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SERIES EDITOR’S INTRODUCTION

In social science data analysis, no technique receives more use than
regression. With modern interactive personal computers, getting an
estimated regression equation is as easy as 1-2-3, quite literally, be-
cause a researcher with any commonly available software program
can operate as follows: 1—load the sample data; 2—specify the equa-
tion; 3-—estimate with ordinary least squares, which might yield
something like this:

Y=62+71.5X,+54X,+e

Do these estimates tell us how the world really works? For exam-
ple, does a unit change in X, produce an expected change of 71.5 in
Y, given that X is held constant? We would like to speak with confi-
dence about the accuracy of that population estimate. However, our
faith in the regression result depends on coping successfully with
common problems: multicollinearity, outliers, non-normality,
heteroscedasticity, and nonlinearity.

Professor Fox explicates “diagnostics” for uncovering these
problems. Take, for example, the problem of outlying observa-
tions, or of influential observations generally. In addition to the
usual graphic methods, which may illustrate how one extreme ob-
servation can “leverage” the regression line, Fox also interprets
many other measures: hat-values, studentized residuals, Cook’s D,
and partial-regression plots. Conveniently, most of these measures
are routinely available on well known software programs, such as
SAS or SPSS.

After diagnosis, Fox carefully considers possible solutions. Here is
a sample of the issues: With high multicollinearity, should a variable
be removed? If there is an outlier, should it be discarded? When the
error distribution is skewed, should a transformation be applied?
Given heteroscedasticity, ought a weighted-least-squares solution be
performed? In the face of nonlinearity, is a power transformation in
order? In answering such important questions, mechanical quick-fixes
are avoided. As the author emphasizes repeatedly throughout, the
methods are “no substitute for judgment and thought.”




To enrich his explanations, Fox draws on a variety of data exam-
ples: the 1U.5. Census count, occupational prestige, reported body
weights, and interlocking directorates among Canadian firms. The ex-
amples make the diagnostics accessible to a broad range of regression
users. Further, for those interested in more advanced treatments,
much is offered in his technical appendices (e.g., an evaluation of
ridge regression as a solution to high multicollinearity). Everyone
who carries out a regression analysis should, as a matter of course,
apply a battery of diagnostics. There is no better introduction to re-
gression diagnostics than this monograph.

—Michael S. Lewis-Beck
Series Editor
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REGRESSION DIAGNOSTICS
An Introduction

John Fox
York University

1. INTRODUCTION

Linear least-squares regression analysis is the most widely used statisti-
cal technique in social research and provides the basis for many other
statistical methods. Yet least-squares regression is susceptible to a vari-
ety of difficulties and makes strong and often unreasonable assumptions
about the structure of the data. Regression diagnostics are techniques for
exploring problems that compromise a regression analysis and for deter-
mining whether certain assumptions appear reasonable,

Although examination of data for potential difficulties has always
been a hallmark of good data analysis, the modern development of re-
gression diagnostics coincides with the ready availability of comput-
ers for interactive statistical analysis and is thus a product largely of
the past 2 decades. Closely associated with methods of regression di-
agnostics are techniques for correcting problems that are detected.
Many of these methods employ transformations of the data.

As a preliminary example, consider the four scatterplots from
Anscombe (1973) shown in Figure 1.1. One of the goals of statistical
analysis is to provide an adequate descriptive summary of the data.
All four of Anscombe’s data sets were contrived cleverly to produce
the same standard linear-regression outputs: slope, intercept, correla-
tion, regression standard error, coefficient standard errors, and statis-
tical tests—but, importantly, not the same residuals,

In Figure l.1a, the linear regression is a reasonable description of
the tendency for y to increase with x. In Figure 1.1b, the linear regres-
sion fails to capture the obviously curvilinear pattern of the data—the
linear model is clearly wrong. In Figure 1.1c, one data point is out of
line with the others and has an undue influence on the fitted regres-
sion line. A line through the other points fits them perfectly. Ideaily
in this case, we want to understand why the last observation differs
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Figure 1.1, Four data sets with identical standard regression outputs, from F.J.
Anscombe (1973). The least-squares regression line is shown on each
scatterplot.

SOURCE: Anscombe (1973). Redrawn and reprinted with the permission of the American Statistical
Association,

from the others—possibly it is special in some way (e.g., it is strongly
affected by a variable other than x), or represents an error in record-
ing the data. Of course, we are exercising our imaginations here, be-
cause Anscombe’s data are simply made up, but the essential point is
that we need to address anomalous data substantively. In Figure 1.1d,
in contrast, we are unable to fit a line at all but for the last data point.
At the very least, we should be reluctant to trust the estimated regres-
sion coefficients because of their dependence on this one point.




Anscombe’s simple illustrations serve to introduce several of the
themes of this monograph, including nonlinearity, outlying data, in-
fluential data, and the effectiveness of graphical displays. The usual
regression outputs clearly do not tell the whole story. Diagnostic
methods—-many of them graphical—help to fill in the missing parts.

The monograph begins in Chapter 2 with a review of least-squares
linear regression. Chapter 3 takes up the problem of collinearity in
multiple regression. Chapter 4 deals with outlying and influential
data. Chapters 3, 6, and 7 take up non-normality of errors, nonconst-
ant error variance, and nonlinearity. Chapter 8 briefly considers prob-
lems and opportunities presented by discrete data. Chapter 9
introduces sophisticated diagnostics based on maximum-likelihood
methods, score tests, and constructed variables. In Chapter 10, I step
back from specific diagnostic methods to suggest how these tech-
niques can be applied effectively in research. This chapter includes
some remarks on implementing diagnostics with standard statistical
computer packages and concludes with recommendations for further
reading.

Much technical detail has been relegated to the Appendix, the parts
of which are keyed to specific sections of the text. The primary pre-
requisites for understanding the material in the Appendix are ac-
quaintance with the matrix algebra of least-squares regression and
elementary statistical theory; and though the Appendix provides more
depth to the presentation, it may be skipped by the iess technically in-
clined reader. My goal is to make this monograph relatively self-con-
tained, while maintaining its general accessibility.

The monograph is far from exhaustive, but I have tried to deal with
the central issues in validating regression models. Primarily because of
space considerations, however, there is no treatment of autocorrelated
errors in time-series regression, except for a brief mention in Chapter 10.
The topic also is covered in detail in another monograph in this series
(Ostrom, 1990)

2. LINEAR LEAST-SQUARES REGRESSION

I assume that the reader is familiar with linear-regression analysis, and
consequently this chapter serves primarily as a review and to establish
notation. A more technical treatment appears in Appendix A2.1.
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The Regression Model

The linear-regression model is given by the equation

yi=Pot By xy+Boxyt o+ B xtE [2.1]

fori =1, ..., n sampled observations. In Equation 2.1, y; is the
dependent variable, the x;; are regressors, and & is an unobservable
error. The B; are unknown parameters to be estimated from the
data. It is standard to assume that the errors are normally and inde-
pendently distributed with zero expectation (mean) and constani
variance 62 &; ~ NID(O, o2). Consequences of violating these as-
sumptions, and methods for detecting violations, are considered
later in the monograph.

If the x; are sampled along with the y;, rather than fixed by design
as in an experiment, then it is additionally assumed that the xs are dis-
tributed independently of the es. This last assumption may be con-
strued either descriptively or structurally. Descriptively, the mean y
value in the population for any combination of x values must lie on
the regression surface. Structurally, or causally, we require in addi-
tion that omitted causes of y (which are thus components of the error)
that are not themselves effects of the xs are linearly uncorrelated with
the xs. Except under special circumstances, this last assumption can-
not be checked from the data, because the least-squares fit ensures
that the residuals, which estimate the errors, are uncorrelated with the
xs in the sample.

Least-Squares Estimation

The fitted regression model is written
A
Vi=by byt byxy e D X =Y e

where y; and the x; are as before, the b; are estimates of the corre-
sponding B;, and the ¢; are residuals. The fitted values are given by
yi = bp + byxy; + ... + by xp. The least-squares regression coefficients,
chosen so as to minimize the sum of squared residuals, are the values
of the by that satisfy the normal (or estimating) equations:




byn+b Xx, +...+bEx, =Xy

BoIx,+b X +...+bExx=%xy

byZx, +b Zxpx+.. .+bk2xk2 =Xxy

Because the sums are obviously over i = 1, ..., n, 1 have suppressed
the subscript { for observations (e.g., x; represents xy;). The normal
equations have a unique sclution for the b; as long as (a) none of the
x; is constant, and (b) none of the x; is a perfect linear function of oth-
ers.

The normal equations imply that the least-squares residuals sum to
zero and thus have a mean of zero. Furthermore, the residuals are un-
correlated with the fitted values and with the xs because

2@%=C

Zex;=0, j=1,...,%

The error variance is estimated by 5= Ee?/(n —k-1), where n—k
1 is the degrees of freedom for error. The squared muitiple correlation
for the fitted model, given by
2 E0-3r-2e (-5
2(3-3F (-3
is interpreted as the proportion of variation in y captured by its linear
regression on the xs,

Statistical Inference for Regression Coefficients

Estimated coetficient sampling variances for by, . . . , by are given by
s 1 s 1
X

» ]
Ee-%)Y 1-R (-1 1-R?

A
Vib) =




where sf' = E(xj,-«w:_cj)zl(nml) is the variance of x;, and RJ,2 is the squared
multiple correlation from the regression of x; on the other xs. A ¢ sta-
tistic for the hypothesis Ho: Bj = 5}{0) (usually, Hy: B; = 0) is given by
to= (b~ BOYSE(b)), where SE(b) = ($(b;)1" is the estimated stan-
dard error of ;. Under Hy, the test statistic tg is distributed as a ¢ vari-
able with n — k — 1 degrees of freedom.

To test the hypothesis that a set of regression coefficients (exclud-
ing the constant fo) is zero, for example, Ho: f1 = fr=... = Bp=0
(where p < k), we calculate the incremental F statistic

2
_n-k-1 R - Ry
p 1~R?

Fy

Here R? is, as before, the squared multiple correlation from the full
model, and R is the squared multiple correlation for the regression of
y on the remaining xs: Xp4i, . . . , X% If p = &, then R% = (0. These ¢ and
F tests are exact under the assumptions of the model, including the
assumption of normally distributed errors.

A 100(1-o)% confidence interval for B; is given by

Bi=b;ttg 0 -1 SEb) [2.2]

Because the width of the confidence interval is proportional to the es-
timated coefficient standard error, SE(b;) is a natural measure of the
precision of the estimator b;.

Likewise, an ellipsoidal joint confidence region for several coeffi-
cients may be constructed from the coefficient variances and covari-
ances along with a critical value from the F distribution (see
Appendix A2.1). An illustration for two parameters, B1 and By, ap-
pears in Figure 2.1. Just as the confidence interval in Equation 22
gives all values of B; acceptable at level o, the ellipse in Figure 2.1
encloses all jointly acceptable values of B, and B.

The confidence ellipse is centered on the estimates b and bg.
The projections of the ellipse onto the B, and P, axes give individ-
ual confidence intervals for these parameters, though at a some-
what higher level of confidence than the joint region. Just as the
length of a confidence interval expresses the precision of estima-
tion of a single coefficient, the size of a joint confidence region for
several coefficients (i.e., area for two [Ps, volume for three, and




B2

':Dl By

Figure 2.1. The joint confidence region for two regression coefficients, B
and B7. The confidence ellipse is centered at the estimates, b; and b;. The pro-
jection of the joint confidence ellipse onto the By and By axes provides indi-
vidual confidence intervals for these parameters (but at a larger confidence
level than the joint confidence region).

SOURCE: Figure courtesy of Georges Monetie,

hypervolume for four or more) expresses their simultaneous precision
of estimation. '

The General Linear Model

Because no distributional assumptions are made about the xs, other
than uncorrelation with the errors, the domain of the linear-regression
model is broader than it first appears. The xs may include dummy re-
gressors constructed to capture the effects of a qualitative indepen-
dent variable; interaction regressors, formed as products of other
regressors, for non-additive effects of independent variables; polyno-
mial regressors to model nonlinear patterns in the data; and so on. As
long as the model can be expressed in the form of Equation 2.1-that
is, as long as the model is linear in the parameters 8o, Py, . . . , P —it
can be accommodated by linear-regression analysis: The regression
surface itself need not be flat. In this broad context, the linear-regres-
sion model is often termed the general Hnear model.
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3, COLLINEARITY

Collinearity and Variance Inflation
As mentioned in Chapter 2, when there is a perfect linear relation-
ship among the regressors in a linear-regression model, the least-
squares coefficients are not uniguely defined. This result is easily
seen for k = 2 xs, for which the normal equations are

boLx, +b Ex + b Zxi5=2xy (3.1]
ByZx,+ b Zxx, + by )ngz Zxyy

Solving the normal equations produces

by=Y~b %~ by X%

Ix YEIxi-Zxy Exx

=
Tx2Txg? - (Exx)

[3.2]

Ex&y’ﬁx;szx{y’ZX{ x4

, =
Ex;zzxz’z—(ﬁx{xi)z

where | = x; — ¥1, X5 = X3~ X2, and y’ = y ~ y are variables in mean-
deviation form.
The correlation between x; and x; is given by

’ s
Zx x5

[ ey
12 ‘\JZx{ZExz'z

Thus, if 32 = % 1, then the denominator of by and b, in Equation 3.2
is zero, and these coefficients are undefined. (More properly, there is
an infinity of pairs of values of by and b; that satisfy the normal equa-
tions [Equation 3.1].)

A strong, but less than perfect, linear relationship between the xs
causes the least-squares regression coefficients to be unstable: Coefficient
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standard errors are large, reflecting the imprecision of estimation of
the Ps; consequently, confidence intervals for the PBs are broad. Small
changes in the data—even, in extreme cases, due to rounding errors—
can substantially alter the least-squares coefficients, and relatively
large changes in the coefficients from the least-squares values hardly
increase the sum of squared residuals.

Recall from the previous chapter that the estimated variance of the
least-squares regression coefficient b; is

2 1

Dby = g x
O -1 s 1-R?

[3.3]

The impact of collinearity on the precision of estimation is captured
by 1/(1 ~ Rf), called the variance-inflation factor VIF;. It is important
to keep in mind that it is not the pairwise correlations among the re-
gressors (when & > 2) that appears in the VIF, but the multiple corre-
lation for the regression of a particular x on the others. For this
reason, collinearity in multiple regression is sometimes termed multi-
collinearity.

Note, incidentally, that the other factors affecting the precision of
estimation in Equation 3.3 are the estimated error variance, the sam-
ple size, and the variance of x;. Small error variance, large sample
size, and spreadout xs all contribute to precise estimation in regres-
sion. It is my experience that imprecise estimates in social research
are more frequently the product of large error variance and relatively
small samples than of serious collinearity.

Because the precision of estimation of §; is most naturally ex-
pressed as the width of the confidence interval for this parameter,
and because the width of the confidence interval is proportional to
the standard error of b;, I recommend examining the square root of
the VIF in preference to the VIF itself, Table 3.1 reveals that the
linear relationship among the xs must be very strong before collin-
earity seriously degrades the precision of estimation: For example,
it is not until R; approaches 0.9 that the precision of estimation is
halved.

Consider, by way of example, the regression analysis reported in
Table 3.2, from data presented by Ericksen, Kadane, and Tukey
(1989). The object here was to develop a prediction equation to im-
prove estimates of the 1980 U.S. Census undercount. It is well es-
tablished that the census fails to count all residents of the country
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TABLE 3.1
Coefficient Variance Inflation as a Function of Inter-Regressor
Multiple Correlation

R; VIF; = /(1 -R}) WIF*®
0.0 1.0 1.0
0.2 1.04 1.02
0.4 119 1.09
0.6 1.56 1.25
0.8 2.78 1.67
0.9 5.26 2.29
0.95 10.3 3.20
0.99 50.3 7.09
0.999 500.0 224
1.0 & o

a. Impact on the standerd error of by,

and that the likelihood of being missed is greater for certain cate-
gories of individuals, such as nonwhites, the poor, and residents of
large cities. The dependent variable in the regression is a prelimi-
nary estimate of the undercount for each of 66 areas into which the
country was divided by the authors. The 66 areas included 16 large
cities, the remaining portions of the 16 states in which the cities
are located, and the other 34 states. The preliminary estimates are
regressed on eight predictors thought to influence the undercount,

including

. the percentage black or Hispanic (Minority);
. the rate of serious crimes per 1000 population (Crime);
. the percentage poor (Poverty);

th B W b o

(High school);
. the percentage of housing in small, multivnit buildings (Housing);

-3 O

ders (City); and

. the percentage having difficulty speaking or writing English (Language);
. the percentage age 25 and older who have not finished high school

. a dummy variable coded one for cities, zero for states and state remain-

8, the percentage of households counted by “conventional” personal
enumeration, as opposed to mail-back questionnaire with foliow-ups

{Conventional).
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TABLE 3.2
Regression of Estimated 1980 U.S. Census Undercount on Area
Characteristics for 66 Central Cities, State Remainders, and States

Predictor® Coefficient Standard Error VIF
Constant ~L77 1.38 —
Minority 0.0798 00226 2.24
Crime 0.0301 (.0130 1.83
Poverty —0.178 0.0849 2.1
Language 0.215 0.0922 1.28
High school 0.0613 0.0448 2.15
Housing ~(.0350 0.0246 : 1.37
City 1.16 077 1.88
Conventional 0.0370 0.0093 130
#? 0.708

SOURCE: Data taken from Ericksen, Kadane, and Tukey (1989),

NOTE: These authors employed a weighted-least-squares regression {cf., Appendix A6.2) to take ac-
count of the different precision of initial estimates of the undercount in the 66 aress, The results re-
ported here, in contrast, are for an ordinary-least-squates regression.

