D,
be defined as one where all African Americans receive a 1 and everyone
else is assigned a 0. The second dummy variable, D, assigns all Latinos
a 1 and everyone else a 0. European Americans are the reference group.
To represent the interaction petween the two predictor variables, all
possible pairs of product terms are created between the variables repre-
senting one predictor and the variables representing the other predictor.
Letting ED signify the measure of education, we form the product terms
(EDXD,,) and (EDY.D,). The overall test of the opmibus interaction
effect between education and ethnicity requires the use of the hierarchical
regression test of Equation 1.1. The squared multiple correlation for the
main-effect-only model (the model that includes only ED, D, and Dj)
is compared against the interaction model that includes both the main
effects and all of the product terms. it is not sufficient to examine the sig-
nificance tests for the individual b coefficients associated with the prod-
et terms to make a statement about the statistical significance of the
omnibus interaction effect. This is because the omnibus interaction effect
has more than a single degree of freedom and must be evaluated using the
hierarchical strategy.

How one orients to the regression equation itself depends on which variable
is chosen as the moderator variable. Consider first the case where ethnicity
is the moderator variable (l.e., the moderator variable is the qualitative vari-
able). In this scenario, the researcher is interested in examining the impact
that education has on income and how this varies as a function of ethaicity.
The regression equation has the general form

Y= a+ b ED +b,Dyy + byDy + BEDD )
+ BEDD,) + e 2.121

As discussed previously, the regression coefficients for the product terms
reflect differences in slopes. The coefficient b, focuses on the slope of Y on
ED and estimates the difference between this slope for the group scored 1
on D,, minus the corresponding slope for the reference group. In other
words, it reflects the slope difference between African Americans and
European Americans. The coefficient b, corresponds to the same slope dif-
ference but for Latinos versus European Americans. The significance tests,
estimated standard errors, and confidence intervals for these coefficients
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provide the additional information that usually is of interest for these
single-degree-of-freedom interaction contrasts.

What if, in addition to the two contrasts isolated by b, and b,, we also
want to evaluate the contrast that compares the slope of ¥ on ED for African
Americans versus Latinos? This contrast and its relevant significance tests
can be calculated by creating a new set of dummy variables and product
terms that change the reference group for ethnicity to be either African
Americans or Latinos rather than European Americans, then rerunning the
regression analysis and examining the product-term coefficient in the new
equation that isolates the comparison. We discuss in Chapter 4 the issue of
conducting multiple contrasts and adjustments for inflated error rates across
contrasts.

The coefficient for ED in Equation 2.12, b, is a simple effect. It is the
effect of education on income when all the ethnicity dummy variables equal
0. Scores of D,, = 0 and D, = 0 map onto the reference group, so b, is
the effect of education on income for European Americans. The estimated
standard error, confidence interval, and significance test for this effect can
be taken from the computer output for b, If one desires o isolate the
corresponding simple effect and significance test for Latinos, then simply
redefine a new set of dummy variables and product terms so that Latinos
are the reference group and rerun the analysis on the computer. The process
is similar for African Americans.

Next, consider the case where education is the moderator variable. Now
the interest is in ethnic differences in income and how these differences
might vary as a function of education. The same regression equation is
used, but researchers typically will mean center education {or center it
around a meaningful value) prior to using it in the analysis. We assume that
mean centering has been invoked in the following discussion.

Consider first the coefficient for D, ,, which is b,. This coefficient is the
estimated mean income difference between the group scored 1 on this
dummy variable and the reference group when ED, = 0. It is the estimated
mean income difference between African Americans and European
Americans when education equals the value of its sample mean. The coef-
ficient b, for the product term of D,, and ED, indicates how this mean
difference changes given a one-unit increase in education. The coefficient
for D, is b, This coefficient is the estimated mean income difference
between Latinos and Buropean Americans when education equals the value
of its sample mean. The coefficient b, for the product term of D, and ED,
indicates how this mean difference changes given a one-unit increase in
education. If one is interested in the analogous parameters and significance
tests for the mean difference between African Americans and Latinos, then
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TABLE 24
Two Interaction Forms
Example A Example B
Mean Difference Mean Difference
Value of Z Berween Two Groups Between Two Groups
1 2.0 2.0
2 4.0 4.0
3 6.0 6.0
4 8.0 8.0
5 108 10.0
6 120 10.0

140 0.0

redefine the dummy variables so that either African Americans Of 1.atinos
are the reference group and rerun the analysis on the computer. Then isolate
the relevant coefficients using the principles discussed earlier.

The intercept in the regression equation s the estimated mean income for
the reference group (European Americans) when ED, = 0.

Form of the Interaction

As noted earlier, when both vasiables involved in the product term are
continuous, the traditional interaction model evaluates an interaction of a
particular form, namely, a bilinear interaction. When one of the variables in
the product term is qualitative and the other is continuous, the traditional
interaction model also; evaluates a specific 1ype of interaction. The model
can be stated from two different vantage points, although both perspectives
reflect the same underlying model. One vantage point is when the modera-
tor variable-is the qualitative variable. In this case, the assumption is that
the relationship between ¥ and X (the outcome yariable and the continuous
focal independent variable) is linear in form and this is true at each jevel of
the moderator variable. it the relationship between ¥ and X is nonlinear for
at least one level of the moderator variable, then the traditional product-
term model is misspecified and an alternative modeling approach is neces-
sary (discussed n Chapter 4).

Another vantage point is when the moderator variable is the continuous
variable. In this case, the assumption is that the orderly changes in the
group mean differences as a function of Z are a linear function of Z.
Consider the two examples in Table 2.4. Example A illustrates a case where
the mean difference between two groups changes Jinearly with Z: For every
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one unit that Z increases, the mean difference between the groups becomes
two units larger. Example B reflects nonlinear change and should not be
modeled with the traditional product-term approach: At low levels of Z, for
every one unit that Z increases, the mean difference between the groups
becomes two units larger, but this eventually asymptotes and levels off.

Summary

In sum, researchers often are interested in exploring interaction models that
focus on two-way interactions. The variables involved in the interaction
might both be continuous in nature, or one might be continuous and the
other qualitative. In either case, the researcher declares one of the variables
the focal independent variable and the other the moderator variable.
Appropriate product terms are calculated and then the interaction model
is estimated including all of the “main-effect” terms as well as alf of the
product terms. The significance test of the omnibus interaction is reflected
in the regression coefficient associated with the product term when the
omnibus interaction has a single degree of freedom, When the omnibus
interaction has more than a single degree of freedom, the hierarchical test
that compares the main-effect model with the interaction model needs to be
applied to evaluate the statistical significance of the overall interaction.

The strength of the interaction effect in unstandardized terms is indicated
in the value of the regression coefficients reflecting the single-degree-of-
freedom interaction contrasts. The strength of the effect in standardized
terms i indexed by the squared semipart correlation for the interaction
term(s).

Interpretation of the interaction typically focuses on the regression
coefficients associated with the focal independent variable and the
regression coefficients associated with the product terms. Depending
on which variable is the moderator variable, different centering and
recoding strategies can be used to help the reader appreciate the nature
of the interaction.

3. THREE-WAY INTERACTIONS

This chapter extends the principles of the previous chapter to the analysis
of three-way interactions. We consider first the case of ail continuous
predictors and then consider the case of a mixture of gqualitative and
continuous predictors.
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Three Continuous Predictors

Consider a study where a researcher in behavioral medicine studied a
parent’s intention 1o vaccinate his or her child to prevent a certain form of
pepatitis. The intention measure ranges from 0 to 100, with higher scores
indicating greater intent to obtain the vaccination. The researcher studied
three variables as potential predictors of intent to vaccinate. The first vari-
able was the perceived likelihood that the child would contract the disease
if the parent did not obtain the vaccination. This variable is called perceived
susceptibility to the disease and was measured on a 0 to 100 scale, with
higher numbers indicating higher levels of perceived susceptibility. The
second variable was how serious the parent thought it would be if the child
did in fact contract hepatitis. This variable is called perceived severity and
was measured on a 0 to 100 scale, with higher numbers indicating higher
tevels of perceived severity. The third variable was the perceived likelihood
that the vaccination would prevent the disease. This variable is called
petceived efficacy and was measured on 2 ( to 100 scale, with higher numbers
indicating higher levels of perceived efficacy. The intention to vaccinate
was thought to be an interactive function of these three variables. The sample
size for the stady was 200 parents.

To analyze a three-way interaction, it is helpful to first specify a focal
independent variable and the moderator variables and to explicate the under-
lying logic of the interaction. For three-way interactions, we need to make
distinctions among the moderator variables because there are two of them.
Suppose that the focal independent variable chosen by the investigator was
the perceived susceptibility variable. The researcher hypothesized that the
intent to vaccinate would vary as a function of perceived susceptibility to
the disease. Specifically, he hypothesized that intentions to vaccinate would
be higher as the pexceived susceptibility to the disease increased. He further
reasoned that the effect of perceived susceptibility to the disease on intent
to vaccinate would be moderated by the perceived severity of the disease.
If a parent thought the disease was not very serious, then it would not
matter how susceptible the child was to it. The parent would not be motivated
to seek a vaccination for a disease that the parent deemed inconsequential,
As the perceived severity of the disease increased, however, then it was felt
that variations in perceived susceptibility would impact infent to vaccinate.
In this context, perceived severity is called a first-order moderator variable
because it is thought to directly moderate the effect of perceived suscepti-
bility on intent to vaccinate. The researcher further hypothesized that the
moderating effects of perceived severity would differ depending on the
perceived efficacy of the vaccination. If parents felt that the vaccination was
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not efficacious, then they would not seek to vaccinate their child no matter
what the susceptibility to the disease or how severe the disease is. However,
as perceived efficacy of the vaccination increases, then the interactive
dynamics between severity and susceptibility would manifest themselves.
The perceived efficacy of the vaccination is a second-order moderator vari-
able because it moderates the impact of the first-order moderator on the
relationship between the focal independent variable and the dependent vari-
able. Of course, it is not necessary to conceptualize three-way interactions
in these terms. However, we have found that invoking the concepts of first-
order and second-order moderators is useful for organizing one’s thinking
about three-way interactions. In addition, when investigators describe the
resnits of three-way interactions, they almost always adopt such an orienta-
tion (albeit sometimes implicitly) in order to make sense of the complex
relationships involved,

To analyze the traditional interaction model, we need to form product
terms that, when added to the main-effect model, reflect two-way interac-
tions and the three-way interaction. The main-effect model is

Y=a+bX+bZ+Db,Q+e

where X is perceived susceptibility, Z is perceived severity, and ¢ is per-
ceived efficacy. The three-way interaction model adds to this all possible
pairwise product terms among the three predictors (X7, X0, and Z{) as
well as a product term for all three predictors (XGZ). This results in the
following model:

Y=a+bX+bZ+b,Q+bX7Z+bXQ
+bOZ+ b X0+ e 3.1

The significance test of the three-way interaction is the significance test
of b,. The strength of the three-way interaction in standardized terms is found
by subtracting from the squared multiple correlation of Equation 3.1 the
value of the squared multiple correlation for a model based on Equation 3.1
that omits XZ(Q. The interpretation of the lower-order coefficients always
are conditionalized on the higher-order product terms, with the condition-
alization being that the other variables in the higher-order product terms
equal 0. For example, the coefficient b, reflects the effsct of the two-way
interaction between X and Z on ¥ when @ = 0. The coefficient b, reflects the
effect of X on ¥ when Z=0 and @ =0. The distinction between the focal
independent variable, the first-order moderator variable, and the second-order
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moderator variables guides us in wow we orient to the coefficients in the
equation.

Returning 10 our example, we begin by mean centering all of the predictors
and then forming the relevant product terms. The resulting regression
output from SPSS is shown in Table 3.1, The coefficient for the three-way
product term, 0.0008137, is statistically significant (t=4T15,p< 01,95%
CI =0.000473 10 0.001154), suggesting the presence of a three-way Intet-
action. The squared multiple correlasion for the model that omits the three-
way product term is 400, whereas the full model that inclodes all the
product terms ipcluding the three-way term yields a squared multiple
correlation of .462. The difference between these squared multiple correla-
tions is 062, indicating that the three-way interaction accounts for 6.2% of
the variance in the intent to vaccinate.

Based on the principles presented earlier, the coefficient for susceptibility
(X), 0.219, is the effect of perceived susceptibility on intent to vaccinate
when perceived severity (Z) and perceived efficacy (@) equal 0 (.., when
perceived severity and percetved efficacy are “average” Of “medium’” based
on the fact that we mean centered them). The coefficient of 0.219 indicates
that for every one unit that perceived susceptibility increases, the intent to
vaccinate is predicted to increase by 0.219 units (1=35.062, p< 01, 95%
CT = 0.134 to 0.304). The coefficient for x7 reflects the two-way interaction
petween perceived susceptibility and the first-order moderator variable,
perceived severity, when the second-order moderator variable, perceived
efficacy, equals O (1., when perceived efficacy is “medivm” OF “average’).
The coefficient was 0.01227 (= 461, p<.0L, 95% Cl= 0.007 to 0.018).
This is the amount by which the stope of intent to yaccinaie on perceived
susceptibility (1. YonX)is predicted t0 change given a one-unit iInCrease
in perceived susceptibility when perceived efficacy is «yyerage.” For every
one unit that perceived severity 1nCreases, the slope of intent 10 vaccinate
on perceived susceptibility increases by 0.01227 units, holding perceived
efficacy constant at its sample mean. This coefficient is interpreted just like
a two-way interaction as described in Chapter 2, butitis conditionatized on
0 = 0 (in this case, when the centered perceived efficacy equals ).

To gain an appreciation for the meaning of the coefficient for the three-
way product term, suppose that we recalculate the coefficient for XZ for the
case where perceived efficacy (Q) is one unit above its sample mean rather
than at its sample mean. This can be accomplished by subtracting a constant
of 45.79 from the perceived efficacy score rather than the sample mean of
4479, thus defining the zero point on & transformed efficacy gcale as 45.79
on the original efficacy scale. We then recalculate the product terms and
rerun the regression analysis using the transformed scores. As discussed in
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Chapter 2, the squared multiple correlation and the value of b, are invariant
to this transformation. The coefficient for the XZ product term in this new
analysis is 0.0130837. We can index the change in the two-way interaction
parameter that occurred from the previous analysis by calculating the
difference between the two b, coefficients. This 18 0.0130837 -
0.01227 = 0.0008137. Examine the coefficient for the three-way product
term in Table 3.1. It equals 0.0008137, the amount by which the two-way
interaction coefficient changed given a one-unit increase in perceived effi-
cacy. For a three-way interaction model with three continuous predictors,
X, Z, and Q, and the various product terms between them, let X be the focal
independent variable, Z be the first-order moderator variable, and Q be the
second-order moderator variable. The coefficient for the three-way product
term is the predicted change in the two-way interaction parameter for X
and 7. given a one-unit increase in Q. If we reran the analysis centering
perceived efficacy two anits above its sample mean, then the coefficient for
X7 would be 0.01227 + 0.0008137 -+ 0.0008137 = (.0138974.

Although all the requisite information. for interpretation of the three-way
interaction is contained in the regression equation, most readers have a
difficult time gaining an intuitive sense of the three-way interaction from
inspection of the equation. As in Chapter 2, we have found it helpful to
provide estimated values of the slope of Y on X at different combinations of
7 and Q in order to assist the reader in thinking about the interaction. This
thas been done in Table 3.2. In this table, we created four scenarios under
which to describe the slope of Yon X: (1) alow value on 7 and a low value
on @, (2) a low value on 7 and a high value on 0, (3) abigh value on Z and
a low value on @, and (4} a high value on Z and a high value on (. The
“Jow” and “high” values were defined as 1 SD below the sample mean and
1 SD above the sample mean of Q and Z, respectively. The siope of Yon X
for each of these scenarios is presented as entries in a 2 x 2 factorial table
where the low and high values of the first-order moderator variable are rows
and the low and high values of the second-order moderator variable are
columns. The vatues of these coefficients, their significance tests, and their
confidence intervals all were calculated by computer using the transformation
strategy to isolate the relevant coefficient for susceptibility under the
different scenarios. This table shows that when perceived efficacy is rela-
tively low, the difference in effects of perceived susceptibility on intent to
vaccinate as a function of perceived severity are negligible and small
compared with when perceived efficacy is relatively high. Indeed, it is only
when both perceived severity and perceived efficacy are relatively high that
one begins to see a meaningful impact of perceived susceptibility on the
intent to vaccinate.
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TABLE 3.2
Slopes for Intent to Vaccinate on Perceived Susceptibility
as a Function of Perceived Severity and Perceived Efficacy

Low Efficacy High Efficacy

Slope 95% CI ) Slope 95% CI t

Low severity .003  -0.i28t0 0.188 0376 0.009  -0.i83:w0 0200 0.089
High severity  0.016 ~0.i45t00.178 0.197 0820 0.648 t0 0,993 9.39%

NOTE: SE = estimated standard error; CI = confidence interval.,
*p < 0L

These illustrative statistical portrayals also can be presented graphically
using a side-by-side plot. The separate regression lines as a function of the
two values of Z are plotted on one graph when  is “low” and then again
on a separate graph when 0 is “high.” The two graphs are then presented
“side by side.” An example of such a plot is presented in Figure 3.1. If there
is no three-way interaction, then the divergence of the two slopes from
parallelism in one graph should be the same as that in the other graph. This
is clearly not the case for our data.

To construct the above plot, you need the intercept for the regression of
Y on X at selected values of Z and Q. The intercept will be the value of the
intercept term in the full interaction regression equation that uses the trans-
formed values of Z and @ to isolate the relevant slope of interest.

Quatitative and Continaous Predictors

Consider a study where a researcher is interested in prejudice in the judi-
cial system. He designed a study where participants read a scenario describ-
ing a court case against a defendant and then rated, on a 100-point scale, the
likelihood that the defendant was guilty of the crime. The outcome variable
ranged from 0 to 100, with higher scores indicating a higher probability of
guilt or a higher tendency to attribute guilt, All participants read the identi-
cal scenario except that half learned that the accused was African American
while the other half learned that the accused was European American. Half
of the study participants were themselves African American and half were
European American. The result was a 2 x 2 factorial design that crossed
the ethnicity of the accused with the ethnicity of the “juror” (i.e., the study
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participant). The researcher also measured a third variable, namely, how
liberal or conservative the research participant was. The relevant scale
ranged from 0 to 100, with higher scores indicating higher levels of liber-
alness. Ethnicity of the accused was represented by a single dummy vari-
able, AC, with European Americans representing the reference group.
Ethnicity of the juror also was represented by a single dummy variable, JU,
with Buropean Americans as the reference group. The liberalness scale, L,
was mean centered and the relevant product terms formed (hereafter, L
refers to the centered liberaluess-conservativeness scale). Table 3.3 presents
the output from an SPSS regression program.

The coefficient for the three-way product term, 1.007, is statistically sig-
nificant (z=7.31, p <.01, 95% CI=0.735 to 1.279), suggesting the pres-
ence of a three-way interaction. The squared maltiple correlation for the
model that omits ACx JU x L is 595, whereas the full model yields a
squared pmitiple correlation of .782. The difference between these squared
multiple comrelations is 192, indicating that the three-way interaction
accounts for 19.2% of the variance in the guilt attributions. We discuss the
coefficients in the model from two vantage points, one where the continu-
ous variable is the focal independent variable and one where one of the
qualitative variables is the focal independent variable.

A Continuous Focal Independent Variable

In this framework, the researcher is interested in the effects of Liberalness-
conservativeness on guilt attributions. She posits that more liberal jurors will
be less likely to ascribe guilt to the accused than more conservative jurors.
Howevez, the effect of liberalness-conservativeness on guilt attributions is
hypothesized to be moderated by the ethnicity of the accused: When the
accused is African American, liberalness-conservativeness will be a stronger
predictor of guilt attributions than when the accused is European American.
Thus, the ethnicity of the accused is a first-order moderator. In accord with
a three-way interaction, the way in which the ethnicity of the defendant
moderates the effect of liberalness-conservativeness on guilt attributions is
thought to depend on the ethnicity of the juror. It is predicted that the afore-
mentioned dynamics for the two-way interaction between ethnicity of the
defendant and liberalness-conservativeness will be more pronounced for
European American jurors than for African American jurors. This is because
prejudice and race are thought in judicial cases to be more salient to.
European American jurors than African American jurors. Ethnicity of the
juror is thus a second-order moderator variable.

The coefficient for liberalness-conservativeness in Table 3.3, ~(0.576,
reflects the effects of liberalness-conservativeness on guilt attributions
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TABLE 3.4
Slopes for Guilt Attributions Regressed Onto Liberalness
Slope SE 95% CI t  pValue
AA juror, AA defendant ~0.554 0.066 ~0.685 to —0.424 835 <.001
AA juror, EA defendant -(.609 0.071 ~{.748 to ~0.470 864 <.G01
EA juror, AA defendant -1.528 0.071 ~}.667 to ~1.389 21.65 <.001
EA juror, EA defendant ~0.576 0.068 ~{.710 to ~0.442 8473 <.001

NOTE: AA = African American; FA = Buropean American; SE = estimated standard error;
(1 = confidence interval.

when AC=0 and when JU=0. This comresponds to the case of the
Huropean American defendant as judged by the European American jurors.
It is a simple effect. We can make explicit the meaning of the other coeffi-
cients in the equation if we first isolate the corresponding simple effects for
the remaining three conditions. This is accomplished by recomputing a new
set of dummy variables for AC and JU that redefine the reference groups so
that the coefficient associated with the liberalness-conservativeness effect
reflects the simple effect of interest. For example, if we define the reference
group on AC as the European American defendant and the reference group
on JU as African American jurors, recalculate all the product terms, and
then rerun the regression analysis, the coefficient associated with L will
reflect the effect of liberalness-conservativeness on guilt attributions for the
case of a Buropean American defendant as rated by African American
jurors. Table 3.4 presents the relevant slopes for the four conditions as
derived from the various computer analyses.