Correlations among the predictors appear in Table 3.3. Although
some of the pairwise correlations are moderately large—the biggest
around 0.75—none is close to one. It is apparent from the square-root
VIFs shown in Table 3.2, however, that the precision of several of the
regression estimates——in particular, the coefficients for Minority,
Poverty, and High school—suffers from collinearity.

Coefficient variance inflation, as a direct index of the extent to
which collinearity harms estimation, can be extended to the joint con-
fidence region for several coefficients. Relevant applications include
contexts—such as sets of dummy regressors or polynomial regres-
sors—where the variance inflation of individual coefficients in the set
is of secondary interest at best. (See Fox and Monette [forthcoming)
for details.)

Coping with Collinearity: No Quick Fix

When collinearity between x; and xp is strong, for example, the
data contain little information about the impact of x; on y holding x;
constant statistically, because there is little variation in x; when xz is
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TABLE 3.3
Correlations Among Eight Predictors of the 1980 Census Undercount

High
Predictor Minority Crime  Poverty Language School Housing City
Crime 0.653
Poverty 0,738 0.369
fanguage 0.395 0.512 0.152
High school 0.535 0.0666 0.751 -0.116
Housing 0.356 0.532 0.335 0.340 0.235
City 0.758 0.729 0.538 0.480 0.315 0.566

Conventional  ~0.334 —0.233 0,157 -0.108 -0.4l4  -0.0863 -0.269

SOURCE: Data taken from Ericksen, Kadane, and Tukey (1989).

fixed. Of course, the same is true for xp fixing x;. Because b; esti-
mates the partial effect of x; controlling for xz, this estimate is impre-
cise. Although there are several strategies for dealing with collinear
data, none magically extracts nonexistent information from the data.
Rather, the research problem is redefined, often implicitly. Some-
times the redefinition is reasonable; usunally it is not. The ideal solu-
tion to the problem of collinearity is to collect new data in such a
manner that the problem is avoided—for example, by experimental
manipulation of the xs. Unfortunately, this solution is rarely practical.

Several less adequate strategies for coping with collinear data are
described briefly betow. I have devoted most space here to variable
selection, because selection techniques are commonly abused by so-
cial scientists, because the rationale for variable selection is straight-
forward, and because variable selection is a reasonable approach in
certain (limited) circumstances.

Model Respecification. Although collinearity is a data problem, not
(necessarily) a deficiency of the model, one approach to the problem
is to respecify the model. Perhaps, after further thought, several re-
gressors in the model can be conceptualized as alternative indicators
of the same underlying construct. Then the measures can be combined
in some manner, or ocne can be chosen to represent the others. In this
context, high correlations among the xs in question indicate high reli-
ability. Imagine an international analysis of factors influencing infant
mortality in which GNP (gross national product) per capita, energy use
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per capita, and televisions per capita are among the independent vari-
ables and are highly correlated; a researcher may choose to treat these
variables as indicators of the general level of economic development.
Alternatively, we can reconsider whether we really need to control
for x; (for example) in examining the relationship of y to x;. Gener-
ally, though, respecification of this type is possible only where the
original model was poorly thought out or where the researcher is will-
ing to abandon some of the goals of the research. For example, sup-
pose that in a time-series regression examining determinants of
married women’s labor-force participation, collinearity makes it im-
possible to separate the effects of men’s and women’s wage levels. It
may still be of interest, however, to determine the partial relationship
between women’s wage level and labor-force participation control-
ling for other independent variables in the analysis.

Variable Selection. A common, but usually misguided, approach to
collinearity is variable selection, where some procedure is employed
to reduce the regressors in the model to a less highly comrelated set.
Forward stepwise methods add variables to the model one at a time.
At each step, the variable that produces the largest increment in R?is
selected. The procedure stops, for example, when the increment is
smaller than a preset criterion. Backward stepwise methods are sim-
ilar, except that the procedure starts with the full model and deletes
variables one at a time. Forward/backward methods combine both ap-
proaches.

Stepwise methods frequently are abused by naive researchers who
seek to interpret the order of entry of variables into the regression
equation as an index of their “importance.” That this practice is po-
tentially misleading is suggested by the observation that of two highly
correlated independent variables having nearly identical large correla-
tions with y, only one will enier the regression equation, because the
other can contribute little additional information. A small modifica-
tion to the data, or a new sample, could reverse the result.

A technical objection to stepwise methods is that they may fail to
turn up the optimai subset of regressors of a given size (i.e., the
subset that maximizes R%). Advances in computer power and in com-
puting procedures make it feasible to examine all subsets of regres-
sors even when k is quite large. Aside from optimizing the selection
criterion, subset techniques also have the advantage of revealing
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alternative, nearly equivalent, models, and thus avoid the misleading
appearance of producing a uniquely “correct” result.

One popular approach fo subset selection is basef\d on the total
(normed) mean-squared error of estimating £(y) from y —that is, esti-
mating the population regression surface over the observed xs from
the fitted surface:

1 < A
y ===y MSE(Y)
"p 62 Fuel
= ";—2' Z1 V(5 + [ECD) - BT (3.4]

where the fitted values 9,- are based on a model containing p < k + 1
regressors (counting the constant, which is always included in the
model). Using the error in estimating E(y) as a criterion for model
quality is reasonable if the goal is literally to predict y from the xs.

Note that the term EE(?,») mE(y,-)]z in Equation 3.4 represents the,
squared bias of 'y\,- as an estimator of the population regression surface
E{y:). When collinear regressors are deleted from the model, gener-
ally V(?,—) will decrease, but-~depending on the configuration of data
points and the true s for deleted regressors-—bias may be introduced
into the fitted values. Because the MSE is the sum of variance and
squared bias, the essential question is whether a decrease in variance
offsets any increase in bias.

Mallows’s (1973) C, statistic estimates 7, as

2

Py
Cp=-§2—+2pwn

=(k+1-p)E~1)+p

where the residuals are from the subset model in question, the error-
variance estimate 82 is 5% for the full model, and Fyis the incremental
F statistic for testing the hypothesis that the regressors omitied from
the current subset have population coefficients of zero. If this hypoth-
esis is true, then E(F) = 1 and thus E(Cpy=p. A good model, there-
fore, has C, close to or below p. As well, minimizing Cp minimizes
the sum of squared residuals, and thus maximizes R%. Note that for the
full model, Ci. necessarily equals k+1.
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Figure 3.1. Plot of C ~ p versus p for the Census-undercount data. The fol-
lowing capitalized letters are used to label the variables: Minority, Crime,
Poverty, Language, High school, hOusing, clty, and coNventional. Ericksen et
al. (1989) selected the independent-variable subset MCN (i.e.,, Minority,
Crime, and Conventional).

Because a good model has C,, close to p, we can identify good mod-
els by plotting C, against p, labeling each point in the plot with a
mnemonic representing the independent variables included in the
model, and superimposing the line Cp, = p on the plot: Good models
are close to or below the reference line. The plot is easier to inspect if
it is detrended by plotting Cp, — p against p (i.e., the reference line is
subtracted from each point). Now we can look for models with values
of C, — p near or below zero,

An illustrative detrended C, plot for the census-undercount data is
given in Figure 3.1. Only models for which Cp, —p £ 10 (including 52
of the 28-1 = 255 predictor subsets} are shown. Ericksen et al. (1989)
employed the subset labeled MCN on the plot (with the predictors Mi-
nority, Crime, and Conventional). Here, p = 4 and C, = 12.7, suggesting
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TABLE 3.4

“Best™ Subset Regression Models for Ericksen, Kadane, and Tukey’s
Census-Undercount Data

Coefficients”
Predictor p=4 p=3 p=6
Constant -2.22 -1.98 —.793
(0.56) 0.55) (0.8600
Minority 0.0786 0.0752 0.101
(0.0147) (0.0143) {0.020}
Crime 0.0363 0.0272 0.0243
{0.0100} (0.0104) (0.0103)
Conventional 0.0280 0.0273 0.0293
(0.0081) (0.0077) 0.0077)
Language 0.209 (.184
(0.087) (0.086)
Poverty -0.110
(0.062)
R 0.638 0.669 0.686
c, 12.7 8.51 7.32

SOURCE: Data taken from Ericksen, Kadane, and Tukey (1989).

a. Coefficient standard errors are in parentheses.

that there is room for improvement by inciuding more predictors.
The regression equation for this subset and the equations for the
“hest” subsets of four predictors (MCLN, adding Language: p =5 and
C, = 8.5) and five predictors (MCPLN, adding Poverty: p = 6 and
C, = 7.3) appear in Table 3.4. For this data set, backward and for-
ward/backward stepwise procedures identify the “best” subsets of
three, four, and five predictors, but the forward method does not. {Re-
call, however, that Ericksen et al. adopted a more complex estimation
strategy than ordinary least-squares regression.}

In applying variable selection it is important to keep the following
caveats in mind:

1. Most important, variable selection results in a respecified model that usu-
ally does not address the research questions that were posed originally.
In particular, if the original model is correctly specified, and if the in-
cluded and omitted variables are correlated, then coefficient estimates
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following variable selection are biased. Consequently, these methods are
most useful for pure prediction problems, in which the values of the re-
gressors for the predicted data will be within the configuration for which
selection was employed—as in the census-undercount example. In this
case, it is possible to get good estimates of E(y) even though the coeffi-
cients themselves are biased. If, however, the xs for a new observation
are different from those from which the estimates were derived, then the
corresponding predicted y might be badly biased.

When regressors occur in sets (e.g., of dummy variables), these sets
should generally be kept together during selection. Likewise, when there
are hierarchical relations among regressors, these relations should be re-
spected: For example, an interaction regressor should not appear in 2
model that does not contain the main effects marginal to that interaction.

3. Because variable selection optimizes the fit of the model to the sample data,
coefficient standard errors calculated following independent-variable selec-
tion-—and, hence, confidence intervals and hypothesis tests—almost surely
overstate the precision of the results. There is, therefore, substantial risk of
capitalizing on chance characteristics of the sample. For a solution to this
problem, see the discussion of cross-validation in Chapter 10.

4. Variable seiection has applications to statistical modeling even when col-
linearity is not an issue. It is generally unproblematic to eliminate re-
gressors that have small, precisely estimated coefficients, thus producing
a more parsimonious model. Indeed, in a very large sample, we may feel
justified in deleting regressors with trivially small but “statistically sig-
nificant” coefficients.

L

Biased Estimation. Still another general approach to collinear data
is biased estimation. The general idea here is to trade a small amount
of bias in the coefficient estimates for a substantial reduction in coef-
ficient sampling variance. The result is a smaller mean-squared error
of estimation of the s than provided by the least-squares estimates
(cf. the discussion above about estimating E[y] in subset regression).
The most common biased estimation method is called ridge regres-
sion (introduced briefly in Appendix A3.1).

Like variable selection, biased estimation is not a magical panacea
for collinearity. For example, ridge regression involves the selection
of an arbitrary “ridge constant” controlling the extent to which the
ridge estimates differ from least squares: The larger the ridge con-
stant, the greater the bias and the smaller the variance of the ridge es-
timator. Unfortunately, but reasonably, to pick an optimal ridge
constant——or even a good one—generally requires knowledge about
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the unknown Ps that we are trying to estimate. My principal reason for
mentioning biased estimation here is to caution against its routine use.

Prior Information About the Bs. A final approach to estimation
with collinear data is to introduce additional prior information that
helps to reduce the ambiguity produced by collinearity. There are sev-
eral different ways that prior information can be brought to bear on a
regression, including formal Bayesian analysis, but we shail examine
a particularly simple case 10 illustrate the general point. More com-
plex methods are beyond the scope of this discussion, and are, in any
event, difficult to apply in practice (see, €.8., Belsley, Kuh, and
Welsch, 1980, pp. 193-204; Theil, 1971, pp- 346-352).

Suppose that we wish to estimate the model

Y‘—“[50+Ble+ﬁzx2+ﬁ3x3+5

where y is savings, x is income from wages and salaries, x» is divi-
dend income from stocks, and x3 is interest income. Imagine that we
have trouble estimating P2 and B3 because x; and xy are very highly
correlated in our data. Suppose further that we have reason io believe
that B2 = B, and denote the common quantity B If x2 and x3 were not
so highly correlated, then we could reasonably test this belief as a hy-
pothesis. In the current situation, we can fit the model

y=i30+ﬂlx1+{3* (X, +X5) + &

incorporating our belief in the equality of B2 and B3 in the specifica-
tion of the model, and thus eliminating the collinearity problem
{along with the possibility of testing the belief).

Comparison of the Approaches. Although 1 have presented them
separately, the several approaches to collinearity have much in common:

1. Model respecification can involve variable selection, and variable selec-
tion in effect respecifies the model.
2 Variable selection implicitly constrains the coefficients of deleted regres-
SOrS 10 ZEero,
3. Variable selection produces biased coefficient estimates if the deleted
variables have nonzero Bs and are cotrelated with the included variables.
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4, Certain types of prior information (as in the hypothetical example) result
in a respecified model.

5. It can be demonstrated that biased-estimation methods like ridge regres-
sion implicitly place prior constraints on the values of the fis.

The primary lesson to be drawn from these comparisons is that me-
chanical model-selection and modification procedures disguise the
substantive implications of modeling decisions. Consequently, these
methods generaily cannot compensate for weaknesses in the data and
are no substitute for judgment and thought.

4. OUTLYING AND INFLUENTIAL DATA

Unusual data are problematic in a least-squares regression because they
can unduly influence the results of the analysis, and because their pres-
ence may be a signal that the regression model fails to capture important
characteristics of the data. Some central distinctions are illustrated in
Figure 4.1 for the simple-regression model y = By + Px + &

In simple regression, an outlier is an observation whose dependent-
variable value is unusual given the value of the independent variable.
In contrast, a univariate outlier is a value of y or x that is uncondition-
ally unusual; such a value may or may not be a regression outlier. Re-
gression outliers appear in both part a and part b of Figure 4.1, In
Figure 4.1a, the outlying observation has an x value at the center of
the x distribution; as a consequence, deleting the outlier has no im-
pact on the least-squares slope b; and little impact on the intercept bq.
In Figure 4.1b, the outlier has an unusual x value, and consequently
its deletion markedly affects both the slope and the intercept. Because
of its unusual x value, the Iast observation in Figure 4.1b has strong
leverage on the regression coefficients, whereas the middle observa-
tion in Figure 4.1a is at a low-leverage point,

The combination of high leverage with an cutlier produces substan-
tial influence on the regression coefficients. In Figure 4.l¢, the last
observation has no infiuence on the regression coefficients even
though it is a high-leverage point, because this observation is not out
of line with the rest of the data. The following heuristic formula helps
to distinguish among these concepts:

Influence on Coefficients = Leverage X Discrepancy
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©

Figure 4.1. Leverage and influence in simple-regression analysis. (a) An
outlier near the mean of x has little influence on the regression coefficients.
(b) An outlier far from the mean of x markedly affects the regression coeffi-
cients. {(c) A high-leverage observation in line with the rest of the data does
not influence the regression coefficients.

A simple and transparent example, with real data from Davis (1990),
appears in Figure 4.2, These data record the measured and reported
weight (in kilograms) of 183 male and female subjects who engage in
programs of regular physical exercise. As part of a larger study, the in-
vestigator was interested in ascertaining whether the subjects reported
their weights accurately, and whether men and women reported simi-
larly. (The published study is based on the data for the female subjects
only and includes additional data for non-exercising women.) Davis
(1990) gives the correlation between measured and reported weight.
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Figure 4.2. Regression of reported weight in kilograms on measured weight and
gender for 183 subjects engaged in regular exercise. The solid line shows the
least-squares regression for wornen, the broken line the regression for men.
SOURCE: Data taken from C. Pavis, personal communication,

A least-squares regression of reported weight (RW) on measured
weight (MW), a dummy variable for sex (F: coded one for women,
zero for men}), and an interaction regressor produces the following re-
sults (with coefficient standard errors in parentheses):

A
RW=1.36+0.990 MW +40.0F ~0.725MW x F
(3.28) (0.043) - (3.9 (0.056

R2=0.89 s5=4.66

Were these results to be taken seriously, we would conclude that men
are on average accurate reporters of their weights (because by = 0 and
by = 1), whereas women tend to overreport their weights if they are
relatively light and underreport if they are relatively heavy. However,
Figure 4.2 makes clear that the differential results for women and
men are due to one female subject whose reported weight is about
average (for women), but whose measured weight is extremely large.
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In fact, this subject’s measured weight and height {in centimeters)
were switched erroneously on data entry, as Davis discovered after cal-
culating an anomalously low correlation between reported and measured
weight among women. Correcting the data produces the regression

A
RW =1.36+ 0.990 MW + 1.98 F — 0.0567TMW x F
{1.58) (0.021) (2.45 (0.0383

R2=097 5=2.24

which suggests that both women and men are accurate reporters of weight.