Examine in Table 3.3 the coefficient for the product term of the focal
independent variable and the first-order moderator variable, AC x L. This
coefficient reflects a two-way interaction between a categorical variable
and a continuous variable, so it reflects a difference in slopes. Specifically,
it is the slope of guilt attributions regressed onto liberalness-conservative-
ness for an African American defendant minus the same slope for a European
American defendant when JU = 0. The value of 0 on JU corresponds to
European American jurors, so it is the slope difference focusing on only
European Americans jurors. The coefficient equals —0.952. Examine Table
3.4 and focus on only the European American jurors. Note that the slope of
guilt attribution on liberalness-conservativeness for the African American
defendant is ~1.528 and for the European American defendant is —0.576.
The difference between these two slopes is (~1.528) = (~.576) = -0.952, the
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value of the two-way interaction parameter. From the output in Table 3.3,
this difference in slopes is statistically significant (=972, p< 01, 95%
Cl = ~1.145 to ~0.759). For an interactive model with a continious predictor,
X, and two gualitative predictors, 7 and Q, and the corresponding product
terms between them, let X be the focal independent variable, Z be the first-
order moderator variable, and Q be the second-order moderator variable.
For dummy coding on the qualitative predictors, the regression coefficient
for the XZ product term is a difference in slopes. The difference focuses on
the slope of Y on X for the group scored 1 on the dummy variable for Z
minus the corresponding slope for the reference group on’Z, all with respect
to the reference group on Q.

If the slope difference between the African American defendant and the
Furopean American defendant is ~0.952 for European American jorors, what
is it for African American jurors? The value of this difference, its estimated
standard error, confidence interval, and significance test can be computed bys
redefining the JU dummy variable so that African American jurors are the
reference group, recalculating the product terrns, rerunning the regression
analysis, and then examining the coefficient for the AC x L product term in
the new analysis. The coefficient in the new analysis is 0.055. Confirm in
Table 3.4 that the relevant slopes are _0.554 and —0.609 and that their dif-
ference is (~0.554) — (-0.609) = 0.055. This difference is not statistically
significant (f = 565, p < 57, 95% CI =~0.136 to 0.246).

To summarize thus far, for African American jurors, the slope difference
of Y on X for the African American defendant minus the Buropean American
defendant is 0.055. This is the estimated two-way interaction parameter for
African American jurors. The corresponding slope difference for Buropean
American jurors is ~0.952. 1t represents the estimated two-way interaction
parameter for European American jurors. If there is no three-way interaction,
then these two-way parameter values should be the same (assuming 00
sampling error). The fact that they are not suggests that there may be a three-
way interaction. The difference between the two-way interaction paraméters
is (0.055)— (-950)= 1.007. Examine the coefficient for the three-way
product term. Note that it equals 1.007. The significance test for this coeffi-
cient evaluates the probability of observing a result of 1.007 or greater
assuming that the null hypothesis of a zero difference in the two-way inter-
action parameters is true. For an interactive model with a CONLinUOUS
predictor, X, and two qualitative predictors, Z and Q, and the correspond-
ing product terms between them, let X be the focal independent variable, Z
be the first-order moderator variable, and Q be the second-order moderator
varigble. For dummy coding on the qualitative predictors, the regression
coefficient for the “three-way” product term is a difference of slope differences.
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The difference focuses on the slope of Y on X for the group scored 1 on the
dummy variable for Z minus the corresponding slope for the reference group
on Z. This stope difference for the reference group on the durmumy variable
for Q is subtracted from the corresponding slope difference for the group
scored 1 on Q.

In sum, Table 3.4 provides the slopes of ¥ on X in the various experi-
mental conditions and conveys the information about the significance tests
for those simple effects. A three-way interaction implies that the nature of
the two-way interaction varies depending on the value of the second-order
moderator variable. The patterning of slopes in Table 3.4 makes evident the
sotrce of the three-way interaction. The slope differences for European
American jurers are more dramatic than those for African American jurors.
This could be shown graphically in a side-by-side plot of the regression of
Y on X for each of the two groups defined by Z, with a separate plot at each
value of Q.

A Qualitative Focal Independent Variable

We can reanalyze the above study from the perspective of using a qualita-
tive predictor as the focal independent variable. Here is the conceptual logic:
The researcher predicts that because of negative stereotypes and prejudice,
African American defendants will tend to be seen as more likely to be guilty
than European American defendants. However, this tendency is hypothesized
to be qualified by the ethnicity of the juror (the first-order moderator vari-
able): Whereas higher levels of guilt will be attributed to the African
American as opposed to the European American defendant, this will be
evident for only European American jurors, This hypothesis derives from the
assumption that European American jurors will exhibit prejudice but not
African American jurors. Finally, this moderating effect of juror ethnicity will
vary depending on how liberal-conservative the juror is. For conservative
jurors, the above dypamics characterizing the two-way interaction will be
evident. Flowever, for liberal jurors, this will not be the case and no prejudice
will be shown for either the African American or European Ametican jurors.

The test of the three-way interaction is exactly as in the previous section,
and we again use the regression equation in Table 3.3 as our reference.
However, the focus is on different lower-order coefficients to explicate the
three-way interaction in line with the conceptual framework stated above.

After affirming that the three-way interaction is present, we examine first
the coefficient associated with the focal independent variable and the first-
order moderator variable, which is the product term AC x JU. The value for
this coefficient is —17.241. If both variables in a product term are dummy
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TABLE 3.5
Mean Guilt Attributions as & Function of Ethnicity of the Accused
and Ethnicity of the Juror When Liberalness-Conservativeness
Equals Its Sample Mean

Mean SE 5% CI

AA juror, AA defendant 40.23 i1 18.04 to 42.41
AA juror, BA defendant 40.23 1.1 38.04 to 42.41
BA jusor, AA defendant 56.24 1.1 54.06 to 38.43

A juror, EA defendant 39,00 1.11 36.62 t0 41.20

E
NOTE: AA = African Ameticat; EA = Buropean American; QE = estimated standard er70r;
05% CI = 95% confidence interval.

variables with dummy coding, then the coefficient associated with the
product term reflects information about a 2% 2 table in the design. The
9 % 2 table to which it refers crosses the group scored 1 on the first dumnmy
variable versus its reference group with the group scored 1 on the second
dummy variable with its reference group on J {J. This subtable is identified
in Table 3.5. Tt will be helpful if we identify the mean guilt attributions
for each cell of the 2% 2 table, conditional on the centered lberainess-
conservativeness score being 0. As it turns out, the intercept in the full
regression equation is the mean guilt attribution when AC=0,JU=0, and
1,=0. So the mean guilt attribution for a Buropean American defendant as
rated by European American jurors when Jiberalness-conservativeness is
“average” is 39.006 95% Cl =16.817 to 41.196). We can calculate the
other three cell means either by algebra (as discussed in Chapter 4) or by
recoding the dummy variables and rerunning the analyses. In the latter
approach, we redefine the dummy variables so that the reference groups
correspond to the cell of the 2 % 2 table in which we are interested. We then
recalculate the product terms, reriin the regression analysis, and then note
the value of the intercept in fhe new cquation. We used this strategy to
generate the four cell means and their confidence intervals in Table 3.5.
The interaction parameter for this 2 x 2 table, a8 discussed in Chapter 1,
is the mean difference for the focal independent variable at the first level of
the moderator variable minus the mean difference for the focal independent
variable at the second tevel of the moderator variable. It is (40.23-
40.23) - (36.24 —39.00) =—17.24. Note that this value is identical to the
regression coefficient for AC x JU. The estimated standard error, confidence
interval, and significance test for the coefficient all provide perspectives on
the viability of the interaction in the 2 x 2 table. For an interactive model
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with two qualitative predictors, X and Z, and a continuous predictor, Q,
and the corresponding product terms between them, let X be the focal inde-
pendent variable, Z be the first-order moderator variable, and Q be the
second-order moderator variable. For dummy coding on the qualitative
predictors, the regression coefficient for XZ is the difference between two
mean differences. It is the difference between the group scored 1 on X and
the reference group on X for the group scorved 1 on 7, minus the corre-
sponding mean difference for the reference group on Z, all when Q =10,

The coefficient for the three-way interaction term tells us how this two-way
interaction parameter changes given a one-unit increase in liberalness-
conservativeness. The coefficient for the three-way product term was 1.007,
This means that if we increased liberalness by one unit, the aforementioned
interaction parameter of —17.241 would now equal ~17.241 + 1.007 =—16.234.
If we increased liberalness by two units, the aforementioned interaction
parameter of —17.241 would equal ~17.241 + 1.007 + 1.007 = ~15.227. As
liberalness increases, the effect of the two-way interaction between ethnicity
of the accused and ethnicity of the juror moves toward zero.

As in previous examples, it often helps readers to appreciate the three-way
interaction by presenting relevant 2x 2 tables at selected values of the
continuous second-order moderator variable. This has been done in Table 3.6
for “low,” “medium,” and “high” values of liberalness-conservativeness, where
a “low” value is defined as 1 SD below the mean liberalness-conservativeness
value, a “medium” value is the mean liberalness-conservativeness value, and a
“high” value ts 1 §D above the mean liberalness-conservativeness value. We
used the transformation strategy and the “recoding-of-dummy-variables”
strategy to isolate all of the relevant statistics. The table is organized so that
the focal independent variable is represented by rows and the first-order
moderator variable by columns, and the second-order moderator is used to
segregate the 2 X 2 tables. Beneath each 2 x 2 table is the interaction para-
meter. The three-way interaction is apparent from the fact that the
two-way interaction parameter estimate varies across the selected levels of
liberalness-conservativeness. The data can be presented graphically as a bar
graph using the principles discussed earlier.

Qualitative Variables With More Than Two Levels

The above logic extends readily to the case of gualitative variables with
more than two levels, One need keep in mind only the conditional nature of
the coefficients and the particular cells of the design that the product term
invokes. For example, in the first example, where the continzous variable
was the focal independent variable, suppose we had three levels of ethnicity
of the defendant (African American, European American, and Latino) and
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three levels of the ethmicity of the juror (African American, European
American, and Latino). The full equation would be

Y=a+blL+bAC,, +bAC +b,JU,, +b JU,
+ b(LHAC, ) + b(LYAC) + b(LYJU,,)
+ by(LYJU) + b, ((AC, YU, ) + b (AC, ) (JU,)
+ b (AC WU, ) + b, (ACHUU)
+ b (LDYAC, I, ) + b (IXAC, U
+ b (LXAC)HWU, ) + b (LXAC ) JU + ¢ [3.2]

where L is the centered liberalness-conservativeness measure, AC,, is a
dummy variable for the ethnicity of the accused in which observations involv-
ing an African American defendant receive a 1 and all others receive a 0, AC,,
is a dummy variable for the ethnicity of the accused in which observations
involving a Latino defendant receive a 1 and all others receive 2 0, JU,, is a
dummy variable for the ethnicity of the juror in which all African Americans
receive a 1 and everyone else receives a 0, and JU, is a dummy variable for
the ethnicity of the juror in which all Latinos receive a 1 and everyone else
receives a (. The Huropean American defendant is the reference group for the
ethnicity of the accused variable and the European American jurors are the ref-
erence group for ethnicity of the juror variable. Although this equation may
appear intimidating, it is easily processed using the principles discussed in this
chapter. The omnibus three-way interaction is tested by applying the hierar-
chical test of Equation 1.1 to the comparison of the model in Equation 3.2 with
a model that drops the predictors associated with b, through b,,. The coeffi- -
cient b, is the effect of liberalness-conservativeness on attributions of guilt for
the Buropean American defendant and European American jurors. Redefining
the dummy variables and recalculating the equation to isolate different com-
binations of reference groups for the two moderator variables will vield the
relevant statistics for the nine slopes defined by the 3 X3 combination of
ethnicity of the accused and ethnicity of the juror. In each case, the focusison b,.

The coefficient for any two-way term that includes L reflects a differ-
ence between slopes. For example, b, is the slope of guilt attributions on
liberalness-conservativeness for the Latino defendant minus the same
slope for the Europsan American defendant when the focus is on only
Furopean American jurors. The coefficient for a given three-way term
reflects a difference between slope differences. For example, b, is the above
slope difference for Huropean American jurors subtracted from the same
slope difference for Latino jurors. Although there are many terms with which
to work, their interpretation is straightforward.
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Summary

In sum, researchers often are interested in exploring interaction models
that focus on three-way interactions. The predictor variables involved in
the interaction might all be continuous or they might be a combination of
continuous and qualitative variables. In either case, the researcher declares
one of the variables the focal independent variable, a second variable is
declared the first-order moderator variable, and a third variable is declared a
second-order moderator variable. Appropriate product terms are calculated
and then the interaction model 1s estimated including all of the “main-effect”
terms as well as all of the product terms. The significance test of the omnibus
interaction is reflected in the regression coefficient associated with the three-
way product term when the omnibus interaction has a single degree of free-
dom. When the omnibus interaction has more than 2 single degree of
freedom, the hierarchical test that compares a model with the three-way
interaction terms with a model that excludes the three-way interaction terms
is applied to evaluate the statistical significance of the overall interaction.

The strength of the interaction effect in unstandardized terms is indicated in
the value of the regression coefficients reflecting the single-degree-of-freedom
interaction contrasts. The strength of the effect in standardized terms is
indexed by the squared semipart correlation for the three-way product termy(s).

Interpretation of the interaction typically focuses on the regression coef-
ficients associated with the focal independent variable and the regression
coefficients associated with the various product terms that include the focal
independent variable. Depending on which variables are the moderator
variables, different centering and recoding strategies are used to help the
reader appreciate the nature of the interaction.

4. ADDITIONAL CONSIDERATIONS

The present chapter considers a range of issues relevant 10 interaction
analysis, most of which are somewhat more advanced than the issues
discussed thus far.

Selected Issues

The Bilinear Nature of Interactions for Continuous Variables

As noted, when a continous variable is part of an interaction, it is impor-
tant to keep in mind that the traditional interaction model with product terms
tests only for an interaction that has a specific form, namely, a bilinear
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interaction. Other forms of interaction may be operating, and exploratory
analyses should be performed routinely to ensure that the correct type of
interaction is being modeled. In the case of two continuous predictor vari-
ables, the classic product-term approach reflects a narrowly defined but
probably widely applicable interaction form. As noted earlier, if X is the
focal independent vartable and Z is the moderator variable, the product-
term approach models the coefficient for X as a linear function of Z. It is
possible that the coefficient for X changes as a nonlinear function of Z, and
if this is the case, the traditional product-term approach represents
a misspecified model. A crude but sometimes informative way to explore
this issue is to use a variant of bandwidth regression (Hamilton, 1992). In
this approach, the moderator variable (Z) is grouped into 5 to 10 roughly
equal-sized, ordered categories. The mean or median Z is calculated for
each group. A regression analysis is then performed regressing ¥ onto X for
each of the Z groups separately. Examination of the coefficients for Y on X
across the 5 to 10 groups defined by Z should reveal a trend whereby the
coefficient increases or decreases as a roughly linear function of the mean
or median Z for each group across the groups. Stated another way, if one
plots from such an analysis the ¥ on X coefficients against the mean (or
median) Z values, a linear trend should be evident. If this is not the case,
then a more complex interaction form may be needed.

Such complex interactions often can be modeled using product terms in
the context of polynomial regression. For an introduction to polynomial
analysis with interaction terms in multiple regression, see Jaccard, Turrisi,
and Wan (1990). As one example, the steps for applying a model that
assumes the coefficient for X is a quadratic function of Z rather than a linear
function of Z, where both X and Z are continuous, are as follows:

Identify the focal independent variable, X, and the moderator variable, Z,
Make any desired transformations {e.g., mean center) on X and Z,
Calculate the square of the moderator variable, Z*.

Calculate product terms between X and Z and between X and Z°.

Fit the equation ¥ = o + B, X + B2+ B,Z* + B XZ + BXZ* + &

NI e

A hierarchical test for himprovement in model fit by adding the XZ? term
indicates whether the guadratic interaction effect is nontrivial (or one can
simply examine the significance of the test associated with the parameter
By). The coefficient for X at a given value of Z is defined by
By + B,Z + B,Z% The coefficient P, is the coefficient for X when Z = 0. One
can transform Z (in Step 2 above) so that a score of 0 on the transformed
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variable takes on a theoretically meaningful value to isolate the relevant
coefficient and confidence interval for the coefficient for ¥ on X at any
given value of Z.

For the case involving qualitative and continuous predictor variables,
assutne Z is a durmmy variable scored with 1s and 0s to represent group
membership. In this case, Y is a nonlinear function of X for at least
one of the groups, possibly both of them. Fit the following model:
Y=o+ BX+BZ+BX*+ BXZ+BXZ +e. The effect of X on ¥ when
7=0 is reflected by the quadratic model o +BX+p.X* within this
equation. To find the effect of X on ¥ when Z =1, recode Z by reverse
coding it, recalculate the product terms, and rerun the computer program,
again focusing on the resulting o+ B,X + B.X ? terms in the eguation.

Some methodologists (e.g., Ganzach, 1997) suggest that models that
assume simple fnear relationships and simple bilinear interactions are too
restrictive and that the possibility of curvilinear effects should routinely
be accommodated. One such approach is to fit 2 model that permits the
emergence of either linear or quadratic relationships between Y and the
predictors as well as interaction forms where the model will be sensitive to
a coefficient for X that is either a linear or quadratic function of Z For the
case of continuous predietors, such a model would have the form

Y=o+ P X+BX*+B,Z+ B2%+BXZ
+BXZ2 4 BXZ+ BXPZ + e [4.1]

The effect of X at any given value of Z in this model can be isolated by
applying the transformation strategy to Z so that the zero point corresponds
to the value of interest and then focusing on the B, and B, coefficients that
isolate the corresponding coefficients in the model Y=o+ BX+B.X*
when Z = 0. As discussed later, such a model has the advantage of helping
to protect the theorist against detecting spurious interactions or missing true
interactions. Critics would argue that the approach can overfit the data and
forsakes the principle of parsimony in theory construction. Both arguments
have merit. The model in Equation 4.1, of course, assumes that any non-
linearity is quadratic in form.

Calculating Coefficients of Focal
Independent Variables at Different Moderator Values

In previous chapters, coefficients for the focal independent variable were
caleulated at different values of the moderator variable by either trans-
forming the continuous moderator variable or redefining the reference
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group of a qualitative moderator variable and then rerunning the regression
analysis on the computer. This approach, though cumbersome, has the
advantage of producing the estimated standard errors and confidence
intervals for all of the parameters of interest. Such confidence intervals
are not readily calculated by hand (for relevant formulas, see Aiken &
West, 1991). Occasions may arise where one wishes to calculate the coef-
ficients from the initial equation without generating confidence intervals
and without redoing the analyses with transformed variables. This section
describes the general logic for doing so. We begin by showing the
approach that was used to derive Equation 2.7. We then generalize the
logic to other scenarios.

Consider the case where X is the focal independent variable and Z is the
moderator variable in the equation

Y=a+BX+B,Z+B.XZ+¢ [4.2]

We want to determine the coefficient for X at some value of Z. We first
isolate all terms on the right-hand side of the equation that contain X

BX+B,xZ
and then factor out the X as
X(B, +B2)
which yields the coefficient for X at any value of Z, namely,
BforXatZ=8,+p,Z [4.3]

For example, in Equation 4.2, if B, = 1.2 and B, = 0.0, then the coeffi-
cient for X when Z =2 is 1.2 + (0.05)(2) = 1.30. Note that when £ =0, the
value of the coefficient in Equation 4.3 is B, which underscores the point
that (3, is conditioned on Z being 0.

If X and Z are dummy variables, the logic of Equation 4.3 holds but is
focused on only the relevant dummy variables. For example, suppose X has
two dummy variables and Z has two dummy variables, yielding the follow-
ing equation:

Y=0+BDy +B,Dp + ByDyy + B,Dy + BsDy Dy,
+BeDy Dy + By DDy, + ByDyy Dy + €
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Suppose we want to isolate the coefficient for the group scored 1 on Dy,
versus the reference group on X for the case where Dy, =1 and Dy, = 1. We
first isolate only the terms and coefficients that directly involve Dy,:

611))(1 + BS‘DXEDZL + 66DX1D22
and factor out Dy, to yield
D (B, + BsDy, + BsDy)
so that
B for X at D, and Dy, =B, + B:D,, + BeDy

In the case where B, =02, B;=03, B=04, D, =1, and Dy, =1, the
coefficient for D,, is [-0.2 + (0.3)(1) + (0.4)(1)]=0.90.

Hquations for three-way interactions use the same logic. In the case of
three contimuous predictors X, Q, and Z, the traditional interaction equation is

Y=o+BX+B,0+B.Z+B X0+ B.XZ
+B,Q0Z+B,X0Z +¢

The coefficient for X at a given combination of scores on () and Z is

Pfor XatQand Z=0, +B,0+ B2+ B,QZ

and the coefficient for XQ at a given value of Z 18

Al

BforXQ at Z=8, %"B.,Z

Partialing the Component Terms

It is sometimes stated that the product terms in regression equations
represent interaction effects. By and of themselves, the product terms reflect
an amalgamation of main effects and interactions. It is only when the com-
ponent parts of the product term are included in the equation along with the
product term that the orderly relationships described in this book emerge
(coupled with an unconstrained intercept term). It is possible to model inter-
actions in ways that lead one to exclude one or more of the component parts
of the product term, but this typically represents interactions of a different
form than those considered here.
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Traditional interaction analysis uses what are called hierarchically
well-formulated models. A bierarchically well-formulated (HWF) model is
one in which all lower-order components of the highest-order interaction term
are included in the model. For example, if interest is in a two-way interaction
between X and Z, then an HWFE model includes X, Z, and XZ as predictors, If
interest is in a three-way interaction between O, X, and Z, then an HWF
model includes Q, X, Z, OX, QZ, XZ, and QXZ as predictors. For a qualitative
predictor with dumtny variables D, and D2, and a continuous predictor Z, an
HWF interaction model includes D,, D,, Z, D, xZ, and D, xZ When an
HWF model is used, the orderly relationships described in this book apply.