There is another way to analyze the Davis weight data: One of the
investigator’s interests was to determine whether subjects reported
their weights accurately enough to permit the substitution of reported
weight for measured weight, which would decrease the cost of col-
lecting data on weight. It is natural to think of reported weight as in-
fluenced by “real” weight, as in the regression presented above in
which reported weight is the dependent variable. T he question of substi-
tution, however, is answered by the regression of measured weight on
reported weight, giving the following results for the uncorrected data:

A
MW =179+ 0.969RW + 2.07 F - 0.00933RW x I
(5.92 (0079 (9.30) (0.147

R2=070 s=8.45

Note that here the outlier does not have much impact on the regres-
sion coefficients, precisely because the value of RW for this observa-
tion is near RW for women. However, there is a marked effect on the
multiple correlation and standard error: For the corrected data, R? =
0.97, s = 2.25,

Measuriag Leverage: Hat-Values

The so-called hat-value h; is a common measure of leverage in re-
gression. These Y\alues are so named because it is possible to express
the fitted values y; in terms of the observed values y;:

n

A
Bym by +hy vyt ooy, = 2 by

i=1
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Thus the weight A;; captures the extent to which y; can affect 9j: If hy;
is large, then the ith observation can have a substantial impact on the
jth fitted value. It may be shown that h; = Z7 h%- and so the hat-
value h; = hy summarizes the potential influence (the leverage) of y;
on all of the fitted values. The hat-values are bounded between 1/n
and 1 {i.e., 1/n < k; < 1), and the average hat-valee is = (¢ + 1)/a
(see Appendix A4.1).

In simple-regression analysis, the hat-values measure distance from
the mean of x:

=2
X, ~ X
hi=_1_+w
n n 5
2, (5-%)
j=1

In multiple regression, #; measures distance from the centroid (point
of means) of the xs, taking into account the correlational structure of
the xs, as illustrated for & = 2 in Figure 4.3. Multivariate outliers in
the x space are thus high-leverage observations.

For Davis’s regression of reported weight on measured weight, the
largest hat-value by far belongs to the 2th subject, whose measured
weight was erroneously recorded as 166 kg: 2z = 0.714. This quan-
tity is many times the average hat-value, % = (3 + 1)/183 = 0.0219.

Detecting Outliers: Studentized Residuals

To identify an outlying observation, we need an index of the unusu-
alness of y given the xs. Generally, discrepant observations have large
residuals, but it turns out that even if the errors €; have equal vari-
ances (as assumed in the regression model), the residuals ¢; do not:
Vie)) = 02( I — i) (see Appendix A4.2). High-leverage observations,
therefore, tend to have small residuals—a sensible resuit, because
these observations can force the regression surface to be close to them.

Although we can form a standardized residual by calculating ef =
ei /s\1 =By, this measure suffers from the defect that the numerator
and denominator are not independent, preventing &} from following a ¢
distribution: When ; [is large, s = \3 ¢}/(n— k- 1), which contains
e?, tends to be large as well. Suppose, however, that we refit the re-
gression model deleting the ith observation, obtaining an estimate s
of o based on the rest of the data. Then the studentized residual
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Figure 4.3, Contours of constant leverage (constant k) for k = 2 independent
variables. Two high-leverage points appear: One (shown as a large hollow
dot) has unusually large values for each of x; and xy, but the other (large filled
dot) is unusual only in its combination of x; and x; values.

M|
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boSeNL-hy -1
has independent numerator and denominator, and follows a distribu-
tion with n — k ~ 2 degrees of freedom.
An alternative, but equivalent, procedure for finding the

studentized residuals employs the “mean-shift” outlier model
yj=B0+B1 x1j+...+ﬁkxkj+ydj+aj {4.2]

where d is a dummy variable set to one for observation { and zero for
all other observations. Thus

E(yj)=ﬁg+ﬁtxij+...+ﬁkxkj for j#i

E(y)=Bo+Byxyt. . +Bexyty
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It would be natural to specify Equation 4.2 if before examining the
data we sospected that observatlon i differed from the others. Then, to
test Hy: ¥ = 0, we would find ¢; = y / SE('({\) which is distributed as #,, .. & -
2 under Hy, and which (it turns out) is the studentized residual of
Equation 4.1,

Here, as elsewhere in statistics, terminology is not wholly standard;
t; is sometimes called a deleted studentized residual, an externally
studentized residual, or even a standardized residual. Because the
last term also is often applied to ¢, it is important to determine ex-
actly what is being calculated by a computer program before using
these quantities. In large samples, though, usually ¢; = & = ;/s.

Testing for Outliers in Regression, Because in most applications we
do not suspect a particular observation in advance, we can in effect
refit the mean-shift model » times, once for each observation, produc-
ing #, #2, . . ., Iy In practice, alternative formulas to Equations 4.1
and 4.2 provide the #; with little computational effort. Usually, our in-
terest then will focus on the largest absolute #;, called ¢*. Because we
have picked the biggest of n test statistics, however, it is no longer le-
gitimate simply to use ¢, _ ; _ 3 to find the statistical significance of r
For example, even if our model is wholly adequate, and disregarding
for the moment the dependence among the 7:5, we would expect to ob-
serve about 5% of #;5 beyond 1g.025 = £2, about 1% beyond tp o5 =
+ 2.6, and so forth.

One solution to the problem of simultaneous inference is to per-
form a Bonferroni adjustment to the p value for the largest #;. (An-
other way to take into account the number of studentized residuals, by
constructing a quantile-comparison plot, is discussed in Chapter 5.)
The Bonferroni test requires either a special ¢ table or, more conve-
niently, a computer program that returns accurate p values for ¢ far
into the tail of the distribution. In the latter event, suppose that p’ =
Pr(ty, . -2 > r D). Then the p value for testing the statistical signifi-
cance of ¢ is p = 2np’. The factor 2 reflects the two-tail character of
the test: We want to detect large negative as well as large positive
outliers. The factor n adjusts for conducting »n simultaneous tests,
which is implicit in selecting the largest of » test statistics. Beckman
and Cook (1983) have shown that the Bonferroni adjustment usually
is exact for testing the largest studentized residual. Note that a much
larger 1" is required for a statistically significant resuit than would be
the case for an ordinary individual ¢ test,




28

In Davis’s regression of reported weight on measured weight, the
largest studentized residual by far belongs to the 12th observation: f1;
= —~ 24.3. Here, n—k~2 =183 -3 -2 = 178, and Pr(f175 > 24.3) <<
1078, (The symbol “<<” means “much less than.” The computer pro-
gram that I employed to find the tail probability was unable to calcul-
ate a more accurate result for such a large 1.) The Bonferroni p value
for the outlier test is p << 178 x 2 x 1078 = 4 x 1075 (i.e., 0.000004),
an unambiguous resalt,

An Analogy to Insurance. Thus far, I have treated the identification
{and, implicitly, the potential correction, removal, or accommodation)
of outliers as a hypothesis-testing problem. Although this is by far the
most common approach in practice, a more reasonable general per-
spective weighs the costs and benefits for estimation of rejecting a
potentially outlying observation.

Suppose, for the moment, that the observation with the largest ¢ is
simply an unusual data point, but one generated by the assumed sta-
tistical model, that is, y; = Bo + Bixyi + .. . + Bexy + &, with & ~
NID(0, 02). To discard an observation under these circumstances
would decrease the efficiency of estimation, because when the
model—including the assumption of normality—is correct, the least-
squares estimator is maximally efficient among all unbiased estima-
tors of the Ps. If, however, the datapoint in question does not belong
with the rest (say, ¢.g., the mean-shift model applies), then to elimi-
nate it may make estimation more efficient. Anscombe (1960) ex-
pressed this insight by drawing an analogy to insurance: To obtain
protection against “bad” data, one purchases a policy of outlier rejec-
tion (or uses an estimator that is resistant to outliers-—a so-called
robust estimator), a policy paid for by a small premium in efficiency
when the policy rejects “good” data.

Let P denote the desired premium, say 0.05—a 5% increase in esti-
mator mean-squared error if the model holds for all of the data. Let z
represent the unit-normal deviate corresponding to a tail probability
of P(n—k—1)/n. Following the procedure derived by Anscombe and
Tukey (1963), compute m = 1.4 + 0.85z, and then find

m* -2 n—k— 1 '
f:m[l T dn-k- 1)}>< n [4.3]

and
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podln—k-2 a4
“Vn-k-lwfz [4.4]

Finally, reject the observation with the largest studentized residual if
it > ¢'. In a real application, of course, we should inquire about dis-
crepant observations (see the discussion at the end of this section).
For example, for Davis’s first regression n = 183 and k = 3; so fora
premium of P = 0.05, we have

P(n—~k~—1)/n=0.05(183~3 ~ 1)/183=0.0489

From the unit-normal table, z = 1.66, from which m = 1.4 + 0.85 x
1.66 = 2.81. Then, using Equation 4.3, f = 2.76, and using Equation 4.4,
¢ = 2.81. Because ¢* = 24.3 is much larger than ¢, the 12th observa-
tion is identified as an outlier.

Measuring Influence: Cook’s Distance and Other Diagnostics

As noted previously, influence on the regression coefficients combines
leverage and discrepancy. The most direct measure of influence simply ex-
amines the impact on each coefficient of deleting each observation in turn:

dljzbj_bf("‘f)’ fOi‘ £= I,- el N j=0,. T ,k

where bj..;y denotes the least-squares estimate of P; produced when the
ith observatjon is omitted, To assist in interpretation, it is useful to scale
the d; by {(deleted) estimates of the coefficient standard errors:

g
"7 8By ()

Following Belsley et al. (1980), the d;; are often termed DFBETA;,
and the djj are called DFBETAS;;.

One problem associated with using the dy; or dj] is their large number:
r{k + 1) of each. Of course, these values can be more quickly examined
graphically than in numerical tables. For example, we can construct
~ an “index plot” of the djjs for each coefficient j = 0, 1, . . ., k—simple
scatterplots with djj on the vertical axis versus the observation index i
on the horizontal axis. Nevertheless, it is useful to have a summary
index of the influence of each observation on the fit.
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Cook (1977) has proposed measuring the “distance” between the b;
and the corresponding by_;y by calculating the F statistic for the “hy-
pothesis” that B; = by i), j=0, 1, ..., k. This statistic is recalculated for
each observation { = 1, . . . , n. The resulting values should not literally
be interpreted as F tests—Cook’s approach merely exploits an analogy
to testing to produce a measure of distance independent of the scales of
the x variables. Cook’s statistic may be written {and simply calculated) as

Dmegz A
VTSR

In effect, the first term is a measure of discrepancy, and the second a
measure of leverage (see Appendix A4.3). We look for values of D;
that are substantially Jarger than the rest.

Belsley et al. (1980) have suggested the very similar measure

DFFITS = ”""]-1'—
i ti 1A

i
Note that except for unusual data configurations D; = DFFITS ,2 Kk+ .
Other global measures of influence are available (see Chatterjee and
Hadi, 1988, Ch. 4, for a comparative treatment).

Because all of the deletion statistics depend on the hat-values and
residuals, a graphical alternative to either of the general influence
measures is to plot the k; against the # and to look for observations
for which both are big. A slightly more sophisticated version of this
plot displays circles of area proportional to Cook’s [ instead of
points (see Figure 4.6, page 38). We can follow up by examining the
dy or d,f for the observations with the largest few Dy, IDFFITS|l, or
combination of large h; and il

For Davis’s regression of reported weight on measured weight, all
of the indices of influence point to the obviously discrepant 12th ob-
servation:

Cook’s Dy, = 85.9 (next largest, D, = 0.065)
DFFITS |,=~38.4 (next largest, DFFITS 5,=0.512)

DEBETAS, ;, = DFBETAS, ;, = 0, DFBETAS, ;, = 200,
DEBETAS; , = —24.8
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Note that observation 12, which is for a fernale subject, has no impact
on the male intercept bg and slope b;.

Influence on Standard Errors. In developing the concept of influ-
ence in regression, I have focused on changes in regression coeffi-
cients. Other regression outputs may be examined as well, however.
One important output is the set of coefficient variances and covari-
ances, which capture the precision of estimation. For example, recall
Figure 4.1c, where a high-leverage observation exerts no influence on
the regression coefficients, because it is in line with the rest of the
data. The estimated standard error of the least-squares slope in simpie
regression is SE(b) = SINE (x; —'JE)?', and, therefore, by increasing the
variance of x the high-leverage observation serves o decrease SE(by},
even though it does not influence by and b;. Depending on context,
such an observation may be considered beneficial—increasing the
precision of estimation—or it may cause us to exaggerate our confi-
dence in the estimate b;.

In multiple regression, we can examine the impact of deleting each
observation in turn on the size of the joint-confidence region for the
Bs. Recall from Chapter 2 that the size of this region is analogous to
the length of a confidence interval for an individual coefficient,
which in turn is proportional to coefficient standard error. The
squared length of a confidence interval is therefore proportional to
coefficient sampling variance, and, analogously, the squared size of a
joint confidence region is proportional to the “generalized” variance
of a set of coefficients. An influence measure proposed by Belsley et
al. (1980) closely approximates the squared ratio of volumes of the
deleted and full-data confidence regions:

n-~k«-2+t‘?k+l
e

Alternative, similar measures have been suggested by several authors

(again, Chatterjee and Hadi, 1988, Ch. 4, provide a comparative discus-

sion). Look for values of COVRATIQ; that differ substantially from 1.
As for measures of influence on the regression coefficients, both

COVRATIO,; =

. the hat-value and the (studentized) residual figure in COVRATIO. A
" large hat-value produces a large COVRATIO, however, even when
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(actually, especially when) ¢ is small, because a high-leverage, in-line
observation improves the precision of estimation. In contrast, a dis-
crepant, low-leverage observation might not change the coefficients
much, but it decreases the precision of estimation by increasing the
estimated error variance; such an observation, with small % and large
t, produces a COVRATIO substantially below 1.

For example, for Davis’s first regression by far the most extreme
value is COVRATIO; = 0.0103. In this case, a very large hyp = 0.714
is more than offset by a massive ¢2 = —24.3.

Influence on Collinearity. Other characteristics of a regression analy-
sis also may be influenced by individual observations, including the de-
gree of collinearity. Although a formal consideration of influence on
collinearity is above the level of this presentation (see Chatterjee and
Hadi, 1988, Ch.4-5), the following remarks may prove helpful:

1. Influence on collinearity is one of the factors reflected in influence on
coefficient standard errors. Influence on the error variance and influence
on the variation of the xs also are implicitly factored into a measure such
as COVRATIO, however. As well, COVRATIO and similar measures
examine the sampling variances and covariances of all of the regression
coefficients, including the constant. Nevertheless, our concern for col-
linearity reflects its impact oni the precision of estimation, and the global
precision of estimation is assessed by COVRATIO.

2. Collinearity-influential points are those that either induce or substantiaily
weaken correlations among the xs. Such points usually—but not al-
ways—have large hat-values. Conversely, points with large hat-values
often influence collinearity.

3. Individual points that induce collinearity are obviously problematic.
Points that substantially weaken collinearity also merit examination, be-
cause they may cause us to be overly confident in our results.

4. Tt is frequently possible to detect coilinearity-influential observations by
plotting independent variables against each other. This approach will
fail, however, if the collinear relations in question involve more than
two independent variables at a time.

Numerical Cutoffs for Diagnostic Statistics

I have deliberately refrained from suggesting specific numerical
criteria for identifying noteworthy observations on the basis of
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measures of leverage and influence. [ believe that generally it is more
useful to examine the distributions of these quantities to locate obser-
vations with unusual values. For studentized residuals, the hypothe-
sis-testing and insurance approaches produce cutoffs of sorts, but
even these numerical criteria are no substitute for graphical examina-
tion of the residuals.

Nevertheless, cutoffs can be of some use, as long as they are not
given too much weight, and especially when they serve to enhance
graphical displays. A horizontal line may be drawn on an index plot,
for example, to draw attention to values beyond a cutoff. Similarly,
such values may be identified individually in a graph (as in Figure
4.6, page 38).

Cutoffs for a diagnostic statistic may be the product of statistical
theory, or they may result from examination of the sample distribu-
tion of the statistic. Cutoffs may be absolute, or they may be adjusted
for sample size (Belsley et al., 1980, Ch. 2). For some diagnostic sta-
tistics, such as measures of influence, absolute cutoffs are ualikely to
identify noteworthy observations in large samples, In part, this char-
acteristic reflects the ability of large samples to absorb discrepant
data without changing the resuits substantially, but it is still often of
interest to identify relatively influential points, even if no observation
has strong absolute influence.

The cutoffs presented below are, as explained briefly, based on the
application of statistical theory. An alternative, very simple, and uni-
versally applicable data-based criterion is to examine the most ex-
treme 3% (say) of values for a diagnostic measure.

i. Hat-values: Belsley et al. (1980) suggest that hat-values exceeding about
twice the average (& + 1)/n are noteworthy. This size-adjusted cutoff was
derived as an approximation identifying the most extreme 5% of cases
when the xs are multivariate-normal and k and r—k— 1 are relatively
large, but it is recommended by these authors as a rough general guide.
(See Chatterjee and Hadi [1988, Ch. 4] for a discussion of alternative
cutoffs for hat-values.)