Of course, one can model certain types of interactions without using an
HWF model. For example, a simple multiplicative model might have the form

Y=o+BXZ+¢

The fit (i.e., multiple correlation) of such a model is impacted by the
metrics of X and Z. While in an HWF model a simple transformation that
subtracts a constant from X does not affect mode] fit, this is not true in
the above multiplicative model. If one’s metric is arbitrary in the purely
multiplicative model, then so is one’s fit. Modeling interactions that do not
involve HWF models can be a delicate enterprise.

Transformations

We have relied heavily on a simple transformation strategy (subtracting
a constant from a measure) to isolate simple effects and their associated
estimated standard errors, significance tests, and confidence intervals.
These transformations can be used for the analysis of two-way interactions,
three-way interactions, four-way interactions, or higher-order interactions.
The analyst simply must use an HWF model and keep in mind the condi-
tional nature of coefficients: Any time a variable, X, is involved in a product
term, the coefficient associated with it alone is conditioned on the other
variables in the product term being zero. Similarly, if a product term, X7Z, is
involved in a higher-order product term (e.g., XZ20), then the coefficient
associated with XZ is conditioned on the other variables in the higher-order
product term being zero (Q = 0.

When isolating a simple effect of X on Y at a given value of the moderator,
Z, using the transformation strategy, it usually is best to work with the raw
scores when applying the transformation to create the relevant zero point of
interest on the moderator variable. Some researchers mean center the Z
scores and then apply additional transformation strategies o these trans-
formed Z scores {e.g., subtracting and adding a standard deviation to them).
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Although this is legitimate, it has been our experience that researchers are
sometimes surprised by what appears to be result reversal when using such
doubly transformed scores. The algebra is tedious to demonstrate the
underlying dynamics, so we only caution the reader that the safest practice
is to avoid doubly transformed predictors and to always isolate
theoretically desired values of the moderator by applying the transformation
strategy to the original raw scores minus a constant that results in the zero
point of interest.

Multiple-Interaction Effects

Consider a case where an investigator desires to model an outcome, ¥,
as a function of three continuous predictors, X, 0, and Z. The researcher
does not expect a three-way interaction between the predictors but wants
to evaluate all possible two-way interactions. There are multiple strate- £
gies that might be used. Some analysts perform a “chunk” test in which
the fit of a model with all (two-way) interaction terms included is
contrasted with the fit of a model with none of the interaction terms; that
is, the interactions are tested as a “chunk” (Kleinbaum, 1992). The test is
accomplished using Equation 1.1. If the difference in fit of the two mod-
els is trivial, then this suggests that none of the interaction terms are nec-
essary and they are dropped from the model. I application of the “chun »
test reveals a nontrivial difference in model fit, then this suggests that at
least one interaction term is important to retain. At this point, a hierarchical
backward elimination strategy is used comparing the fit of 2 model that
includes all of the interaction terms versus the fit of a model that drops a
particular term of interest (vis-2-vis Equation 1.1). For example, if one is
interested in evaluating the XZ interaction, one would compare the fit of
the model

Y=o+ B X+B,Z+B.0+ B.XZ + B XO + BLOZ+e
with the fit of the model

Y=0+B X+ 5322+§33Q+[34XQ+{35QZ+8

If the difference in fit between the models is trivial, then this suggests
that the XZ term can be eliminated. However, if the difference in the fit of
the model is nontrivial, then the term should be retained.
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Some analysts systematically evaluate each interaction term in this
fashion. Other analysts choose one terma to focus on first, and if that term is
eliminated, evaluate the remaining interaction terms with the previously
eliminated term(s) expunged from the model. For example, if we tested XZ
first for possible elimination and ultimately decided to drop it from the
model, then the evaluation of QZ would focus on a backward elimination
test where XZ was not present in the model; that is, we would evaluate

Y=o+BX+B,2+B,0+BX0+B,0Z+e
versus

Y=a+BX+BZ+3,0+BX0+¢€

The choice of which term to evalvate first for possible elimination is
based sometimes on theoretical criteria, sometimes on whichever term has
the largest p value associated with its regression coefficient in the full equa-
tion, or sometimes on both,

In multiple-interaction scenarios, there are many model-fitting criteria
that can be invoked for the trimming of terms, and controversy exists about
these strategies. In-depth consideration of the relevant issues is beyond the
scope of this book. Interested readers are referred to Bishop, Feinberg, and
Holiand (1975), Hosmer and Lemeshow (1989), and Jaccard (1998) for a
discussion of germane issues. The reader should be forewammed that seeming
“anomalies” can occur as muitiple-interaction terms of the same order are
considered. For exarnple, the “chunk™ test might indicate that at least one of
the product terms should be retained in the model, but the evaluation of each
individual term may suggest that each term can be eliminated from the
model. Or the “chunk™ test may suggest that all of the terms be eliminated
whereas evaluation of the individual terras may suggest otherwise. Or the
results of the individual tests of one term may suggest that the term be
retained and that all others be eliminated, but when the others are eliminated,
the candidate for retention becomes nonsignificant and of marginal predic-
tive value. How one deals with these scenarios depends on the theoretical
questions being addressed, one’s overarching statistical framework (e.g.,
null hypothesis testing, magnitude estirnation, interval estimation), and the
patterning of the data. In most analytic situations, the choice of terms to trim
will be straightforward and noncontroversial, but this is not always the case.
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When two separate interaction ferms are included in the regression
equation (e.g., for three continuous predictors, @, X, Z, and both XZ and 07
are retained in the equation but no other interaction terms are), then the
coefficient for a given interaction term is interpreted as described in previ-
ous chapters but with the proviso that the other two-way interaction (as well
as all other covariates) is statistically held constant. The coefficient for any
lower-order term is conditional on the other variables in all product terms
with which it is involved being zero.

Standardized and Unstandardized Coefficients

The regularities for the regression coefficients discussed in this book
apply to the unstandardized coefficients associated with the predictor vari-
ables. Although it is possible 1o use standardized coefficients in the analy-
sis of interactions, such coefficients have the potential to lead theorists
astray and will not exhibit the regulatities we have noted. We generally
recommend against their use, although occasions may arise that justify their
analysis. As one illustration of the limitations of standardized coefficients,
consider a simple bivariate regression where we regress a measure of
income onto the number of years of education in order to determine the
“value™ of a year of education. The analysis is conducted in two different
ethnic groups, African Americans and European Americans, Suppose that
the analysis yielded identical standardized regression coefficients in the two
groups, indicating that for every 1 8D that education changes, income i8
predicted to change 0.50 SD. One might conclude from this that the “value”
of education is the same in the two groups. Suppose that the standard
deviation for education is 3.0 in both groups but that for income itis 15,000
for Buropean Americans and 6,000 for African Americans. Such a state of
affairs yields unstandardized coefficients of 2,500 for European Americans
and 1,000 for African Americans. Whereas for Furopean Americans an
additional year of education is predicted 1o be worth $2,500, for African
Americans, it is worth only $1,000. There is a clear disparity between the
groups that is not reflected in the standardized analysis.

The problem with the standardized analysis is that it creates different
metrics for the two groups. Because the standard deviations are different,
the metric of a standard deviation is different. The metric is in units of
$15,000 for the Buropean Americans, but it is in units of $6,000 for African
Americans. Comparing groups on these different metrics is sornewhat like
measuring income in units of dollars for one group but units of British
pounds for another group and then comparing groups without acknowledging
the difference between the dollar and the pound. For a discussion of other
Fimitations of standardized coefficients, see J accard, Turrisi, and Wan (1990).
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Figure 4.1 Path Diagram of a Measurement Modet

Metric Properties

Metric properties are important for interaction analysis. The underlying
issues are best understood by conceptualizing measurement in terms of
classic latent variable modeling. An observed measure of a construct is
viewed as an indicator of a latent variable that represents the true constrict
in question. In practice, we do not know a person’s true score on this
construct but instead use the observed measure to estimate it. The observed
measure is influenced not only by the person’s true standing on the latent
variable but also by measurement error. A path diagram of the model is
presented in Figure 4.1. If we assume a linear relationship between the
observed measure and the latent variable, Figure 4.1 implies a regression
equation in which the observed measure is regressed onto the latent variable:

Y=o+BLY+¢

v

The above is a measurement model that describes how an observed
measure maps onto a latent variable. Groups may differ on the intercept,
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slope, or error variance of this measurement model, and such differences
can affect inferences about the true state of affairs regarding group differ-
ences on the latent variables (which are of primary theoretical interest). For
example, two groups may have identical mean scores on the latent variable,
but if they differ on their intercepts for the measurement model, the mean
scores of the observed measures will be different. If two groups differ in the
regression coefficient of the measurement model, then they can exhibit
unequal variances on the observed measures even when they have equal
variances on the latent variabie. If two groups differ in their error variances,
then the measures are differentially reliable for the groups (everything else
being equal). The cleanest scenario analytically is where the different
groups defined by the moderator variable have identical intercepts and
slopes in the measurement model and the error variances are equal to zero
or near zero. Deviations from this may introduce problems for interaction
analysis. For a discussion of metric implications, methods for testing
metric equivalence, and methods for metric adjustments, see Vandenberg
and Lance (2000) and Busemeyer and Jones {1983).

Some methodologists assert that interaction analysis of the type discussed
here is appropriate for only ratio-level measures. This is not the case. The
methods can be used effectively for interval-level measures or measures
that approximate reasonably well interval-level characteristics. This latter
statement requires elaboration.

Some researchers erroneously refer to scales as being interval or ordinal
in character. It is important to recognize that metric qualities are not inher-
ent in scales but rather are inherent in data and hence are influenced by all
of the facets of data collection. The extent to which a set of measures has
interval properties is not dependent only on the scale used to make obser-
vations but also on the particular set of individuals on which the observa-
tions are made, the time at which the data are collected, the setting in which
the data are collected, and so on. Consider the following simplistic yet
pedagogically useful example. The height of five individuals is measured
on two different metrics, inches and a rank order of height:

Height Rank Order
Individual (in inches) Height
A 72" 5
B 1 4
C 70" 3
D 69” 2
E 67" i
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As is well-known, the measures taken in inches have interval-level
properties. For example, a difference of | between any two scores corresponds
to the same physical difference on the underlying dimension of height. The
actual height difference between individuals A and B corresponds to the
same true underlying height difference between individuals C and D, and
the metric reflects this (l.e,, 7271 =1 and 70 — 69 = [). Similarly, the
difference between D and E is 69 — 67 = 2, and the difference between A
and C is 2. These differences also reflect the same amount on the underlying
dimension of height. Note, however, that these properties do not hold for
the rank-order measure. The difference in scores between individuals A and
Bis 1 (ie., 5~4) and the difference in scores for individuals D and E
is also 1 {i.e., 2—-1). These identical differences correspond to differing
degrees of height disparities on the underiying dimension of height
(i.e., the tue difference between individuals D and E is larger than the
true difference between individuals A and B, as is evident for the measure
using inches). For these individuals, the rank-order measures have ordinal
properties but not interval properties.

Now consider five different individuals with the following scores:

Height Rank Order
Individual (in inches) Height
A 72" 5
B 717 4
C 707 3
D 697 2
E 68" 1

Note that for these five individuals, the rank-order measures have interval-
level properties. The difference in scores between individuals A and B is 1,
as is the difference between individuals D and E. These differences correspond
to the exact same amount on the underlying physical dimension. In this case,
what we think of as traditionally being an ordinal “scale” actually yields
measures with interval-level properties. Suppose that individual E was not
68 dnches tall but instead was 67.9 inches tall. In this case, the rank-order
measures are not strictly interval. But they are close and probably can be
treated as if they are interval level without adverse effects.

This example illustrates that the crucial issue is not whether a set, of
measures is interval or ordinal. Rather, the issue is the extent to which a set
of measures approximates intervai-level characteristics. If the approximation
is close, then the data often can be effectively analyzed using statistical
methods that assume interval-level properties. If the approximation is poor,
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an alternative analytic strategy is called for. In this sense, interaction analyses
. can be performed on ordinal-level data as long as they approximate interval-
level characteristics reasonably well.

Measurement Error

A topic that has ceceived considerable attention in the statistical literature
on interaction effects is the biasing effects of measurement error. It is well-
known that unreliable measures can vield biased estimates of regression
coefficients in multiple regression (€., Bohrnstedt & Carter, 1971). Social
scientists frequently conduct reseatch using fallible measures. Measurement
error is thus a potential problem for the analysis of interaction effects involving
continuous variables.

Using classical test theory, Busemeyer and Jones (1983) show that
measurement error has the effect of attenuating hierarchical evaluations of
product terms. The degree of attenuation is a direct function of the reliability
of the product term, which we will call Pr. Under standard statistical
assumptions, the amount of attepuation in changes in R* from the main-
effect model will equal Pr (R% ~ R%). For example, if the true incremental
explained variance (R2 — R}) due to the addition of a product term is .20 and
the reliability of the product term is .70, then the observed incremental
explained variance will equal (20)(.70) = .14, everything else being equal.

Under certain reasonable statistical constraints,® if the true correlation
between X and Z is 0, then the reliability of the product term XZ will equal
the reliability of X times the reliability of Z. Thus, if one measure is rela-
tively reliable (Fyy= .80) and the second measure is relatively unreliable
(ryz=-50), then the reliability of the product term will be lower than the
reliability of the least reliable measure [((80)(.30) = 401, As the true corre-
lation between X and Z increases, the reliability of the product term will
increase, but not by much given the range of correlations and reliabilities
typically observed in social science research (see Busemeyer & Jones,
1983, for elaboration). These facts underscore the difficulties that measure-
ment error can create for tests of interaction, especially in situations with
low statistical power. Using large sample sizes can offset the loss of power
induced by measurement error for purposes of hypothesis testing, but 2
large N will not necessarily eliminate complications due to bias in the
regression coefficients (e.g., Busemeyer & Yones, 1983; Evans, 1985).

Several resolutions to the problem of measurement error have been
proposed. Cohen and Cohen (1975), Bohmstedt and Marwell (1978), Heise
(1986), and Fuller and Hidiroglu (1978) suggest approaches that require
a priori knowledge of the reliabilities of the constituent variables. Cohen
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and Cohen (1983, p. 410) find fault with the method of correction that they
suggested in their 1977 book in that the approach tends to overestimate the
magnitude of the regression coefficients. The Botunstedt and Marwell
approach has several limitations, detailed by Busemeyer and Jones (1983).
Heise (1986) finds that his approach performed satisfactorily only under
conditions where reliability was relatively high to begin with (e.g., above .90).
The Fuller and Hidiroglu approach is promising but has been developed only
for models without product terms. Extensions of this approach to product-term
analysis would be valuable,

A second set of approaches to the problem of measurement error uses
latent variable structural equation models (see Jaccard & Wan, 1996, for an
introduction to these approaches). These strategies rely on multiple indicators
of each construct to incorporate error theories into model tests and parameter
estimation. Interaction models using these approaches are receiving a great
deal of attention. A problem with many of the approaches is the need for
Targe sample sizes and the assumption that the predictor variables all are
normally distributed. Several strategies are being developed that relax the
normality assumption. These include a two-stage least squares approach by
Bollen (1996) and Bellen and Paxton (1998), quasi-maximum-likelihood-
estimation approaches (Klein & Muthen, unpublished manuscript), and
errors-in-variables factor-score approaches (Wall & Amemiya, 2000). At
present, it is not possible to identify one analytic strategy that is necessarily
superior to another across analytic scenarios. Although there is much work
to be done, these methods hold promise.

The analyst who relies on traditional multiple regression for interaction
analysis must acknowledge the potential bias due to measurement error,
should use as valid and as reliable measures as possible, and should draw
conclusions with appropriate caution. Ignoring measurement error is tanta-
mount to assuming perfect reliability. This means that social scientists
should devote considerable time and effort to developing high-quality
measures before embarking on complex theory tests. The literature in
psychometrics, questionnaire construction, and psychophysics is replete
with well-established recotnmendations for reducing measurement error.
For useful discussions of these practices, see Anderson (1981) and Wegenar
{1982).

Robust Analyses and Assumption Violations

Thus far, we have presumed that the standard assumptions of inferential
tests in ordinary least squares (OLS) regression hold true. We also have
assurned that there are no outliers that mask the fundamental trends in the
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data. Unfortunately, the assumptions of OLS regression often are violated
and inferential tests can be andermined accordingly. One approach to possible
assumption violation is to use preliminary tests to evaluate the viability of
the assumptions (e.g., a test of normality or a test of variance heterogeneity)
and to alter the analytic strategy if the assumptions are violated. Many of
these tests lack statistical power 0 that nonnormality or variance hetero-
geneity that matters remains undetected unless large sample sizes are used.
{n addition, the traditional 7 test and F tests of OLS regression were not derived
under the scenario where a “screening test” is applied to determine whether to
proceed with the analysis. Applying such screens can alter the shape of the
underlying sampling distribution and cause more harm than good.

Another strategy is to transform the data in such a way that the data con-
form to the statistical model being fit to the data. Sometimes a transforma-
tion to alleviate one problem (nonnormality) creates other problems for the
analysis {variance heterogeneity). Some transformations change the funda-
mental unit of the variables to the point that the new metric has no real-
world meaning. This makes it ditficult to work with the measure from a
practical standpoint. Finally, the general philosophy of transformation puts
the horse before the cart. Instead of manipulating data via transformations
to conform to an underlying statistical model, why not use a statistical
model that is appropriate for the data at hand?

Twenty years ago, finding such a statistical model might have proven o
be an impossible challenge for some situations. However, with the advent
of fast computers, far-reaching advances are being made in the field of
robust statistical methods. Viable analytic methods are now available that
do not make the strong assumptions of traditional statistical methods, that
have excellent comparative statistical power, and that are outlier resistant.
Some of these methods use the same principles described in this book (e-g.,
product terms that yield the same types of interpretations of coefficients)
but do so in the context of outlier-resistant criteria that vield robust esti-
mated standard errors and robust confidence intervals. Other methods
involve entirely different frameworks, such as those based on smoothing.
For useful expositions of robust methods, see Wilcox (1997, 2001). Wilcox
(1997) explicitly includes a discussion of robust analyses for some forms
of interaction.

Recent developments are merging robust methods with structural
equation~modeling methods so that assumption violations, outliers, and
measurement error all can be accommodated. These approaches include
bootstrap estimation of standard errors and confidence intervals and con-
certed attention to distribution-free estimators (Arbuckle & Wothke, 1999).
These technigues hold much promise for the future. .

5
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Within-Subject and Repeated-Measure Designs

Analytic scenarios arise where researchers desire to test the difference
between slopes for within-subject or repeated-measure designs. One type of
design is where an outcome variable is measured at two points in time and
then regressed onto a comunon, stable predictor at each time period. For
example, relationship satisfaction with one’s parents might be regressed onto
gender when respondents are in the seventh grade and again when they are in
the ninth grade. Of interest is whether the effect of gender on relationship
satisfaction in the seventh grade is different from the effect of gender on rela-
tionship satisfaction in the ninth grade. This design yields two equations:

Y=o + BnX +E
Vo= 0y + Ber TE,

where X is the stable predictor variable, ¥, is the outcome variable measured
at Time 1, and Y, is the outcome variable measured at Time 2. Judd, Kenny,
and McClelland (2002) show that if one assumes that the path model in
Figure 4.2 holds, then the null hypothesis of equal slopes in the two equations
can be tested by applying traditional QLS regression, predicting the difference

between Y, and ¥, from X as follows:
Y, ~Y,=a+bX+e [44]

The slope, b, in Bguation 4.4 will equal the difference between b, and b,
and the test of significance of b evaluates the null hypothesis that B,, =B,,.
Judd et al. {2002) discuss extensions of the test to designs with more than
two repeated measures.

A second within-subject design focuses on the case where both X and ¥
vary over tirne, vielding the following two equations:

Y=o, +B,X, +¢&,

Y:z = a;z + Bszrz + 8!2

Of interest is the test of the null hypothesis that B, = [3,,, a test of what has
been called “sequential moderation” James and Tetrick (1984) describe a T2
statistic that can be used to test for sequential moderation that is based on a
least squares regression model and that assurnes that the model in Figure 4.3
holds.
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Figure 4.2 Model of Longitudinal Data With Stable Predictor

A limitation to these procedures is that the underlying models in Figures
4.2 and 4.3 may be incorrect, which can invalidate the tests. Often there will
be correlated errors, Or the outcome at Time 1 may have a causal impact on
the outcome at Time 2 independent of X. For the model in Figure 4.3, ¥,
may not be influenced only by X,, but also by X, independent of X,,. If the
model is misspecified, then the tests of coefficient differences are under-
mined. Probably the best methods for testing interaction hypotheses of this
type ate those that use structural equation-modeling (SEM) frameworks
(e.g., Kline, 1998). SEM can accommodate a wide range of causal models
and error structures in the context of such tests, although they often require
moderate to Jarge sample sizes due to their reliance on asymptotic theory.
Specialized methods in econometrics also may be of use (Greene, 1997).