2. Studentized residuals: Beyond the issues of “statistical significance” and
estimator robustness and efficiency discussed above, it sometimes helps to
call attention to residuals that are relatively large. Recall that under ideal
conditions about 5% of studentized residuals are outside the range 151 <2. It

is therefore reasonable, for example, to draw lines at #2 on a display of

studentized residuals to highlight observations outside this range.
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3. Measures of influence: Many cutoffs have been suggested for different
measures of influence. A few are presented here:

a. Standardized change in regression coefficients: The dij are scaled by
standard errors, and consequently Hiji> 1 or 2 suggests itself as an
absolute cutoff. As explained above, however, this criterion is un-
likely to nominate observations in large samples. Belsley et al. pro-
pose the size-adjusted cutoff 2/\n for identifying noteworthy dfjs.

b. Cook's D and DFFITS: A variety of numerical cutoffs have been rec- |
ommended for Cook’s D and DFFITS—exploiting the analogy be-
tween D and an F statistic, for example. Chatterjee and Hadi (1988)
suggest comparing DFFITS; | with the size-adjusted cutoff
2Nk + 1)/(n—k~1). (Also see Cook [1977], Belsley et al. [19801,
and Velleman and Welsch [19811.) Moreover, because of the approxi-
mate relationship between DFFITS and Cook’s D, it is simple to trans-
late cutoffs between the two measures. For Chatterjee and Hadi’s
criterion, for example, we have the translated cutoff D; > 4f(n-k-1).
Absolute cutoffs, such as Dy > 1, risk missing influential data.

c. COVRATIO: Belsley et al. suggest that COVRATIO; is noteworthy
when COVRATIO; — 1 lexceeds the size-adjusted cutoff 3(k+ 1)/n.

Jointly Influential Subsets of Observations: Partial-Regression Plots

As illustrated in Figure 4.4, subsets of observations can be jointly
influential or can offset each other’s influence. Often, influential sub-
sets or multiple outliers can be identified by applying single-observa-
tion diagnostics sequentially. It is important, however, to refit the
model after deleting each point, because the presence of a single in-
fluential value may dramatically affect the fit at other points. Still,
the sequential approach is not always successful.

Although it is possible to generalize deletion statistics formally to
subsets of several points, the very large number of subsets (there are
ri/[ pl(n — p)!] subsets of size p) usually renders the approach imprac-
tical (but see Belsley et al. 1980, Ch. 2; Chatterjee and Hadi, 1988,
Ch. 5). An attractive alternative is to employ graphical methods.

A particularly useful influence graphic is the partial-regression plot,
also called a partial-regression leverage plot or an added-variable plot.
Let y{!? represent the residuals from the least-squares regression of y on
all of the xs save xy, that is, the residuals from the fitted model

=B 4 B x4+ B (D
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. Figure 4.4. Jointly influential data. In each case, the solid line gives the re-
. gression for all of the data, the light broken line gives the regression with the
triangle deleted, and the heavy broken line gives the regressor with both the
© square and the triangle deleted. (a) Jointly influential observations located
close to one another: Deletion of both observations has a much greater impact
‘than deletion of only one. (b) Jointly influential observations located on oppo-
‘site sides of the data. (¢} Observations that offset one another: The regression
* with both observations deleted is the same as for the whole dataset.

: L_ikewise, the x{!) are residuals from the least-squares regression of
“x; on the other xs:
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xX;= cgl) + c(zl) Xyb oo cﬁ” X+ x,@l)

The notation emphasizes the interpretation of the residuals y'P and
1) ag the parts of y and x; that remain when the effects of xp, . . ., Xk
are removed. It may be shown (see Appendix A4.4) that the slope from
the least-squares regression of y D on x1 is simply the least-squares
slope b, from the full multiple regression, and that the residuals
from this regression are the same as those from the full regression,
. that is, yi(l) = blx,-m + e;. Note that no constant is required here,
because as least-squares residuals, both y1) and x1) have means of
Zero,

Plotting y*1) against xY) permits us to examine leverage and influ-
ence on b:. Similar partial-regression plots can be constructed for the
other regression coefficients, including bo:

Plot y(f) versus x{j), for j=0,1,...,k

In the case of bg, we regress the “constant regressor”’ xp = 1and yon
x; through x;, with no constant in the regression equations.

Illustrative partial-regression plots appear in Figure 4.5. The data
for this example are drawn from Duncan (1961), who regressed the
rated prestige of 45 occupations (P, assessed as the percentage of rat-
ers scoring the occupations as “good” or “gxcellent™ on the income
and educational levels of the occupations in 1950 (respectively, /, the
percent of males earning at least $3,500, and E, the percent of male
high-school graduates). The primary aim of this regression was to
produce fitted prestige scores for occupations for which there were no
direct prestige ratings, but for which income and educational data
were available. The fitted regression (with standard errors in paren-
theses) is

P = -6.06+0.5991 +0.546 £
(4.27) (0.120) (0.098)

R2=083 s=134

The partial-regression plot for income (Figure 4.5a) reveals three
apparently influential observations that serve o decrease the income
slope: ministers (6), whose income is unusually low given the educa-
tional level of the occupation; and railroad conductors (16) and rail-
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Zigure 4.5. Partial-regression plots for (a) income and (b) education in the
regression of prestige on the income and education levels of 45 U.S. occupa-
tions in 1930. The observation numbers of the points are plotted. If the plots
were drawn to a larger scale, as on a computer screen, then the names of the
occupations could be plotted in place of their numbers. The partial-regression
plot for the constant is not shown.

road engineers (27), whose incomes are unusually high given educa-
tion. Recall that the horizontal variable in the partial-regression plot
is the residual from the regression of income on education, and thus
values far from zero in this direction are those for which income is
unusual given education.

The partial-regression plot for education (Figure 4.5b) shows
that the same three observations have relatively high leverage on
the education coefficient: Observations 6 and 16 tend to increase
by, whereas observation 27 appears to be closer in line with the
rest of the data,

Examining the single-observation deletion diagnostics reveals that
observation 6 has the largest Cook’s D (Dg = 0.566} and studentized
. residual (fg = 3.14). This studentized residual is not especially big,
- however: The Bonferroni p value for the outlier test is Pr{rs; > 3.14) x
©: 2% 45 = (.14, Figure 4.6 displays a plot of studentized residuals ver-
" sus hat-values, with the areas of the plotted circles proportional to
-~ values of Cook’s D. Observation indices are shown on the plot for
At > 2 01 By > 2(k + 1)/n = 2(2 + 1)/45 = 0.13.
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Figure 4.6. Plot of studentized residuals against hat-values for the regression
of occupational prestige on income and education. Bach point is plotted as a
circle with area proportional to Cook’s D. The observation number is shown
when £;>2h=0.13 or }41>2.

Deleting observations 6 and 16 produces the fitted regression

P=—6.41+0.8671+0332F
(3.65 (0.12) (0.099

R°=088 s=114

which, as expected from the partial-regression plots, has a larger in-
come slope and smaller education slope than the original regression.
The estimated standard errors are likely optimistic, because relative
outliers have been trimmed away. Deleting observation 27 as weli
further increases the income slope and decreases the education slope,
but the change is not dramatic: by = 0.931, bg = 0.285.
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Should Unusual Data Be Discarded?

The discussion in this section has proceeded as if outlying and in-
fluential data are simply discarded. Though problematic data should
not be ignored, they also should not be deleted automatically and
thoughilessly:

1. It is important 1o investigate why data are unusual. Truly bad
data (e.g., errors in data entry as in Davis’s regression) can often be
corrected or, if correction is not possible, thrown away. Alternatively,
when a discrepant data-point is correct, we may be able to understand
why the observation is unusual. For Duncan’s regression, for exam-
ple, it makes sense that ministers enjoy prestige not accounted for by
the income and educational levels of the occupation. Likewise, 1 sus-
pect that the high incomes of railroad workers relative to their educa-
tional level and prestige reflect the power of railroad unions around
1950. In a case like this, we may choose to deal with outlying obser-
vations separately.

2. Alternatively, outliers or mfluentlai data may motivate model
respecification. For example, the pattern of outlying data may suggest
introduction of additional independent variables. If, in Duncan’s re-
gression, we can identify a factor that produces the unusually high
prestige of ministers (net of their income and education), and we can
measure that factor for other occupations, then this variable could be
added to the regression. In some instances, transformation of the de-
pendent variable or of an independent variable may, by rendering the
error distribution symmetric or eliminating nonlinearity (see Chapters
5 and 7), draw apparent outliers toward the rest of the data. We must,
however, be careful to avoid “overfitting” the data—permitting a
small portion of the data to determine the form of the model. I shall
return to this problem in Chapters 9 and 10,

3. Except in clear-cut cases, we are justifiably reluctant to delete
observations or to respecify to accommodate unusual data, Some re-
searchers reasonably adopt alternative estimation strategies, such as
robust regression, which continuously downweights outlying data
rather than simply including or discarding them. Such methods are
termed “robust” because they behave well even when the errors are
not normally distributed (see the discussion of lowess in Appendix
A6.1 for an example). As mentioned in passing, the attraction of
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robust estimation may be understood using Anscombe’s insurance
analogy: Robust methods are nearly as efficient as least squares when
the errors are normally distributed, and much more efficient in the
presence of outliers. Because these methods assign zero or very small
weight to highly discrepant data, however, the result is not generally
very different from careful application of least squares, and, indeed,
robust-regression weights may be used to identify outliers. Moreover,
most robust-regression methods are vulperable to high-leverage
points (but see the “high-breakdown” estimators described by
Rousseeuw and Leroy, 1987).

5. NON-NORMALLY DISTRIBUTED ERRORS

The assumption of normally distributed errors is almost always arbi-
trary. Nevertheless, the central-limit theorem assures that under very
broad conditions inference based on the least-squares estimators is
approximately valid in all but small samples. Why, then, should we
be concerned about non-normal errors?

First, although the validity of least-squares estimation is robust—as
stated, the levels of tests and confidence intervals are approximately
correct in large samples even when the assumption of normality is vi-
olated—the method is not robust in efficiency: The least-squares esti-
mator is maximally efficient among unbiased estimators when the
errors are normal. For some types of error distributions, however, par-
ticularly those with heavy tails, the efficiency of least-squares estima-
tion decreases markedly. In these cases, the least-squares estimator
becomes much less efficient than alternatives (e.g., so-called robust
estimators, or least-squares augmented by diagnostics}. To a substan-
tial extent, heavy-tailed error distributions are problematic because
they give rise to outliers, a problem that I addressed in the previous
chapter.

A commonly quoted justification of least-squares estimation—
called the Gauss-Markov theorem—states that the least-squares coef-
ficients are the most efficient unbiased estimators that are linear
functions of the observations y;. This result depends on the assump-
tions of linearity, constant error variance, and independence, but does
not require normality (see, e.g., Fox, 1984, pp. 42-43). Although the
restriction to linear estimators produces simple sampling properties, it




41

_js not compelling in light of the vulnerability of least squares to
" heavy-tailed error distributions.

Second, highly skewed error distributions, aside from their propen-
.-:sity to generate outliers in the direction of the skew, compromise the
interpretation of the least-squares fit. This fit is, after all, a condi-
" tional mean (of y given the xs), and the mean is not a good measure of
“the center of a highly skewed distribution. Consequently, we may pre-
“fer to transform the data to produce a symmetric error distribution.

" Finally, a multimodal error distribution suggests the omission of
“one or more qualitative variables that divide the data naturally into
- groups. An examination of the distribution of residuals may therefore
“‘motivate respecification of the model.

. Although there are tests for non-normal errors, I shall describe here
“instead graphical methods for examining the distribution of the resid-
“uals (but see Chapter 9). These methods are more useful for pinpoint-
ing the character of a problem and for suggesting solutions.

Normal Quantile-Comparison Plot of Residuals

One such graphical display is the quantile-comparison plot, which
_ permits us to compare visually the cumulative distribution of an inde-
pendent random sample-—here of studentized residuals—to a cumula-
tive reference distribution—the unit-normal distribution., Note that
“approximations are implied, because the studentized residuals are
‘distributed and dependent, but generally the distortion is negligible,
- at least for moderate-sized to large samples.

To construct the quantile-comparison plot:

1. Arrange the studentized residuals in ascending order: k1), 223, . . . , )
» By convention, the jth largest studentized residual, #;), has gi = (i—1/2)/n
" proportion of the data below it. This convention avoids cumulative pro-
] ':_ portions of zero and one by (in effect) counting half of each observation
— " below and half above its recorded value. Cumulative proportions of zero
“and one would be problematic because the normal distribution, to which
. we wish to compare the distribution of the residuals, never quite reaches

D - cumulative probabilities of zero or one.
es 'Find the quantile of the unit-normal distribution that corresponds to a cu-
he mulative probability of g; — that is, the value z from Z ~ N(0, 1) for

“ which Pr(Z < z;) = g:.
Tot the #;) against the z;.
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If the ¢, were drawn from a unit-normal distribution, then, within
the bounds of sampling error, #;, = z;. Consequently, we expect {0
find an approximately linear plot with zero intercept and unit slope, a
line that can be placed on the plot for comparison. Nonlinearity in the
plot, in contrast, is symptomatic of non-normality.

It is sometimes advantageous to adjust the fitted line for the ob-
served center and spread of the residuals. To understand how the ad-
justment may be accomplished, suppose more generally that a
variable X is normally distributed with mean it and variance Cz. Then,
for an ordered sample of values, approximately x¢) = i + € z;, where z;
is defined as before. In applications, we need to estimate | and g,
preferably robustly, because the usual estimators—the sample mean
and standard deviation—are markedly affected by extreme values.
Generally effective choices are the median of x to estimate pt and
(03 — 01)/1.349 to estimate {, where Oy and Qs are, respectively, the
first and third quartiles of x: The median and quartiles are not sensi-
tive to outliers. Note that 1,349 is the number of standard deviations
separating the quartiles of a normal distribution. Applied to the
studentized residuals, we have the fitted line 1, = median(s) +
{[Qa(8) ~ 01(H]/1.349} x z;. The normal quantile-comparison plots in
this monograph employ the more general procedure.

Several illustrative normal-probability plots for simulated data are
shown in Figure 5.1. In parts a and b of the figure, independent sam-
ples of size n =25 and n = 100, respectively, were drawn from a unit-
normal distribution. In parts ¢ and d, samples of size n = 100 were
drawn from the highly positively skewed x% distribution and the
heavy-tailed r, distribution, respectively. Note how the skew and
heavy tails show up as departures from linearity in the normal quantile-
comparison plots, Qutliers are discernible as unusually large or small
values in comparison with corresponding normal quantiles.

Judging departures from normality can be assisted by plotting in-
formation about sampling variation. If the studentized residuals were
drawn independently from a unit-normal distribution, then

_ /35(1 -8
SE{EU)) B ©{(z;) n

where @(z)) is the probability density (i.e., the “height”) of the unit-
normal distribution at Z = z;, Thus, z; £ 2 X S’ﬁ‘.(r(; 3} gives a rough 95%
confidence interval around the fitted line f;) = z; in the quantile-
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Figure 5.1. Tlustrative normal quantile-comparison plots. (a} For a sample of
n = 25 from N(0,1). (b) For a sample of » = 108 from N(0,1). (¢) For a sample
of n = 100 from the positively skewed x%. {d) For a sample of n = 100 from
the heavy-tailed £7 .

comparison plot. If the slope of the fitted line is taken as 2 ={-0
1.349 rather than 1, then the estimated standard error may be multi-
plied by £. As an alternative to computing standard errors, Atkinson
(1985) has suggested a computationally intensive simulation proce-
dure that does not treat the studentized residuals as independent and
normally distributed.

Figure 5.2 shows a normal quantile-comparison plot for the
studentized residuals from Duncan’s regression of rated prestige on
occupational income and education levels. The plot includes a fitted
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Figure 5.2. Normal quantile-compatison plot for the studentized residuals
from the regression of occupational prestige on income and education. The
plot shows a fitted line, based on the median and quartiles of the s, and ap-
proximate +2SE limits around the line.

line with two-standard-error limits. Note that the residual distribution
is reasonably well behaved.

Histograms of Residuals

A strength of the normal quantile-comparison plot is that it retains
high resolution in the tails of the distribution, where problems often
manifest themselves. A weakness of the display, however, is that it
does not convey a good overall sense of the shape of the distribution
of the residuals. For example, multiple modes are difficult to discern
in a quantile-comparison plot.

Histograms (frequency bar graphs), in contrast, have poor resolution
in the tails or wherever data are sparse, but do a good job of convey-
ing general distributional information, The arbitrary class boundaries,
arbitrary intervals, and roughness of histograms sometimes produce
misleading impressions of the data, however. These problems can partly
be addressed by smoothing the histogram (see Silverman, 1986, or
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Figure 5.3, Stem-and-leaf display of studentized residuals from the regression
of oceapational prestige on income and education.

“iFox, 1990). Generally, I prefer to employ stem-and-leaf displays—a
type of histogram (Tukey, 1977) that records the numerical data val-
2 ues directly in the bars of the graph—for small samples (say r < 100),
smoothed histograms for moderate-sized samples (say 100 € n <
1,000), and histograms with relatively narrow bars for large samples
(say n > 1,000).