Another common time-based interaction analysis is that based on growth
curve models. In this approach, one specifies a mathematical function




77

Yy Yo
A A
X” X{Z

Figure 4.3 Model of Sequential Moderation

that describes how a variable changes over time for a given individual. For
exarnple, an individual’s reading ability (¥) may change over the course of
grades 1, 2, 3, 4, 5, and 6, and the change may be lingar in form. The linear
change can be described in terms of a slope and an intercept for that
individual, with the slope indicating how much the reading level is predicted
to change for the individual given a one-unit increase in time. If the units of
time are years, then the slope indicates how much reading ability is predicted
to change from one year to the next as one moves across grades 1 through 6.
There likely will be individual differences in these slopes, with some children
exhibiting steep slopes that indicate large changes in reading ability from
year to year and other children exhibiting relatively flat slopes that indicate
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small changes in reading ability from year to year. Of interest are variables
that predict the magpitude of these slopes. For example, do children who
receive instruction in private schools, on average, exhibit steeper slopes than
those who receive instruction in public schools? Does the magnitude of
the slopes vary as a function of the child’s sociceconomic standing? Such
questions (which are inherently interaction based) are addressed using
growth curve modeling as developed in the statistical literature on hierarchical
linear modeling (Bryk & Raudenbush, 2002). Growth curve modeling also
can be parameterized using a structural equation-modeling framework
(Duncan, Duncan, Strycker, Li, & Alpert, 1999).

Ordinal and Disordinal Interactions

Social scientists distingunish between ordinal interactions and disordinal
interactions. The distinction usually is made in the context of a qualitative
predictor that has two or three groups coupled with a continuous predictor.
A disordinal interaction is one in which the regression line that regresses ¥
onto the continuous predictor for one group intersects with the corresponding
regression line for the other group. This also is referred to as a crossover
interaction. An ordinal interaction is one in which the regression lines are
nonparallel but they do not intersect. Figure 4.4 presents an example of a
disordinal and an ordinal interaction.

Statisticians have expressed some wariness about ordinal interactions.
Such interactions, they contend, may be an artifact of the metric of the
dependent variable. Nonparallel regression lines frequently can be made
parallel by means of a monotonic transformation of the ¥ scores. If the
metric intervals of ¥ are truly arhitrary, then it makes sense from the stand-
point of scientific parsimony to perform such transformations and remove
the false moderator effect. Ordinal interactions, however, should not be
dismissed if their metrics are meaningful. As Cronbach and Snow (1981)
demonstrate, such interactions can be substantively important and, when
coupled with cost-benefit criteria, can be crucial for classification decisions.

For any given pair of nonparalle] regression lines, there is always a point
where the lines will intersect. In this sense, all interactions are disordinal in
theory. Interactions are classified as being ordinal if, within the range of
scores being studied {e.g., for [Q scores between 90 and 110}, the regres-
sion lines do not intersect. Consider the case of two groups, each of which
can be described by its linear equation of ¥ on X. It is possible to identify
the point on the continuous predictor where the regression lines for the two
groups intersect using the following formula:

Pi={a, —a)(b,—b)
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Figure 4.4 Ordinal and Disordinal Interactions
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where a, is the intercept for the first group based on the regression of
the outcome variable on the continuous predictor for that group, 4, is the inter-
cept for the second group based on the regression of the outcome variable on
the continuous predictor for that group, b, is the slope for the first group based
on the regression of the outcome variable on the continuous predictor for that
group, and b, is the slope for the second group based on the regression of the
outcome variable on the continuous predictor for that group.

As an illustration of the refevant calculations and a substantive application,
consider the following example: A psychologist is interested in the relative
effects of two types of therapy on childhood seli-esteem. An experimental
study is conducted where children receive an intervention designed to raise
their self-esteem. Half of the children receive intervention A and the other
half recejve intervention B. Assignment to groups is random. No control
group is included in the study because previous research indicates that both
interventions are effective in raising childhood self-esteem relative to a no-
treatment control. How children respond to the two treatments is thought to
be moderated by the quality of their relationship with their parents. For chil-
dren who have relatively positive relationships with their parents, it is thought
that intervention A will be more effective than intervention B. For children
who have relatively poor relationships with their parents, it 3s thought that
intervention B will be more effective than intervention A. The type of inter-
vention received was dummy coded using a single dummy variable, and the
quality of the relationship between the child and the parent was measured on
a 51-point scale (ranging from 0 to 50) based on a clinician’s rating. The
clinician had spent considerable time with both the parent and the child and
made a rating based on these interviews. Higher scores indicated a better-
quality relationship. Self-esteem was measured on a scale from 0 to 20, with
higher scores indicating higher levels of self-esteemn. In this study, postinter-
vention self-esteem is the outcome variable, the type of intervention is the
focal independent variable, and the quality of the parent-child relationship is
the moderator variable. The self-esteem scores were regressed onto the
dummy variable, the quality of the relationship measure, and the product of
the two variables (without any mean centering in the analysis). The interaction
effect was statistically significant.

We begin by calculating the separate regression equations for the two
groups that regress the self-esteem scores onto the guality of relationship
scores. These can be isolated using the procedures discussed in Chapter 2
and are

Intervention A: ¥=1.193 +0,098Z + ¢
Intervention B: ¥=7.193 +-0.107Z + ¢
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A plot of the scores and the regression lines would reveal that the Interaction is
disordinal. The point of intersection is

P =(1.193 -7.193)/(-0.107 ~ 0.098) = 29.27

This point describes the score on Z where the predicted self-esteem
scores are the same for the two groups. Thus, when the quality of the rela-
tionship corresponds to a score of 29.27, the postintervention self-esteem
scores of the children are predicted to be the same in the two intervention
conditions. As the quality of the relationship exceeds 29.27, the postinter-
vention self-esteem scores are predicted to be higher in intervention A than
in intervention B. As the quality of the relationship falls below 29.27, the
postintervention self-esteem scores are predicted to be higher in interven-
tion B than in intervention A.

The results of this analysis suggest a basis for placement decisions for
the children. If on a preintervention measure their quality of relationship
with their parent is less than 29.27, then they should be given intervention
B. Hf on a preintervention measure their quality of relationship with their
parent is greater than 29.27, then they should be given intervention A,

Cronbach and Gleser (1957) review the logic of such treatment and clas-
sification decisions in educational, organizational, and psychological
research. These authors note that decisions about the assignment of people
to treatments (e.g., clinical interventions, type of educational curricula, type
of job) are frequently guided by the identification of crossover points in dis-
ordinal interactions: Persons to the right of the crossover point are assigned
to one treatment, and persons to the left of the crossover point are assigned
to the other treatment. In contrast, ordinal interactions imply the same treat-
ment might be used for all individuals.

Regions of Significance

Although the above analysis of point of intersection is useful, we must
recognize that there is sampling error that affects our specification of a point
of intersection. Potthoff (1964) developed a method, based on the classic
work of Johnson and Neyman (1936}, that establishes “regions of signifi-
cance” relevant to the interpretation of an intersection point in a disordinal
interaction. The focus of this approach is where the researcher has a quali-
tative focal independent variable and a continuous moderator variable. For
the case of two groups, the technique defines a range of scores on the
moderator variable where the members of one group on the focal independent
variable are not expected to have a higher ¥ score than the members of the
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other group taking into account sampling error (see Aiken & West, 1991, for
a more formal characterization of these intervals). In the example from the
previous section, applying the procedures to be described below yielded a
region with values ranging from 27.36 to 31.07. This means that when the
quality of the parent-child relationship exceeds 31.07, we can be reasonably
confident (based on a 95% confidence level) that the predicted postinterven-
tion self-esteem for the group receiving intervention A exceeds that of the
group receiving intervention B. When the quality of the parent-child rela-
tionship is less than 27.36, we can be reasonably confident that the predicted
postintervention self-esteem of the group receiving intervention B exceeds
that of the group receiving intervention A,

The relevant values are obtained by solving for the two values (which we
call CV) in the expression

CV=[-B+(B*-ACY* /A {4.5]

To define the values of 4, B, and C, let ¥ = the outcome variable, Z = the
continuous moderator variable, N = the total number of individuals across
both groups that define the focal independent variable, n, = the number of
individuals in group 1, n, = the number of individuals in group 2, F, = a
tabled F ratio with 2 and N — 4 df that corresponds to the experimenter-
defined critical F value associated with an a priori specified alpha level
(traditionally .05), M, = the mean score on Z for group 1, M, = the mean
score on Z for group 2, S, = the sum of squares regression for Z for group
1, 8, = the sum of squares regression for Z for group 2, E = the residual sum
of squares for the regression of ¥ on Z for group 1 plus the corresponding
residual sum of squares for the regression of ¥ on Z for group 2, a, = the
intercept for the linear regression of ¥ onto Z for group 1, a, = the intercept
for the linear regression of ¥ onto X for group 2, b, = the slope for the linear
regression of ¥ onto Z for group 1, b, = the slope for the linear regression
of ¥ onto Z for group 2. Then

A= [—2F (N — 8)E[LS, + 1S,] + (b, — by
B = [2F (N — H))EIM,[S, + M,JS,] + (a, — a) (b, — by)
C=[-2F (N ~ HEIN(nny) + MYS, + MYS,] + (a, — a,)

The within-group regression equations should not use centered measures
of Z. For greater discussion of this method, relevant computer code, and
extensions to more complex scenarios, see Aiken and West (1991). Cronbach
and Snow (1981) discuss the strengths and limitations of these approaches.
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Confounded Interactions

Some analysts have noted that interaction effects often are confounded
with curvilinear effects of X on ¥, thereby complicating interaction analysis
{e.g., Lubinski & Humphreys, 1990). Data may be the result of a generating
process that derives from a curvilinear relationship between X and ¥, but
when an interaction model is fit to the data using X, ¥, and a third variable,
Z, a false interaction results,

To illustrate the basic ideas, consider the case where the true undedying
model of the relationship between ¥ and X is curvilinear and quadratic in
form as expressed by the following model:

Y=o+BX+BX*+e
An interaction model, by contrast, is
Y=0+BX+B,Z+B,XZ+¢

It turns out that as the correlation between X and Z increases, the corre-
lation between X* and XZ also increases. This means that when X and Z are
correlated, there will be confounding between the two models (Busemeyer
& Jones, 1983; Lubinski & Humphreys, 1990). Depending on the nature of
the quadratic form, fitting an interaction model when the underlying rela-
tionship is curvilinear can result in spurious conclusions about interactions.
H both interactive and curvilinear effects are operative, then fitting the
traditional interaction model can result in missed interactions, spurious
interactions, or misleading interactions that are opposite in sign to the true
interaction effect (Ganzach, 1997),

The essence of the problem is that of fitting misspecified models to the
data. Doing so can lead the theorist astray. Researchers need to think care-
fully about the possible models that can account for data and then explore
these models accordingly. If a curvilinear effect is not theoretically plau-
sible and makes no conceptual sense, then it should not be pursued. If
such a model is theoretically viable, then it should be considered. It may
be the case that an interaction term becomes statistically nonsignificant
when covariates mapping onto curvilinear effects are introduced into the
equation. This does not necessarily invalidate the interaction model. Tt
only suggests that an alternative model also can account for the data. The
bottom line is that common sense and theory need to frame the types
of models explored and that researchers must recognize that multiple
models may need to be considered and contrasted before settling on an
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interaction model. The work of Lubinski and Humphreys (1990) as
well as others suggests that researchers should consider the viability of
curvilinear models as competing alternative models when contemplating
interaction effects.

Optimal Experimental Designs and Statistical Power

Several analysts have lamented the difficulty of detecting interaction
effects in linear models because of low statistical power. McClelland and
Judd (1993) explore a host of reasons that undertie low statistical power
in field settings. These researchers note that the statistical power to detect
an interaction effect is heavily dependent on the nature of the distribu-
tions of the component variables of the product term (Le., X and Z for the
product term XZ). McClelland and Judd (1993) suggest design strategies
based on the oversampling of extreme cases of X and Z that can be used
when practical constraints dictate a small sample size and statistical
power for detecting an interaction is expected to be low. These methods
must be used with caution, however, because they can vield biased
estimates of standardized effect sizes, such as estimates of the increment
in squared multiple correfations based on the additive versus the interactive
model.

When conducting statistical power analyses for interaction effects, it is
important to take into account theoretical limits on the effect size of the
interaction. For example, traditional power analysis for an interaction term
is based on the incremental explained variance that results from adding a
product term to a “main-effect-only” model. If theory dictates a priori an
ordinal interaction between the two predictors and the interaction effect in
the population is nonzero, then, by definition, the squared multiple correla-
tion for the main-effect-only population model must be nonzero. The larger
the effect size of the ordinal interaction, the larger will be the effect size for
the main-effect-only model, which is used as the baseline from which to
evaluate the statistical power of the interaction term. The formal relation-
ship between these two effect sizes is described in Rogers (2002). Such
linkages must be respected when conducting power analysis for ordinal
interactions because researchers may unwittingly apply power analyses that
specify a standardized interaction effect size in the population that is theoreti-
cally impossible. For more details, see Rogers {2002).

Covariates

Covariates can be added to any of the regression models discussed in this
book without disrupting the interpretation of the coefficients involved in the
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interaction. For example, a covariate, (J, might be added to the product-term
model as follows:

Y=o+ B X+B,Z+B,XZ+B,0+¢

In this model, B, is the number of units that the effect of X on Y is
predicted to change given a one-unit change in Z, holding Q constant. The
intercept is the predicted mean ¥ when X, Z, and @ all equal 0. Simple
linear transformations of @ do not affect the coefficients of the other
predictors, but they do affect the intercept term as the zero point of Q
changes.

Control for Experimentwise Error

In some interaction analyses, multiple single-degree-of-freedom contrasts
are pursued. When this is the case, the per-comparison alpha level remains
at the specified alpha for a given contrast {usually .05), but the probability
of at teast one Type [ error occurring across the set of contrasts exceeds
the per-comparison alpha. In such instances, some researchers invoke
statistical adjustments that maintain the experimentwise alpha level (ie.,
the probability of obtaining at least one Type I error across a set of
contrasts) at a specified level across the contrasts. The most popular method
for doing so is the traditional Bonferroni procedure, although the technique
is conservative, More powerful alternatives can be used that effectively
control the Type I error rate (see Westfall et al., 1999). As one example,
Holm (1979; see also Holland & Copenhaver, 1988; Seaman, Levin, &
Serlin, 1991) has suggested a sequential modified Bouferroni method. Here
is how it is applied. First, a p value is obtained for each contrast in the
family of contrasts. The p values are then ordered from smallest to largest. If
two p values are identical, they are ordered arbitrarily or using theoretical
criteria. The contrast with the smallest p valve is evaluated against an alpha
of .05/k, where k is the total sumber of contrasts in the family. If this leads
to rejection of the corresponding null hypothesis (because the observed p
value is less than the adjusted o), then the next-smallest p value is tested
against an alpha level of .05/(k — 1), where k& —~ 1 is the remaining number
of contrasts. If this test leads to null hypothesis rejection, then the next-
smallest p value is tested against an alpha level of .05/(k — 2), and so on, until
a nonsignificant difference is observed. Once a statistically nonsignificant
difference is observed, all remnaining contrasts are declared nonsignificant.

When the reported single-degree-of-freedom contrasts are merely illus-
trative and designed to provide the reader with a sense of the interaction,
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then the invocation of experimentwise controls probably is unnecessary. If
one is going to make a theoretical statement tied to the analysis, then the
issue is more germane. Decisions to invoke experimentwise error controls
are complex and governed by a wide range of issues, including statistical
power and the consequences of Type 1 and Type Il errors.

Omnibus Tests and Interaction Effects

A common strategy used in interaction analysis is to first perform an
omnibus test of an interaction effect and then to pursue single-degree-of-
freedom interaction contrasts only if the omnibus effect is statistically sig-
nificant. The omnibus test is used as a basis for protecting against inflated
Type [ errors across the single-degree-of-freedom interaction contrasts
underlying the omnibus interaction. In general, most such two-step
approaches have been discredited as an effective means of controlling
experimentwise error rates (Jaccard, 1998; Wilkinson, 1999). An alternative
strategy is to move directly to the single-degree-of-freedom contrasts that
are of theoretical interest and to invoke controls for experimentwise error
(e.g., the modified Bonferroni test) at that level independent of the results
of an omnibus test. This does not mean that omnibus tests of interactions
never will be meaningful. Such tests may be of interest if one wants to docu-
ment the effect size of an overall interaction between two or more vartables.
In addition, if the omnibus interaction is not even remotely close to attaining
statistical significance, then it is unlikely that any of the interaction contrasts
will be significant. The omnibus test thus can be an effort-saving device. For
further discussion of this topic, see Jaccard (1998).

Some Common Misapplications

Instances exist in the literature of poor practices with respect to inter-
action analysis. One we mentioned earlier. It involves the interpretation of
regression equations computed in two or more groups separately and then
declaration of group differences without formally testing those differences.
Arother practice is interaction analysis that reduces a continuous predictor
variable to a two-valued indicator through the use of a median split. This
strategy often is invoked so that interactions can be explored using tradi-
tional analysis of variance. Such practices are undesirable because they
throw away useful information, they often result in less statistical power,
and they can introduce false effects (Maxwell & Delaney, 1993). Inter-
actions between continuous and qualitative predictors can be analyzed
effectively using the general linear model without recourse to reducing the
continuous predictor to a crude, bilevel indicator.
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Interaction Models With Clustered
Data and Random Coefficient Models

Some research designs involve clustered data where the researcher is
interested in exploring the effects of cluster characteristics on the slope of ¥
on X. As an example, consider the case where data are collected on 5,000
students, 100 in each of 50 different schools. The researcher is interested in
the effects of peer pressure (X) on drug uwse (Y) and whether this varies
as a function of the size of the student body of the school (Z). One way of
conducting this analysis is first to record a value of Z for a given individual
the size of the school that the student attends {so that all students from the
same school receive the same Z score). Then the XZ product term is formed
and an OLS analysis regressing ¥ onto X, Z, and XZ based on N = 5,000 is
performed. This strategy is problematic. One limitation is that the residuals
in the population may not be independent. Students from the same school
often are more alike one another as compared with students from other
schools, and such dynamics may conspire to introduce dependencies in
residuals. The clustering that is operative must be taken into account, and
the regression strategy described does not do so.

In such scenarios, statisticians often apply a statistical model that is
different from traditional OLS and that is called random coefficient regres-
sion or hierarchical linear modeling (HLM). Suppose we posit that the
variability in regression coefficients across schools can be modeled by the
following equation:

Bj =0+ gzj +E [4.6]

where B, is the regression coefficient for ¥ on X for school j, Z is the school
size for school j, o is an intercept term for the regression of the values of
the B, onto the values of Z, B is the slope for the regression of the values
of the B,- onto the values of ZJ, and g is the error term from the regression
of the values of the ﬁj onto the values of Z, In general, the €, are assumed
to be normally distributed with a mean of zero and a constant variance at
given values of Z. The presence of g, in Equation 4.6 is the defining feature
of the random coefficient regression model. Such a model is distinct from
traditional regression models with product terms, and special analytic
methods are required to estimate ¢« and [ in Equation 4.6 and test the sig-
nificance of the estimates. Random coefficient regression models inher-
ently focus on interactions (because the effect of ¥ on X varies with Z), but
they usually are applied in the context of clustered data. For a discussion of
these methods, see Bryk and Raudenbush (2002).
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Continuous Versus Discrete Predictor Variables

Some examples in this book used many-valued, quantitative, discrete
variables as predictors and treated them as if they were continuous vari-
ables. This is not an unreasonable approach as long as such predictors have
many values and behave in a way that roughly conforms to the assumptions
of OLS regression. If a discrete variable has few values, then one might
consider using dummy variables to represent it. Alternatively, one can use
methods to model the effects of discrete predictor variables that are not
regression based (Bollen, 1989; Joreskog & Sorbom, 1993).

A related issue is one where the underlying Jatent variable for a construct is
continuous but the observed measure that is used by the researcher is discrete
in character. This is often the case when rating scales are used (e.g., a rating
scale that ranges from 1 to 7 is used to reflect the underlying continuous
construct of self-esteem). In general, the analyst will not encounter problems
in such cases as long as the measure has many values and behaves in a way
that roughly conforms to the assumptions of OLS regression when used in
traditional regression models, Analytic methods for overcoming problems
resulting from too coarse a measure are discussed in Bollen (1989) and
Joreskog and Sorbom (1993).

The Moderator Framework Revisited

The moderator framework to interaction analysis is useful in that it
provides a tool by which interactions can be interpreted at a substantive
level. Some statisticians object to the approach because it conceptually
minimizes the symmetry of effects that operates in interaction models and
because it focuses attention away from some of the coefficients in the inter-
action model. These objections have merit but often are offset by the con-
ceptual gains of framing the interaction in a way that makes theoretical
sense. Non-moderator-based conceptions of interactions emphasize the
concept of nonadditivity and the isolation of effects based on residualized
means (e.g., Rosnow & Rosenthal, 1996). Neither the moderator approach
nor these latter approaches are necessarily superior to the other. They simply
are different ways of viewing the data. Some methodologists (e.g., Pedhazur,
1997) define interactions not only in terms of the underlying statistical
model but also in terms of explicit features of the research design coupled
with the patterning of data in that design. These definitions are esoteric and
unnecessarily limit interaction analysis. It is, of course, important to take
into account design features when thinking about the meaning of product-
term analyses. There ate scenarios where such analyses can be construed
as reflecting mediation rather than moderation. But for a wide range of
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applications, the framework outlined here will prove to be a useful way to
conceptualize and approach interaction analysis.
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NOTES

1. When suppressor variables are preseat, this interpretation of semipart correlations is
flawed (see Cohen & Cohen, 1983),

2. The assumiptions are (a) that the residuals in the population are normally distribuied,
(b} that the latent continuous variables are multivariately normally distributed {but not the
latent product term), and (c¢) that a given observed score is a function of a true score and an
error score in accord with classic test theory.
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