A stem-and-leaf display of studentized residuals from the Duncan
regression is shown in Figure 5.3. The display reveals nothing of
note: There is a single node, the distribution appears reasonably sym-
metric, and there are no obvious outliers, although the largest value
(3.1} is somewhat separated from the next-largest value (2.0).

Each data value in the stem-and-leaf display is broken into two
parts: The leading digits comprise the stem; the first trailing digit
forms the leaf; and the remaining trailing digits are discarded, thus
truncating rather than rounding the data value. (Truncation makes it
- simpler to locate values in a list or table.) For studentized residuals, it
is usually sensible to make this break at the decimal point. For exam-
ple, for the residuals shown in Figure 5.4: 0.3039 — 0 [3; 3.1345 —
.3 I} and —0.4981 — —0 [4, Note that each stem digit appears twice,
* implicitly producing bins of width 0.5. Stems marked with asterisks
“(e.g., 1%) take leaves 0 — 4; stems marked with periods (e.g., 1.) take
" leaves 5--9. (For more information about stem-and-leaf displays,
. see, e.g., Velleman and Hoaglin [1981] or Fox [19901.)
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Figure 5.4. The family of powers and roots. The transformation labeled “p” is
actually ¥ = (y¥ - L)/p; for p=0, ¥y =log.y.

SOURCE: Adapted with permission from Figure 4-1 from Hoagtlin, Mosteller, and Tukey (eds.), Un-
derstanding Robust and Exploratory Data Aralysis, ® 1983 by John Wiley and Sons, Inc.

Correcting Asymmetry by Transformation

A frequently effective approach to a variety of problems in regres-
sion analysis is to transform the data so that they conform more
closely to the assumptions of the linear model. In this and later chap-
ters | shall introduce transformations to produce symmetry in the
error distribution, to stabilize error variance, and to make the relation-
ship between y and the xs linear.

In each of these cases, we shall employ the family of powers and
roots, replacing a variable y (used here generically, because later we
shall want to transform xs as well) by ¥" = y P, Typically, p = -2, -1,
-1/2, 1/2, 2, or 3, although sometimes other powers and roots are consid-
ered. Note that p = | represents no transformation. In place of the 0th
power, which would be useless because 0 = 1 regardless of the value of
y, we take y* = log y, usually using base 2 or 10 for the log function, Be-
cause logs to different bases differ only by a constant factor, we can
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select the base for convenience of interpretation. Using the log transfor-

mation as a “zeroth power” is reasonable, because the closer p gets to
zero, the more ¥ ¥ looks like the log function (formally, limy..of( yP~1)/p]
= log,y, where the log to the base ¢ = 2.718 is the so-called “natural”
logarithm). Finally, for negative powers, we take y’ = —yP, preserv-
ing the order of the y values, which would otherwise be re-
versed.

As we move away from p = 1 in either direction, the transforma-
tions get stronger, as illustrated in Figure 5.4, The effect of some
of these transformations is shown in Table 5.1a. Transformations
“up the ladder” of powers and roots (a term borrowed from
Tukey, 1977)—that is, toward y?—serve differentially to spread
out large values of y relative to small ones; transformations
“down the ladder”—toward log y—have the opposite effect. To
correct a positive skew (as in Table 5.1b), it is therefore nec-
essary to move down the ladder; to correct a negative skew
(Table 5.1¢), which is less common in applications, move up
the ladder.

1 have implicitly assumed that all data values are positive, a con-
dition that must hold for power transformations to maintain order,
In practice, negative values can be eliminated prior to transforma-
tion by adding a small constant, sometimes called a “start,” to the
data. Likewise, for power transformations to be effective, the ratio
“of the largest to the smallest data value must be sufficiently large;
otherwise the transformation will be too nearly linear. A small
ratio can be dealt with by using a negative start.

In the specific context of regression analysis, a skewed error
distribution, revealed by examining the distribution of the resid-
uals, can often be corrected by transforming the dependent vari-
able. Although more sophisticated approaches are available (see,
e.g., Chapter 9), a good transformation can be located by trial
and error.

Dependent variables that are bounded below, and hence that
tend to be positively skewed, often respond well to transforma-
tions down the ladder of powers, Power transformations usually
do not work well, however, when many values stack up against
the boundary, a situation termed truncation or censoring (see,
e.g., Tobin [{1958] for a treatment of “limited” dependent
variables in regression). As well, data that are bounded both
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TABLE 5.1
Correcting Skews by Power Transformations

{a) Effect of power transformations on the spacing of scores.

11y logjyy & 3y = ¥ y
-1 0 1 i 1
J1/28 10.30 i 13 17
-2 0.30 2 4 8
1176 10.18 i1 5 119
~1/3 (.48 3 9 27
11/12 10.12 1 V7 137
~1/4 0.60 4 16 64
11/20 10,10 i 19 161
-i/5 0.70 5 25 125

(b) Descending the ladder of powers 1o correct a positive skew, pulling in the right tail,

¥ = logywy
1 0
19 il
10 1
190 3|
100 2
1900 }1
1000 3

{c} Ascending the ladder of power to correct a negative skew, pulling in the left rail.

¥ - ¥
1.000 1
10.414 1
1.414 2
10.318 )
1732 3
10,268 1
2.000 4

a. The interlinear nutmbers give the differences between adjacent scores.

above and below—such as proportions and percentages—generally re-
quire another approach, For example the logit or “log odds” transfor-
mation given by ¥* = log{y/(1 — )1, often works well for proportions.
Transforming variables in a regression analysis raises issues of in-
terpretation. I address these issues briefly at the end of Chapter 7.
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6. NONCONSTANT ERROR VARIANCE

Detecting Nonconstant Error Variance

One of the assumptions of the regression model is that the variation of
the dependent variable around the regression surface-—the error vari-
ance—is everywhere the same: V(g) = V(y |x, ..., x) = = 2. Nonconst-
ant error variance is often termed “heteroscedasticity.” Although the
least-squares estimator is unbiased and consistent even when the error
variance is not constant, its efficiency is impaired and the usual formulas
for coefficient standard errors are inaccurate, the degree of the problem
depending on the degree to which error variances differ. 1 describe
graphical methods for detecting nonconstant error variance in this chap-
ter. Tests for heteroscedasticity are discussed in Chapter 8 on discrete
data and in Chapter 9 on maximum-likelihood methods.

Because the regression surface is &k dimensional, and imbedded in a
_space of k + 1 dimensions, it is generally impracticai to assess the as-
sumption of constant error variance by direct graphical examination
of the data for k larger than 1 or 2. Nevertheless, it is common for
error variance to increase as the expectation of y grows larger, or
there may be a systematic relationship between error variance and a
particular x. The former situation can be detected by plotting residu-
als against fitted values, and the latter by plotting residuals against
each x. It is worth noting that plotting residuals against y (as opposed
to 9) is generally unsatisfactory. The plot will be tllted There is a
built-in linear correlation between ¢ and y, because y = y + e; in fact,
the correlation between y and e is (¥, €) = V1 — g2. In contrast, the
least-squares fit insures that r( ?, ¢) = 0, producing a plot that is much
easier to examine for evidence of nonconstant spread.

Because the least-squares residuals have unequal variances even
when the errors have constant variance, I prefer plotting the
studentized residuals against fitted values. Finally, a pattern of chang-
ing spread is often more easily discerned in a plot of I|or 12 versus
?, perhaps augmented by a lowess scatterplot smooth (see Appendix
A6.1); smoothing this plot is particularly useful when the sample size
is very large or the distribution of Sz\ is very uneven. An example ap-
pears in Figure 6.2.

An illustrative plot of studentized residuals against fitted values is
shown in Figure 6.1a. In Figure 6.1b, studentized residuals are plotted
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Figure 6.1. Plots of studentized residuals versus fitted values for Ornstein’s
interlocking-directorate regression. {a) t versus 9 (b) t versus loga(3 +§). The
log transformation serves to reduce the skew of the fitted values, making the
increasing residual spread easier to discern.

against loga(3 + S;\); by correcting the positive skew in these 9 values, the
second plot makes it easier to discern the tendency of the residual spread
to increase with § The data for this example are drawn from work by
Ormstein (1976) on interlocking directorates among the 248 largest
Canadian firms. The number of interlocking directorate and executive
positions maintained by the corporations is regressed on corporate assets
(square-root transformed to make the relationship linear; see Chapter 7);
9 durnmy variables representing 10 industrial classes, with heavy manu-
facturing serving as the baseline category; and 3 dummy variables repre-
senting 4 nations of controf, with Canada as the baseline category. The
results of the regression are given in the left-hand columns of Table 6.1;
the results shown on the right of the table are discussed below, Note that
part of the tendency for the residual scatter to increase with § is due to
the lower bound of O for y: Because e =y — 9, the smallest possible resid-
ual corresponding to a particular§ valueise=0 wﬂ!\ = ——S)\.

Correcting Nonconstant Error Variance

Transformations frequently serve to correct a tendency of the error
variance to increase or, less commonly, decrease with the magnitude
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TABLE 6.1
Regression of Number of Interlocking Directorate and Executive
Positions Maintained by 248 Major Canadian Corporations on
Corporate Assets, Sector, and Nation of Control

Interlocks NInterlocks -+ 1

Regressor Coefficient SE Coefficient SE
Constant 4.19 1.85 2.33 0.23%
YAssets 0.252 0.019 0.0260 0.00232
Sector®

Agriculture, food, ~1.20 2,04 ~0.0567 0.255

light industry

Mining, metals 0.342 2.01 0.356 0.252

Wood, paper 5.15 2.68 (.786 0.335

Construction -5.13 4.70 —0.740 0.588

Transport ~{0.381 2.82 0.354 0.353

Merchandizing ~0.867 2.63 0.148 0.329

Banking ~14.4 5.58 ~2.25 0.697

QOther financials -5.70 2,93 -{.0880 0.366

Holding companies  -2.43 4,0t -0,245 0.502
Nation of Control®

United States -8.09 1.48 -1.11 (.185

Britain ~4.,44 2.65 {3,527 0.331

QOther ~1.16 2.66 Q114 0.333
R? 0.655 0.580

SOURCE: Dara tzken from M. Ornstein, personal communication; the data appear in Fox (1984).
a. Baseline category for zerofone dummy variables: Heavy manufacturing.
b, Baseline category: Canada.

of the dependent variable: Move y down the ladder of powers and
roots if the residual scatter broadens with the fitted values; move y up
the ladder if the residual scatter narrows. An effective transformation
may be selected by trial and error {but see Chapter 9 for an analytic
method of selecting a variance-stabilizing transformation).

If the error variance is proportional to a particular x, or if the pat-
tern of V(g;) is otherwise known up to a constant of proportionality,
then an alternative to transformation of y is weighted-least-squares
(WLS) estimation (see Appendix A6.2). It also is possible to correct
the estimated standard errors of the least-squares coefficients for
heteroscedasticity: A method proposed by White (1980) is described
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Figure 6.2. Plot of absolute studentized residuals versus fitted values for the
square-root transformed interlocking-directorate data. The line on the graph is
a lowess smooth using f = 0.5 and 2 robustness iterations.

in Appendix A6.3. An advantage of this approach is that knowledge
of the pattern of nonconstant error variance (e.g., increased variance
with the level of y or with an x) is not required. If, however, the
heteroscedasticity problem is severe, and the corrected standard er-
rors therefore are substantially larger than those produced by the
usual formula, then discovering the pattern of nonconstant variance
and correcting for it—by a transformation or WLS estimation—-offers
the possibility of more efficient estimation. In any event, unequal
error variances are worth correcting only when the problem is ex-
treme—where, for example, the spread of the errors varies by a factor
of about three or more (i.e., the error variance varies by a factor of
about 10 or more; see Appendix A6.4).

For Ornstein’s interlocking-directorate regression, for example, a
square-root transformation appears to correct the dependence of the
residua%\ spread on the level of the dependént variable. A plot of |;|
versus y; for the transformed data is given in Figure 6.2, and the re-
gression results appear in the right-hand columas of Table 6.1. The
lowess smooth in Figure 6.2 (see Appendix A6.1) shows little
change in the average absolute studentized residuals as the fitted
values increase.
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The coefficients for the original and transformed regressions in
Table 6.1 cannot be compared directly, because the scale of the de-
pendent variable has been altered. It is clear, however, that assets re-
tain their positive effect and that the nations of contrel maintain their
ranks. The sectoral ranks are also similar across the two analyses, al-
though not identical. In comparing the two sets of results, recall that
the baseline categories for the sets of dummy regressors—Canada and
heavy manufacturing—implicitly have coefficients of zero.

Transforming y also changes the shape of the error distribution and
alters the shape of the regression of y on the xs. It is frequently the
case that producing constant residual variation through a transforma-
tion also makes the distribution of the residuals more symmetric. At
times, eliminating nonconstant spread also makes the relationship of y
to the xs more nearly linear (see the next chapter). These by-products
are not necessary consequences of correcting nonconstant error vari-
ance, however, and it is particularly important to check data for non-
linearity following a transformation of y. Of course, because there
generally is no reason to suppose that the regression is linear prior to
transforming y, we should check for nonlinearity even when y is not
transformed.

Finally, nonconstant residual spread sometimes is evidence for the
omission of important effects from the model. Suppose, for example,
that there is an omitted categorical independent variable, such as re-
gional location, that interacts with assets in affecting interlocks; in
particular, the assets slope, although positive in every region, is
steeper in some regions than in others. Then the omission of region
and its interactions with assets could produce a fan-shaped residual
plot even if the errors from the correct model have constant spread.
The detection of this type of specification error therefore requires
substantive insight into the process generating the data and cannot
rely on diagnostics alone.

7. NONLINEARITY

The assumption that E(g) is everywhere zero implies that the specified
regression surface captures the dependency of y on the xs. Violating
the assumption of linearity therefore implies that the model fails to
capture the systematic pattern of relationship between the dependent
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“and independent variables. For example, a partial relationship speci-
fied to be linear may be nonlinear, or two independent variables spec-
ified to have additive partial effects may interact in determining y.
Nevertheless, the fitted model is frequently a useful approximation
even if the regression surface E(y) is not precisely captured. In other
instances, however, the model can be extremely misleading.

The regression surface is generally high dimensional, even after-ac-
counting for regressors (such as polynomial terms, dummy variables,
and interactions) that are functions of a smaller number of fundamen-
tal independent variables. As in the case of nonconstant error vari-
ance, therefore, it is necessary to focus on particular patterns of
departure from linearity. The graphical diagnostics discussed in this
chapter represent two-dimensional views of the higher-dimensional
point-cloud of observations {yi, xi; . . ., X }. With modern computer
graphics, the ideas here can usefully be extended to three dimensions,
permitting, for example, the detection of two-way interactions be-
tween independent variables (Monette, 1990).

Residual and Partial-Residual Plots

Although it is useful in multiple regression to plot y against each x,
these plots do not tell the whole story—and can be misleading-be-
cause our interest centers on the partial relationship between y and
each x, controfling for the other xs, not on the marginal relationship
between y and a single x. Residual-based plots are consequently more
relevant in this context.

Plotting residuals or studentized residuals against each x, perhaps
augmented by a lowess smooth (see Appendix A6.1), is helpful for
detecting departures from linearity. As Figure 7.1 illustrates, how-
ever, residual plots cannot distinguish between monotone (i.e.,
strictly increasing or decreasing) and nonmonotone (e.g., failing and
then rising) nonlinearity. The distinction between monotone and non-
monotone nonlinearity is lost in the residual plots because the least-
squares fit ensures that the residuals are linearly uncorrelated with
each x. The distinction is important, because, as I shall explain below,
monotone nonlinearity frequently can be corrected by simple transfor-
mations. In Figure 7.1, for example, case a might be modeled by y =
Bo + le + €, whereas case b cannot be linearized by a power trans-
formation of x and might instead be dealt with by a quadratic specifi-
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{(a) )
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Figure 7.1. Scatterplots (a and b) and corresponding residual plots (a’ and b")
in simple regression. The residual plots do not distinguish between (a) a non-
- linear but monotone relationship, and (b} a nonlirear, nonmenotone relation-
“ship.

cation, y = g + Byx + B2 x? + . (Case b could, however, be accommo-
“dated by a more complex transformation of x: y = Bo + PBi{x ~ o)t + g
- I shall not pursue this approach here.)

= In contrast to simple residual plots, partial-regression plots, introduced
in Chapter 4 for detecting influential data, can reveal nonlinearity and
suggest whether a relationship is monotone. These plots are not always
useful for locating a transformation, however: The partial-regression
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plot adjusts x; for the other xs, but it is the unadjusted x; that is trans-
formed in respecifying the model. Partial-residual plots, also called
component-plus-residual plots, are often an effective alternative. Par-
tial-residual plots are not as suitable as partial-regression plots for re-
vealing leverage and influence.

Define the partial residual for the jth regressor as

{Jy =
e =g+ .'E:J,.,\cjj

In words, add back the linear component of the partial relationship
between y and x; to the least-squares residuals, which may include an
unmodeled nonlinear component. Then plot ¢) versus x;. By con-
struction, the multiple-regression coefficient b; is the slope of the
simple linear regression of Y7 on xj, but nonlinearity should be ap-
parent in the plot as well. Again, a lowess smooth may help in inter-
preting the plot.

The partial-residual plots in Figure 7.2 are for a regression of the
rated prestige P of 102 Canadian occupations (from Pineo and Porter,
1967) on the average education (E) in years, average income (/) in
dollars, and percentage of women (W) in the occupations in 1971
(Related results appear in Fox and Suschnigg [19891; cf. Duncan’s re-
gression for similar U.S. data reported in Chapter 4.) A lowess
smooth is shown in each plot. The results of the regression are as fol-
lows:

B =679+ 4.19E +0.001317 — 0.00891 W
(3.24) (0.30) (0.00028) (0.0304)

R2=080 s=7.85

Note that the magnitudes of the regression coefficients should not be
compared, because the independent variables are measured in differ-
ent units: In particular, the unit for income is small-—the dollar—and
that for education is comparatively large—the year. Interpreting the
regression coefficients in light of the units of the corresponding indepen-
dent variables, the education and income coefficients are both substan-
tial, whereas the coefficient for percentage of women is very small.
There is apparent monotone nonlinearity in the partial-residual
plots for education and, much more strongly, income (Figure 7.2,
parts a and b); there also is a small apparent tendency for occupations
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Figure 7.2. Partial-residual plots for the regression of the raied prestige of
102 Canadian occupations on 1971 cccupational characteristics: (a) education,
(b) income, and (c) percentage of women. The observation index is plotted for
each point. In each graph, the linear least-squares fit (broken line) and the
lowess smooth (solid line for f = 0.5 with 2 robustness iterations) are shown.

SOURCE: Data taken from B, Blishen, W. Carroll, and C. Moore, personal communication; Cen-
sus of Canada (Statistics Canada, 1971, Part 6, pp. 19.1-19.21); Pineo and Poner (1967).

with intermediate percentages of women to have lower prestige, con-
trolling for income and educational levels (Figure 7.2¢). To my eye,
the patterns in the partial-residual plots for education and percentage
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of women are not easily discernible without the lowess smooth: The
departure from linearity is not great. The nonlinear patterns for in-
come and percentage of women are simple: In the first case, the
lowess curve opens downwards; in the second case, it opens upwards.
For education, however, the direction of curvature changes, produc-
ing a more complex nonlinear pattern.

Mallows (1986) has suggested a variation on the partial-residual
plot that sometimes reveals nonlinearity more clearly: First, add a
quadratic term in x; to the model, which becomes

2
v =B+ Bixyt-. .+Bjxﬁ+yxﬁ+. Bt E

Then, after fitting the model, form the “augmented” partial residual

() 2

e J)-e,-~+bj-xﬁ+cxﬁ

Note that in general b; differs from the regression coefficient for x;
in the origina} model, which does not include the squared term, Fi-
nally, plot &’/ versus x;.

Transfoermations for Linearity

To consider how power transformations can serve 1o linearize a
monotone nonlinear relationship, examine Figure 7.3. Here, I have
plotted y = (1/5))62 for x = 1, 2, 3, 4, 5. By construction, the relation-
ship can be linearized by taking x' = x%, in which case y = (1/5)x’; or
by taking y’ = Vy, in which case Y = V175 x. Figure 7.3 reveals how
each transformation serves to stretch one of the axes differentially,
pulling the curve into a straight line.

As illustrated in Figure 7.4, there are four simple patterns of mono-
tone nonlinear relationships. Each can be straightened by moving y, x,
or both up or down the ladder of powers and roots: The direction of
curvature determines the direction of movement on the ladder; Tukey
(1977) calls this the “bulging rule.” Specific transformations to lin-
earity can be located by trial and error (but see Chapter 9 for an ana-
lytic approach).

In multiple regression, the bulging rule may be applied to the par-
tial-residual plots. Generally, we transform x; in preference fo y, be-
cause changing the scale of y disturbs its relationship to other
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Figure 7.3. How a transformation of y (a to b} or x (a to ¢) can make a simple
monotone nonlinear relationship linear.

regressors and because transforming y changes the error distribution.
An exception occurs when similar nonlinear patterns are observed in
ail of the partial-residual plots. Furthermore, the logit transformation
often helps for dependent variables that are proportions.

As suggested in connection with Figure 7.1b, nonmonotone nonlinear-
ity (and some complex monotone patterns} frequently can be accommo-
dated by fitting polynomial functions in an x; quadratic specifications are
often useful in applications. As long as the model remains linear in its
parameters, it may be fit by linear least-squares regression.

Trial-and-error experimentation with the Canadian occupational
prestige data leads to the log transformation of income. The possibly
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Figure 7.4. Determining a transformation to linearity by the “bulging rule.”

SOURCE: Adapted from Tukey, Exploratory Data Analysis, © 1977 by Addison-Wesley Publishing
Co. Adapted and reprinted by permission of Addison-Wesley Publishing Co., Inc., Reading, MA.

curvilinear partial relationship of prestige to the percentage of women
in the occupations suggests the inclusion of linear and quadratic terms
for this independent variable. These changes produce a modest,
though discernible, improvement in the fit of the model:

P=111+377E+9.36log, [ - 0.139W +0.00215W?
(15 (3% (130  (0.087) (0.00094)

R*=0.84 s$=695

Note the statistically significant quadratic term for percentage of women.
The partial effect of this variable is relatively small, however, ranging
from a minimum of ~2.2 prestige points for an occupation with 32%
women to 7.6 points for a hypothetical occupation consisting entirely
of women. Because the nonlinear pattern in the partial-residual plot
for education is complex, a power transformation of this independent
variable is not promising: Trial and error suggests that the best that
we can do is to increase R? to 0.85 by squaring education.

In transforming data or respecifying the functional form of the model,
there should be an interplay between substantive and modeling
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considerations. We must recognize, however, that social theories are
almost never mathematically concrete: Theory may tell us that pres-
tige should increase with income, but it does not specify the func-
tional form of the relationship.

Still, in certain contexts, specific transformations may have advan-
tages of interpretability., For example, log transformations often can
be given meaningful substantive interpretation: To increase logzx by
1, for instance, represents a doubling of x. In the respecified Canadian
occupational prestige regression, therefore, doubling income is asso-
ciated on average with a 9-point increment in prestige, holding educa-
tion and gender composition constant.

Likewise, the square root of an area or cube root of a volume can be
interpreted as a linear measure of distance or length, the inverse of the
amount of time required to fraverse a particular distance is speed, and so
on. If both y and x; are log-transformed, then the regression coeffi-
cient for x} is interpretable as the “elasticity” of y with respect to
xp~-that is, the approximate percentage of change in y correspond-
ing to a 1% change ir x;. In many contexts, a quadratic relationship
will have a clear substantive interpretation (in the example, occu-
pations with a gender mix appear to pay a small penalty in pres-
tige}, but a fourth-degree polynomial may not.

Finally, although it is desirable to maintain simplicity and inter-
pretability, it is not reasonable to distort the data by insisting on a
functional form that is clearly inadequate. Tt is possible, in any event,
to display the fitted relationship between y and an x graphically or in
a table, using the original scales of the variables if they have been
transformed, or to describe the effect at a few strategic x values (see,
e.g., the brief description above of the partial effect of percentage of
women on occupational prestige).

8. DISCRETE DATA

Discrete independent and dependent variables often lead to plots that
are difficult to interpret. A simple example of this phenomenon ap-
pears in Figure 8.1, the data for which are drawn from the 1989 Gen-
eral Social Survey conducted by the National Opinion Research
Center. The independent variable, years of education completed, is
coded from 0 to 20. The dependent variable is the number of correct
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Figure 8.]. Scatterplot (a) and residual plot (b) for vocabulary score by year
of education. The least-squares regression line is shown on the scatterplot.

answers to a 10-item vocabulary test; note that this variable is a dis-
guised proportion—-literally, the proportion correct X 10.

The scatterplot in Figure 8.1a conveys the general impression that
vocabulary increases with education. The plot is difficult to read,
however, because most of the 968 data points fall on top of one an-
other. The least-squares regression line, also shown on the plot, has
the equation

¥ =1.13+0.374E
(0.28) (0.021)

R2=0248 5=1.92

where V and E are, respectively, the vocabulary score and education,

Figure 8.1b plots residuals from the fitted regression against educa-
tion. The diagonal lines running from upper left to lower right in this
plot are typical of residuals for a discrete dependent variable: For
any one of the 11 distinct y values, e.g., y = 5, the residual is e =
5 — bg ~ byx = 3.87 — 0.374x, which is a linear function of x. I noted a
similar phenomenon in Chapter 6 for the plot of residuals against fit-
ted values when y has a fixed minimum score. The diagonals from
lower left to upper right are due to the discreteness of x.
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It also appears that the variation of the residuals in Figure 8.1b is
lower for the largest and smallest values of education than for inter-
mediate values. This pattern is consistent with the observation that
the dependent variable is a disguised proportion: As the average num-
ber of correct answers approaches 0 or 10, the potential variation in
vocabulary scores decreases. It is possible, however, that at least part
of the apparent decrease in residual variation is due to the relative
sparseness of data at the extremes of the education scale. Our eye is
drawn to the range of residual values, especially because we cannot
see most of the data points, and even when variance is constant, the
range tends to increase with the amount of data.

These issues are addressed in Figure 8.2, where each data point has
been randomly “jittered” both vertically and horizontally: Specific-
ally, a uniform random variable on the interval [~1/2, 1/2] was added
to each education and vocabulary score. This approach to plotting dis-
crete data was suggested by Chambers, Cleveland, Kleiner, and
Tukey (1983). The plot also shows the fitted regression line for the
original data, along with lines tracing the median and first and third
quartiles of the distribution of jittered vocabulary scores for each
value of education; I excluded education values below six from the me-
" dian and quartile traces because of the sparseness of data in this region.

Several features of Figure 8,2 are worth highlighting: (a) It is clear
from the jittered data that the observations are particularly dense at
12 years of education, corresponding to high-school graduation; (b)
the median trace is quite close to the linear least-squares regression
line; and (c) the quartile traces indicate that the spread of y does not
decrease appreciably at high values of education.

A discrete dependent variable violates the assumption that the error
in the regression model is normally distributed with constant vari-
ance. This problem, like that of a limited dependent variable, is only
serious in extreme cases—for example, when there are very few re-
sponse categories, or where a large proportion of observations is in a
small number of categories, conditional on the values of the indepen-
dent variables.

In contrast, discrete independent variables are perfectly consistent
with the regression model, which makes no distributional assumptions
about the xs other than uncorrelation with the error. Indeed a discrete
x makes possible a straightforward hypothesis test of nonlinearity,
sometimes called a test for “lack of fit.” Likewise, it is relatively
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Vocabulary Score

Eduecation

Figure 8.2. “Jittered” scatterplot for vocabulary score by education. A small
random guantity is added to each horizontal and vertical coordinate. The
dashed line is the least-squares repgression line for the unjittered data. The
solid lines are median and quartile traces for the jittered vocabulary scores.

simple to test for nonconstant error variance across categories of a
discrete independent variable (see below).

Testing for Nonlinearity

‘Suppose, for example, that we model education with a set of
dummy regressors rather than specify a linear relationship between
vocabulary score and education. Although there are 21 conceivable
education scores, ranging from 0 through 20, none of the individuals
in the sample has 2 years of education, yielding 20 categories and 19
dummy regressors. The model becomes
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TABLE 8.1
Analysis of Variance for Vocabulary-Test Score, Showing the

Incremental F Test for Nonlinearity of the Relationship Between
Vocabulary and Education

Source df  Sum of Squares Mean Square F P
Education (Model 8.1} 19 1262.0 66,40 18.1 <<0.0001

Linear (Model 8.2) i 1175.0 1175.0 320.0 <<0.0001

Nonlinear (“lack of fit”) 18 86.58 4.810 1.31 0.17
Error (“pure error”) 948 3473.0 3.663

Total 967 4735.0

SOURCE: Data taken from 1989 General Social Survey, National Opinion Research Center.

V=YootV dyt. Y edg tE (8.1]

Contrasting this model with
Yi=Bo+Byx+g (8.2}

produces a test for nonlinearity, because Equation 8.2, specifying a
linear relationship, is a special case of Equation 8.1, which captures
any pattern of relationship between E{y) and x. The resulting incre-
mental F test for nonlinearity appears in the analysis-of-variance of
Table 8.1. There is, therefore, very strong evidence of a linear rela-
tionship between vocabulary and education, but little evidence of
nonlinearity.

The F test for nonlinearity easily can be extended to a discrete in-
dependent variable-—say, x;—in a multiple-regression model. Here,
we contrast the more general model

y=EYottidit . Y, d, Byt Bx e
with a model specifying a linear effect of x;,
y=B+Bx + Byt A Bx e

where dy, . . ., d,-; are dummy regressors constructed to represent the
q categories of x,.
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Testing for Nonconstant Error Variance

A discrete x (or combination of xs) partitions the data into ¢
groups. Let y;; denote the jth of n; dependent-variable scores in the ith
group. If the error variance is constant, then the within-group vari-
ance estimates

7
Z (}’ij . i’)g
2 _J=1

! n—1

should be similar. Here, y; is the mean in the ith group. Tests that ex-
amine the s# directly, such as Bartleit's (1937) commonly employed
test, do not maintain their validity well when the errors are nop-normal.

Many alternative tests have been proposed. In a large-scale simula-
tion study, Conover, Johnson, and Johnson (1981) demonstrate that
the following simple F test is both robust and powerful: Calculate the
values z;; = y;—yi | where yi is the median y within the ith group.
Then perform a one-way analysis-of-variance of the variable z over
the ¢ groups. If the error variance is not constant across the groups,
then the group means z; will tend to differ, producing a large value of
the F test statistic. For the vocabulary data, for example, where edu-
cation partitions the 968 observations into g = 20 groups, this test
gives Flo043 = 1.48, p = .08, providing weak evidence of nonconstant
spread.

9. MAXIMUM-LIKELIHOOD METHODS,
SCORE TESTS, AND CONSTRUCTED VARIABLES

The methods developed in this chapter rely on maximum-likelihood
estimation (see, e.g., Fox, 1984, Appendix C, for a concise summary;
Wonnacott and Wonnacott, 1990, Ch. 18, for an elementary introduc-
tion). The rationale for these methods is more complex than for paral-
lel ad hoc procedures outlined in earlier sections, but their
implementation is nevertheless straightforward. The material in this
chapter should therefore prove useful even to data analysts relatively
unschooled in the subtleties of the underlying statistical theory.
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Figure 9.1. The likelihood-ratio, Wald, and score fests for the hypothesis
Hy h=hg.

A statistically sophisticated approach to selecting a transformation
of y or an x is to embed the usual multiple-regression model in a more
general model that contains a parameter for the transformation. If sev-
eral variables are to be transformed, or if the transformation is com-
plex, then there may be several such parameters. Models of this type
are fundamentally nonlinear.

Suppose that the transformation is indexed by a single parameter A,
and that we can write down the likelihood for the model as a function
of the transformation parameter and the usual regression parameters:
LA, Bo. B1, . . . 5 Bis &2). Maximizing the likelihood yields the maxi-
mum-likelihood estimate (MLE) of A along with the MLEs of the
other parameters. Now suppose that A = Ay represents no transforma-
tion (e.g., Ag = 1 for the power transformation y"). The likelihood-
ratio test of Hg: A = Ay assesses the evidence that a transformation is
required,

As illustrated in Figure ?\.I, the likelihood-ratio test compares the
log-likelihood at the MLE A with the log-likelihood at the nuli value
Ao If log, L&) is sufficiently larger than log, L(Ap), then Hy is re-
jected, and we conclude that a transformation is required. Alternative




68

tests, also 111ustrated in Figure 9.1, are the Wald test, based on the
distance between % and ho: and the score test (also calied the
“Lagrange multiplier” test), based on the slope of the log-likelihood
at Ag—a steep slope casts doubt on Ho, because the log-likelihood is
fiat at the maximum (i.e., when A = 4). For a quadratic log-likelihood,
the three tests are identical, but more generally they are not, although
they usually provide similar p values in practice and have equivalent
asymptotic (large-sample) properties.

A disadvantage of the likelihood-ratio and Wald tests is that they
require finding the MLE, which usually necessitates iteration (a repet-
itive process of successively closer approximations). The slope of
log.L at Ao, in contrast, generally can be assessed or approximated
without iteration. Often the score test can be formulated as the ¢ sta-
tistic for a new regressor, called a constructed variable, to be added
to the regression model. Moreover, a partial-regression plot for the
constructed variable then can reveal whether one or a small number
of observations is unduly influential in determining the transforma-
tion or whether evidence for the transformation is spread throughout
the data.

Box-Cex Fransformation of y

Box and Cox (1964) have suggested power transformation of y with
the object (as much as possible) of normalizing the error distribution,
stabilizing the error variance, and straightening the relationship of y
to the xs. The general model is

'y
{)”Bo"‘ﬁ;xh cor P T E
g~ NID(0,0%)
where

Y-

A A
-

for A#0

log,y; forA=0
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and where all y; are positive. For a particular choice of A, Box and
Cox show that the conditional maximized log-likelihood is

log, LBy, By.- - . Pro o2 A) =——-;- (1 +log,2r)

P og )+ -1y 31
5 log, s ,g; 08, ¥;

where s*(A) = L e?m,-/n, and where the eq); are the residuals from the
least-squares linear regression of y( ) on the xs,

A simple procedure for finding the MLE A, then, is to evaluate
the maximized log, L for a range of values of A, say between -2 and
+2. If this range turns out not to contain the maximum of the log-likeli-
hood, then the range can be expanded. To test Hy: A = 1, calculate the
likelihood-ratio test statistic

G3=-2x[log, L (A= 1) - log, L. (A = })]

which is distributed as x] under Hp. Alternatively, a 95% confidg\nce
interval for A includes those vaiues for which log, L(K) > logs L{A =A) ~
1/2 % 1.962, where 1.96% = 7 o.05.

Figure 9.2 shows a plot of the maximized log-likelihood against A
for Ornstein’s interlocking-directorate regression. The maximum-
likelihood estimate of A is A = 0.30, and a 95% confidence inter-
val, marked out by the intersection of the line near the top of the
graph with the log-likeiihood, runs from 0.20 to 0.41. (Recall that in
Chapter 6 we employed a square-root transformation for these data to
stabilize the error variance.)

Atkinson (1985) has proposed an approximate score test for the
Box-Cox model, based on the constructed variable G; = y; x
{log. (y1/¥ )~ 1], where ¥ is the geometric mean of y: ¥ = (y; X »2
X... X Yy )", This constructed variable is obtained by a linear ap-
prommatmn to the Box-Cox transformation y( Y evaluated at A = 1.
The angmented model is then

Yi=Bp+Byxyt. . +Bx+ @G tg

The ¢ test of Hy: ¢ = O, that is, 15 = $/SE($), assesses the need for a
transformation. An estimate of A {though not the MLE) is given by
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Figure 9.2. The conditional maximized jog-likelihood in the Box-Cox model
as a function of the transformation parameter A, for Ornstein’s interlocking-
directorate regression. The intersection of the horizontal line near the top of
the graph with the log-likelihood marks off a 95% confidence interval for A.

=1~ (?); and a partial-regression plot for G shows influence on $
and hence on the choice of A.

Atkinson’s constructed-variable plot for the interlocking-director-
ate regression is shown in Figure 9.3. Although the trend in the plot is
not altogether linear, it appears that evidence for the transformation
of y is spread through the data and does not depend unduly on a small
number of observations. The coefficient of the constructed variable in
the regression is § = 0.588, with SE(§) = 0.032, providing very strong
evidence of the need to transform y. The suggested transformation,
%= 1-0.588 = 0.412, is close to the MLE.

Box-Tidwell Transformation of the xs

Now, consider the model
¥ ¥,
yi= B+ Byx .. Byxg +e

g~ NID (0,0
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Figure 9.3. Constructed-variable plot for the Box-Cox transformation of
Omstein’s interlocking-directorate regression. The observation index is plot-
ted for each point. Both the least-squares (broken line)} and lowess (solid line)
regressions are shown.

5

It is assumed that all of the x; are positive. The parameters of this
model, Bo, B1, . ... Brand v, . . ., ¥ could be estimated along with
¢“ by general nonlinear least-squares methods (see, e.g., Gallant,
1975), but Box and Tidwell (1962) suggest instead a more efficient
procedure that also yields a constructed-variable diagnostic:

1. Regress y on x3, . . . , Xk, Obtaining bg, by, .. ., br.
2. Regress y on X1, . . . , x¢ and the constructed variables xiloge %1, .. .,
xiloge xi, obtaining by, b1 . . ., by and dy, . . ., di. Note that because of

the presence of the constructed variables in this second regression, in
general b; # bj. As in the Box-Cox model, the constructed variables re-
sult from a linear approximation to x}' evaluated at y= 1.

3. The constructed variable xjloge x; may be used to assess the need for a
transformation of x; by testing the hypothesis Ho: §; = 0, where §; is the
population coefficient of xjloge x; in the second regression, Partial-
regression plots for the constructed variables are useful for assessing
leverage and influence on the decision to transform the xs.

4, An estimate of y; is given by %5 = 1 + d;/b;. Recall that b; is from the ini-
tial (step 1) regression.
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Constrected Variahle, Education Constructed Variable, Income

Figure 9.4. Constructed-variable plot for the Box-Tidwell transformation of
(a) education and (b) income in the Canadian occupational-prestige regres-
sion. The observation index is plotted for each point. Both the least-squares
{broken line) and lowess (solid line) regressions are shown.

This procedure can be iterated through steps 1, 2, and 4 until the esti-
mates of the transformation parameters stabilize, yielding the MLEs
Yj

For the Canadian occupational- presnge data, leaving the regressors
for percentage of women (W and W?2) untransformed, the coefficients
of E log, E and I log, I in the auxiliary regression are, respectively, dg
= 5.30 with SE(dg) = 2.20, and dy = —0.00243 with SE(d)) = 0.00046.
There is, consequently, much stronger evidence of the need to trans-
form income than education. Recall from Chapter 7 that the power
transformation of education is not wholly appropriate. The first-step
estimates of the transformation parameters are

Fo= 1 +dg /bp=1+530/426=2.2
§,=1+d,/b;= 1 -0.00243/0.00127=~0.91

The fuily iterated MLEs of the transformation parameters are '\{E = 2.2
and y; = —0.038. Compare these values with the square and log trans-
formations discovered following trial and error in Chapter 7. Con-
structed-variable plots for the transformation of education and
income, in Figure 9.4, suggest that there is general evidence for these
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transformations, although there are some high-leverage observations
in the income plot.

Nonconstant Error Variance Revisited

Breusch and Pagan (1979) develop a score test for heteroscedastic-
ity based on the specification that the error variance depends on
known variables 2, . . . , zp, and may be modeled as

oL =V(E)=g M+ 2yt -+ 2%

where the function g(=) is quite general. The same test was indepen-
dently derived by Cook and Weisberg (1983). The score statistic for
the hypothesis that the 67 are constant, which is equivalent to Hy: ¥
=...=1, =0, may be formulated as an auxiliary regression problem.

Let u; = e,zla‘z, where 62 = S ef/n is the MLE of the error variance
(note the division by # rather than degrees of freedom n~k-1). The w;
are a type of squared standardized residuals. Regress u on the zs:

= O+ 00 2o O, 2+ O (9.1]

Breusch and Pagan show that the score statistic §2 = 2(35—5)2/2 18
asymptotically distributed as xg under Hy: of = 0%, Here, the ﬁ,- are fit-
ted values from the regression of u on the zs and thus 52 is half the re-
gression sum of squares from fitting Equation 9.1.

In applications, it is of course necessary to select zs, the choice of
which depends on the suspected pattern of nonconstant error vari-
ance. If several patterns are suspected, then several score tests may be
performed. Employing x;, . . . , x; in the auxiliary regression Equation
0.1, for example, permits detection of a tendency of the error variance
to increase with values of one or more of the independent variables in
the main regression.

Likewise, Cook and Weisberg (1983) suggest regressing u on the
fitted values from the prain regression (i.e., fitting the auxiliary re-
gression w; = ¢ + ouy; + ;) producing a one-degree-of-freedom
score test to detect the common tendency of the error variance to in-
crease with the level of the dependent variable. When the error vari;\
ances in fact follow this pattern, the auxiliary regression of u on y
provides a more powerful test than the more general regression of u
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on the xs. A similar (but more complex) procedure is described by
Anscombe (1961), who suggests correcting detected heteroscedastic-
ity by transforming y to y ), with A=1- 1/2&&.

Finally, White (1980) proposes a similar score test based on a com-
parison of his heteroscedasticity-corrected estimator of coefficient
sampling variance (see Chapter 6 and Appendix A6.3) with the usual
estimator of coefficient variance. If the two estimators are sufficiently
different, then doubt is cast on the assumption of constant error vari-
ance. White’s test may be implemented as an auxiliary regression of
the squared residuals from the main regression, e,~2, on all of the xs to-
gether with all squares and pairwise products of the xs, Thus, for k =
2 independent variables in the main regression, we would fit the
model

2 _
ef =8+ 8, x;+ 8, x4 B ’21;“" 3, x%i+ Bsxp; Xy,

In general, there will be p = k(k + 3)/2 terms in the auxiliary regres-
sion, plus the constant.

The score statistic for testing the null hypothesis of constant error
variance is $% = nR2, where R? is the squared multiple correlation
from the auxiliary regression. Under the null hypothesis, 52 follows
an asymptotic x2 distribution with p degrees of freedom.

Because all of these score tests are potentially sensitive to viola-
tions of model assumptions other than constant error variance, it is
important in practice to supplement the tests with graphical diagnos-
tics, as suggested by Cook and Weisberg (1983). When there are sev-
eral zs, a simple diagnostic is to plot u; against %, the fitted value
from the auxiliary regression. We also can construct partial-regres-
sion plots for the zs in the auxiliary regression. When is simply re-
gressed on ﬁ,-, these plots are essentially similar to the plot of
studentized residuals against fitted values proposed in Chapter 6.

Applied to Orns}\tein’s in}\erlocking-directorat?\ data, an auxiliary re-
gression of 4 on y yields u = 0.134 + 0.0594 y, and §% = 147.6/2 =
73.8 on one degree of freedom. There is, consequently, very strong
evidence for nonconstant error variance. The suggested variance-
stabilizing transformation using Anscombe’s rule is A= 1-
1/2(0.0594)(14.81) = 0.56. Compare this value with those produced
by the Box-Cox model (ﬁ = 0.3} and by trial and error (A = 0.5, from
Chapter 6).
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An auxiliary regression of u on the independent variables in the
main regression yields 5% = 172.6/2 = 86.3 on k = 13 degrees of free-
dom, and thus also provides strong evidence against constant error
variance. Examination of the coefficients from the auxiliary regres-
sion (not shown) indicates in particular a tendency of the error vari-
ance to increase with assets. Note, however, that the score statistic for
the more general test is not much larger than for the regression of u
on ¥y, suggesting that the pattern of nonconstant error variance is in-
deed for the spread of the errors to increase with the level of y. Assets
are, of course, an important component of 9 Because White’s test re-
quires 104 regressors for this problem, it was not performed.

10. RECOMMENDATIONS

1. Screen your data prior to undertaking a complex statistical anal-
ysis. Examining univariate distributions and bivariate plots, although
not substitutes for the methods presented in this monograph, often
will reveal problems such as wild data values, highly skewed distribu-
tions, extreme nonlinearity, and so on. If the data set is small, con-
sider entering the data into the computer yourself. Generally, do not
hesitate to dirty your hands with the data.

2. Employ a small number of simple, robust, and informative diag-
nostics as a matter of course, following up problems that are revealed
with more specialized and sophisticated methods. The following se-
lection of everyday diagnostics is a reasonable choice:

a. Collinearity; Although collinearity is rarely a serious problem for indi-
vidual-level cross-sectional data—more frequently with aggregated or
iongitudinal data—it is simple and informative to compute variance-
inflation factors.

b. Influential data, outliers, and non-normality: Except in the case of
grossly inaccurate data (e.g., missing data codes treated as valid data),
influential data are much more common in small data sets than in large
ones. A plot of studentized residuals by hat-values is a good diagnostic,
because all of the influence statistics that I presented depend in one way
or another on these quantities or on closely related values. An index piot
of Cook’s D (or of DFFITS) provides a summary measure of influence
on the regression coefficients, Partial-regression plots are useful for dis-
playing leverage and influence on individual coefficients and may reveal
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influential subsets of observations not apparent from single-observation
deletion statistics like Cook’s D. A normal quantile-comparison plot of
studentized residuals reveals outliers as well as skewed and heavy-tailed
error distributions, A stem-and-leaf display, histogram, or smoothed his-
togram of studentized residuals conveys a good impression of the shape
of the residual distribution and may reveal problems such as multiple
modes,

¢. Nonlinearity: 1f there appears to be nonlinearity in a partial-regression
plot, the pattern may be revealed more clearly in a partial-residual plot.
Because the latter is very easily constructed, it can be used routinely.

d. Nonconstant error variance: A plot of studentized residuais (or their
squares or absolute values) against fitted values will reveal a tendency
of the error variance to change with the level of y, which is the most
common problem of this type.

3. If possible, employ smoothing methods, like lowess smoothing
of scatterplots, to help reveal patterns in the data. Although diagnos-
tic techniques are most crucially directed towards gross rather than
subtle problems, it is at times important to compensate for the ten-
dency to perceive nonexistent visual patterns and for the difficulty in
other contexts of separating information from visual noise.

4, Try to avoid the pitfalls of “over-fitting” (i.e., modifying a statis-
tical model to capture chance features of the data). Part of the art of
data analysis is judging how far to accommodate data. At one ex-
treme, there are those who ignore unanticipated patterns in the data so
as to implement a textbook caricature of “objective” statistical analy-
sis that requires the model to be specified completely in advance. At
the other extreme, there are those—often recent students of diagnostic
techniques—who trim away large portions of their data, or who trans-
form data so as to achieve a trivially “better” fit.

‘Discarding discrepant data is satirized in Figure 10.1. At the risk of
ruining a good joke, I feel compelled to point out that it would be
worse to fit a line to all of the data in this figure than to eliminate the
offending points. It would, of course, be best to try to understand
what differentiates the discrepant cluster of points from the rest of the
data,

Although the formal statistical analysis of “specification
searches"'—that is, choice of statistical model informed partly by ex-
amination of the data—is exceedingly complex (see Leamer, 1978), it
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Figure 10.1. Regression diagnostics in action,

SOURCE: Reprinted with permission from the announcement of the Summer Program of the Inter-
University Consortium for Political and Social Research, 1990.
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is often possible to assess honestly the adequacy of a model by cross-
validation (Mosteller and Tukey, 1977). To cross-validate results, we
first divide our sample randomly into two parts, possibly but not nec-
essarily of equal size. The first subsample is employed to choose a
statistical model for the data; the model is then validated on the sec-
ond subsample. This approach-is particularly useful when the data
have been employed to select a subset of independent variables in a
regression, or when transformations have been used to deal with prob-
Jems such as nonlinearity. Cross-validation does not speak as clearly
to problems of outlying and influential data: These problems pertain
to individual observations which are, of course, not shared by the two
subsamples.

Researchers are reluctant to divide their samples, as required by
cross-validation, because they are sensitive to the impact of sample
size on precision of estimation and the power of statistical tests. Yet,
when the data are used partly to choose the model and partly to esti-
mate its parameters, the gain in precision is illusory, at least to a de-
gree. What is worst in my opinion, however, is to avoid examining
the adequacy of an initially specified model simply to protect the “pu-
rity” of classical estimates and tests.

As mentioned, the elimination of outlying and influential data does
not lend itself to check by cross-validation. Yet, estimates of sam-
pling variation following these procedures are probably optimistic. If
the rules employed for rejecting outliers or influential data can be
stated precisely, however, it is possible to estimate sampling variation
empirically (see, e.g., Diaconis and Efron, 1983; Stine, 1990,

5. Take account of the sampling properties of the data. Data that
arise from complex sampling designs generally have non-negligible
dependencies among the observations (e.g., Kish, 1965). Likewise,
substantial quantities of missing data require special treatment (e.g.,
Little and Rubin, 1990},

A common situation in which the assumption of independent errors
usually is not reasonable occurs when the observations are defined by
points in time, producing what are commonly termed time-series data.
Methods for detecting and dealing with autocorrelated errors in time-
series regression may be found, for example, in Ostrom {1990} and
Kmenta (1986, Ch. 8). A useful and familiar preliminary diagnostic in
this situation is to plot least-squares residuals against the observation
index, which represents time.
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Computing Diagnostics

Standard statistical software packages (such as SAS, SPSS, BMDP,
and Systat) now directly incorporate many of the diagnostics dis-
cussed in this monograph. Even when a particular statistic or proce-
dure is not offered directly by a statistical package, it is often simple
to compute or construct. DFFITS and COVRATIO, for example,
which are discussed in Chapter 4, may be computed from hat-values
and studentized residuals. Likewise, the partial-regression and con-
structed-variable plots discussed in Chapters 4 and 9 may be obtained
by plotting residuals from appropriately formulated regressions. Even
relatively complex procedures such as lowess can be programmed in
the macro languages provided by packages such as SAS (and indeed
scatterplot smoothers like lowess are already included in Systat and
some other packages).

Almost all of the computing for this monograph was done with the
PC version of SAS, and the graphs that appear were (with a couple of
exceptions) constructed with SAS/GRAPH. Current statistical soft-
ware therefore is no obstacle to the application of diagnostic tech-
niques, and it is likely that the diagnostic capabilities of standard
programs will continue to improve.

Further Reading

There is voluminous journal literature on regression diagnostics
and related topics, such as exploratory and graphical data analysis.
Fortunately, there are now several texts that present this literature in a
more digestible form.

In my opinion, Cook and Weisberg’s (1982b) text is the best book-
length presentation of methods for assessing leverage (a term that the au-
thors dislike), outliers, and influence. The book aiso includes good
discussions of other problems, such as nonlinearity and transformations
of the dependent and independent variables, but there is no treatment of
collinearity. Cook and Weisberg’s (1982a} article presents in condensed
form many of the topics that appear in their book.

Chatterjee and Hadi (1988) is a thorough and up-to-date text that
deals primarily with influential data but touches on other topics such
as nonlinearity and nonconstant error variance. The book is distin-
guished by comparative considerations of aiternative measures of
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influence on a variety of regression outputs, including regression co-
efficients, coefficient variances, and collinearity.

Atkinson (1985) also is a valuable source, emphasizing the author’s
important contributions to regression diagnostics, such as con-
structed-variable plots and simulation methods. Likewise, Belsley et
al. (1980) is a seminally important book dealing with influential data
and collinearity, primarily presenting the authors’ work in these
areas. | believe, however, that their treatment of collinearity is marred
by an argument that the intercept should not be “adjusted out” prior to
assessing ill-conditioning (see the discussion following Belsley, 1984).

Several applied-regression and linear-model texts have relatively
strong treatments of diagnostics. See, in particular, Chatterjee and
Price (1977), Daniel and Wood (1980), and Draper and Smith (1981)
for discussions of collinearity, variable selection, and some informa-
tion on residual-based diagnostics; and Weisberg (1985) and Fox
(1984) for treatments of a variety of topics covered in this mono-
graph. Likewise, general econometrics books often contain informa-
tion on detecting and correcting violations of regression-model
assumptions, generally with a more theoretical than data-analytic
flavor. See Kmenta (1986) for a strong example of this approach.

There are many good books on graphical and exploratory methods of
data analysis, including introductory texts on graphics by Cleveland
(1985) and on exploratory data analysis by Velleman and Hoaglin
(1981). Also see Chambers et al. (1983), which has contents similar to
Cleveland’s book; Tukey’s (1977) original—and iconoclastic—presenta-
tion of exploratory data analysis; and books of readings edited by Hoaglin,
Mosteller, and Tukey (1983, 1985) and by Fox and Long (1990). Finally,
Mosteller and Tukey’s (1977) idiosyncratic regression text, a sort of
companion volume to Tukey (1977), contains a variety of interesting
material on regression from a strongly data-analytic perspective.

APPENDIX

A2.1 Least-Squares Fit, Joint Confidence Regions, and Tests

In matrix form, the linear-regression model is written y = X + €
where y is an n x 1 vector of dependent-variable values; Xisannx (k + 1)
matrix of regressors, including the constant regressor of 1s as its first
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column; B is a (k + 1) x 1 vector of regression parameters; and € is an
n X I vector of errors. By assumption, € ~ N,{0, o? I), independent of X,
The fitted model is y = Xb + e. To obtain the least-squares estimates b
of B, we need to Kninimize the sum of squared residuals, e'e = [length(e)]z.
Because e = y — ¥, the length of e is minimized by taking § = Xb as the or-
thogonal projection of y onto the subspace spanned by the columns of X,
Then, because X'e = 0, we have X'Xb =AX’ . which are the normal equa-
tions in matrix form. Note that because ¥ is in the column subspace of X,
the residuals and fitted values are orthogonal: Ze,-?,- = e’§ = (. Moreover,
because the first column of X consists of ones, Le;=1e = 0.
Alternatively, but equivalently,

ee=(y - Xb)' (¥ - Xb)
=yy -2y Xb+ b X' Xb

Differentiating produces de’e/db = —2X’y + 2X'Xb, and setting the par-
tial derivatives to zero so as to minimize the sum-of-squares function
gives the normal equations. If X'X is nonsingular, which will occur as
long as the columns of X are not collinear, then b = (X’X)_’X'y.

Because, by assumption, E(g) = 0, it follows that E(y) = XB, and
E(b) = (X’X)"“IX'E(y) = B; thus b is an unbiased estimator of P. Like-
wise, by assumption, V(y} = V(g) = 621, and hence, using the symme-
try of the sum-of-squares-and-products matrix X'X,

Vb)=X' X)X vy [(X X)X =0 (X X))
Under the assumption of normally distributed errors, then,
b~N,,, B, c*X'X)"].

A 100(1-)% ellipsoidal joint confidence region for the regression
coefficients is given by

b-BY XX) - SE+DEFy o noims

where §* = e'ef(n — k — 1) is an unbiased estimator of 62, and Forsi,n-k-1
is the o critical value of F with % + 1 and n— k — 1 degrees of freedom.
For a subset B; of p regression coefficients, we have the 100(1 - )% con- -
fidence region S
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b~ B Vi by~ B)<ps® Fypaken [A.1]

Here V; is the p X p submatrix of rows and columns of (X’}‘()"1 corre-
sponding to the entries of b,.
F tests are easily obtained from the expressions for these confi-
dence regions. For example, to test Ho: 1 = BSO) , find
o =B Vi b, -B)
0 2
ps

which is distributed as Fp , - x| under Hp. For B(IG) = 0, Fy is simply
the incremental F statistic given in the text.

A3.1 Ridge Regression

Ridge regression (Hoerl and Kennard, 1970a, 1970b) is an attempt
to obtain more efficient estimates in the presence of strong collinear-
ity. My primary objective in explaining ridge regression here is to
suggest that it is not a general remedy for collinearity.

Begin by rescaling y and the columns of X to zero means and unit
length, so that sums of products are correlations. Then the ridge esti-
mator of the standardized regression coefficients is

*

bl =R, +2D 7 1, =R, + AR, b

where b” = R i1y is the least-squares estimator, and z 2 0 is the ridge
constant, which is selected by the researcher. Here, R,y is the matrix of
correlations among the xs, and I,y is the vector of correlations between
the xs and y. Intuitively, by adding z to each diagonal entry of R,,, the
diagonal entries (originally 1) are inflated relative to the off-diagonal en-
tries (the correlations among the regressors), thus improving the “condi-
tioning” of the independent-variable correlation matrix. When z = 0, the
least-squares and ridge estimators coincide: by = b".

Hoerl and Kennard show that the bias of b increases with z; that
for z > 0, V(b!) < V(b"); that V(b} ) declines as z increases; and that
there is always a range of values of z for which MSE(br )} < MSE(b").
Recall that mean-squared error is the sum of sampling variance and
squared bias; the trick in ridge regression, therefore, is to pick z s0
that the trade-off of bias against variance is favorable.
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Values of z for which the ridge estimator is better than the least-
squares estimator depend on the unknown parameters B* it is there-
fore not obvious how the theoretical advantage of the ridge estimator
can be realized in practice. Draper and Smith (1981) demonstrate that
the choice of z for the ridge estimator implicitly places a constraint on
the length of the estimated parameter vector by .

A4.1 Hat-Values and the Hat Matrix

The fitted values in least-squares regression are a linear function of
the observed ys:

$=Xb=X(X'X)! X'y=Hy

Here H = X(X’X}”1X’ is the “hat matrix,” so named because it trans-
forms y into 3\' The hat matrix is symmetric (H = H") and idempotent
(H? = H), as can easily be verified. Consequently, the diagonal en-
tries of the hat matrix 4; = hy, called hat-values, are

by = Eh,j =W+ 3 h

jei

which implies that 0 < &; < 1. If X includes the constant regressor, then
I/n € h;. Finally, because H is a projection matrix, projecting y orthogo-
nally onto the subspace spanned by the columns of X, it follows that

=k + 1, and thus & = (k + 1)/n, as stated in the text. See Hoaglin and
Welsch (1978) or Chatterjee and Hadi (1988, Ch. 2) for details.

A4.2 The Distribution of the Least-Squares Residuals

The least-squares residuals are given by
e=y-$=XB+e)-X X' X)X XB+e)=(I-H)e
Thus,
E@=(1-HE@E=1-H)0=0

and
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Vey=0-H)Ve)d-HY=¢" (I-H)

because I ~ H, like H, is symmetric and idempotent. The matrix I- H is
not diagonal, and its diagonal entries are usually unequal; the residuals,
therefore, are correlated and usually have unequal variances, even
though the errors are, by assumption, independent with equal variances.

A4.3 Deletion Diagnostics

Let b; denote the vector of least-squares regression coefficients
calculated with the ith observation omitted. Then d; = b—b ;, repre-
sents the influence of observation i on the regression coefficients; d;
may calculated efficiently by

d=XX"x

e )
= (A-2]

where x; 18 the ith row of X.
Cook’s D, is the F value for testing the “hypothesis” that §§ = be:

_(b—b Y X' X(b-b,)
(k+1) s>

(y Y(«-;))(Y Y(-I))
(k+1)s

An alternative interpretation of D, therefore, is that it measures the aggre-
gate influence of observation i on the fitted values y, which is why Belsley
et al. (1980) call their similar statistic “DFFITS.” Using Equation A.2,

eiz h; € ? h;

x = X
F+1) (1-n)r k+1 1=k

I_ =
which is the formula given in the text,

A4.4 The Partial-Regression Plot

In vector form, the fitted multiple-regression model is
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Yy=byl+b x +...+hx, +e {A.3]

where y and the x; are n x 1 vectors of observations, 1 is an n x 1 vector
of ones, and e is the # x 1 residual vector. In least-squares regression, y
= bl + b1xy + .. . + biX; is the orthogonal projection of y onto the sub-
space spanned by the regressors. Let ym and x'V be the projections of y
and x;, respectively, onto the orthogonal complement of the subspace
spanned by 1 and x,, . . . , % (i.e., the residual vectors from the regres-
sions of y and x; on the other xs) Then, by the geometry of pr()]ecnons
the orthogonal projection of y M onto x¢D is b1xP, and ¥V - bix M=,
the residual vector from the overall regression in Equanon A3,

A6.1 Smoothing Scatterplots by Lowess

An acronym for locally weighted scatterplot smoother, lowess
(Cleveland, 1985) produces a smoothed fitted value y, corresponding
to each x; (where y and x are used generically for the vertical and
horizontal variables in the scatterplot}). To find the smoothed values,
the lowess procedure fits » regression lines to the data, one for each
observation i, emphasizing the points with x values near x;. The
lowess procedure is illustrated in Figure A.l. Lowess is com-
putationally intensive and thus requires a special computer program
for implementation, but such programs are simple to write and are
increasingly common.

1. Choose a smoothing fraction. Select a fraction of the data 0 < f< 1
to include in each fit, corresponding to r = [fr] data values, where the
square brackets denote rounding to the nearest integer. Often f = 1/2 or
2/3 works weil. Larger values of f preduce smoother results.

2. Locally weighted regressaons For each x;, select the r values of x
closest to it, denoted xl( 2 D (see Figure A.la). The window half-
w1dth for th:s observation is then the distance to the farthest x}(‘) that is,

= Ji— X " { For each of the r observations in the window, compute
the weight wj(’ )= w,[(xj(‘}mx:) / Wi], where w; is the tricube weight function

for Iz 21

W ()= (1 iz 7Y for |z <1

(Here, z simply rcpresents the argument of the trxcube function—i.e.,
(x; Dx)/W.) Thus wj } descends to zero as xJ approaches the
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Figure A.1. How lowess works: Panels a, b, and ¢ show the calculation of the
lowess fit 3}5 at x = x5 for a dataset of n= 14 observations. (a) A window is lo-
cated with center at x5 to include f=14 of the data; thus r=[fn]=7 points are
within the window. The point (xs, ys) is shown as a filled dot. (b) The tricube
weight function descends to zero at the boundaries of the window and attains
its maximum value of one at x=xs. (¢) A local regression line is fit t0 the
seven observations in the window, employing weights given by the weight func-
tion in (b). The lowess fitted value 95 at xg is shown as a filled dot,
Steps a, b, and ¢ are repeated for each observation to obtain the full set of 14
fitted values. (d) The lowess curve (solid ling) is obtained by connecting the
fitted values §E, - ,914. Note that the curve is pulled toward the outlying ob-
servation (filled dot). The dotted line shows how downweighting the outlier
produces a more robust fit (connecting the fitted values $3,.. ., $i0.

SOURCE: Adapted from The Elements of Graphing Data, by W. 8. Cieveland. Copyright © 1985
Beil Telephone Laboratories, Inc., Murray Hill, NI, Adapted by permission of Wadsworth &
Brooks/Cole Advanced Books & Software, Pacific Grove, CA 93930,

boundaries of the window and is largest at x;. (See Figure A.1b). Then
fit the regression equation
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yO=a,+ b+ oD
to minimize Xj- 1Wj(i) ej(")z {cf., Appendix A6.2 on weighted-least-
squares regression). Compute the fitted value 9; = g; + bix; (see Figure
A.1c). Note that one regression equation is fit, and one fitted value is
calculated, foreachi=1,...,n.

3. Down-weight outliers: Calculate residuals ¢; = y,-—?,-. Compute
robustness weights that discount observations with large residuals:
3; = wp(e;/6M), where M is the median of the absolute residuals lej,
and wy is the bisquare weight function:

0 for z |21

w, (2} =
b 1~z  for |z <1

4. Robust locally weighted regressions: Repeat step 2, but use compound

weights Sjwf‘) in the individual regressions, finding new fitted values ;‘;’

(see Figure A.1d). Steps 3 and 4 may be iterated to obtain more robustness.

A6.2 Weighted-Least-Squares Estimation
Suppose that in the regression model
=B+ Byx Bzt Bxyt e [A.4]
g,~ NID (0, o7

the standard deviation of the errors is proportional to xy, 6; = ¢xy,. Di-
viding both sides of Equation A.4 by xy; produces

¥; 1 Xn: X,. E:
2By By By B [A.5]
Xy Ky X3 Xy Xy

and because xy; = 00, the last term becomes & = O¢;/G:. Because
Vieh = GzV(E;-)!G,-2 = 62 is constant, the transformed model in Equation
A.5 may legitimately be fit by least-squares regression of y;/xy; on
1/xy;, & constant regressor, and xp;/x); through x, /xy;, producing esti-
mates of the Bs and their standard errors. The procedure is equivalent to
minimizing the weighted sum of squares Ye?/c?, which yields maximum-
likelihood estimates for Equation A.4. This general approach works
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whenever the error variances are known up to a constant of propor-
tionality: V(g;) = o%w;. (See, for example, Weisberg {1985, Ch. 4].)

A6.3 Correcting Least-Squares Standard Errors
for Heteroscedasticity

Recall from Appendix A2.1 that the covariance matrix of the least-
squares estimator b is

v =X XX vmxx ! [A.6)]

Under the assumption of constant error variance, V(y) = o?I, and Equa-
tion A.6 simplifies to the usual formula, V(b) = 62(X’X)'1. If, alterna-
tively, the errors are heteroscedastic but independent, then V(y) = =
diag(o?, . . ., 62), and

V=X XTI XIXE X!

Because E(g;) = 0, the variance of the ith error is 67 = E(e?), which
suggests the possibility of estimating V(b) by

Ty =X X LX X Xy (A7)

with )?. = diag(e%, e e,z,), where ¢; is the least-squares residual for
observation . White (1980) shows that Equation A.7 is a consistent
estimator of V(b).

For example, applied to Ornstein’s interlocking-directorate data,
White’s approach produces estimated standard errors that are mostly
similar to the estimates calculated by the usual formula (and given in
Table 6.1): In fact, for most coefficients, the corrected standard errors
are a bit smaller than the uncorrected ones. For the coefficient of
square-root assets, however, the corrected standard error, 0.028, is
substantially larger than the uncorrected one, 0.019.

A6.4 The Efficiency and Validity of Least-Squares Estimation
When Error Variances Are Not Constant

The impact of nonconstant error variance on the efficiency of the
ordinary least-squares (OLS) estimator and on the validity of least-
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squares inference depends on several factors, including the sample
size, the degree of variation in of, the configuration of x values, and
the relationship between the error variance and the xs. It is therefore
not possible to develop wholly general conclusions, but the following
simple case is instructive and supports the advice given in the text.

Suppose that y; = Bo + Bux; + €, with & ~ NID(0, 67), and ©; = Ox;
(as in Appendix A6.2). Then the OLS estimator by is less efficient
than the WLS estimator {;, which under these circumstances is the
maximally efficient unbiased estimator of f1.

Formulas for the sampling variances of b; and B, are easily derived
(e.g., Kmenta, 1986, Ch. 8). The efficiepcy of the OLS estimator rela-
tive to the optimal WLS is given by V([3;)/V(b1), and the relative pre-
cision of OLS is the square root of this ratio, that is, SE(ﬁ;)/SE(bE).

Now, suppose that x is uniformly distributed over the interval
[xo, Ouxgl, where xo > 0 and @ > 0, so that @ is the ratio of largest to
smallest x (and, consequently, of largest to smallest 0;). The relative
precision of the OLS estimator stabilizes quickly as the sample size
grows, and exceeds 90% when o = 2, and 85% when & = 3, even when #
is as small as 20. For o = 10, the penalty for using OLS is greater, but
even here the relative precision of OLS exceeds 65% for » 2 20.

The validity of statistical inferences based on least-squares estima-
tion is even less sensitive to common patterns of nonconstant error
variance. Here, we need to compare the expectation of the usual esti-
mator of V(by), which will typically be biased when error variance is
not constant, with the true sampling variance of b;. Again, the formula
for E[V(b1)] is simple to derive (and may be found in Kmenta, 1986,
Ch. 8). The square root of E[V(b)]/V(b;) expresses the resuit in rela-
tive standard-error terms. For the illustration, this ratio is 98% when
o =2, 97% when o = 3, and 93% when « = 10, all for n 2 20.
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